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deep learning for lithology
identification from well logs

Luoyuan Chen'?, Xingjian Wang*?* and Zhanbo Liu®

!State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of
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Lithology identification is crucial for characterizing complex unconventional
reservoirs, where thin interlayers significantly influence hydrocarbon
accumulation. Although deep learning-based methods utilizing well logs have
become prevalent, most approaches treat well logs as generic 1D time series,
frequently neglecting the multi-scale geological information inherent in the
data. This oversight limits their accuracy and generalizability, especially in
geologically complex environments. To overcome this limitation, we propose
a novel geology-driven deep learning framework. Our key contribution is
the transformation of 1D well logs into 2D multi-scale feature maps through
multiresolution wavelet decomposition, a process designed to explicitly
represent geological features resembling sedimentary cycles. These feature
maps are subsequently processed by a novel Geology-Guided Hybrid Network
with channel-spatial attention, which integrates a 2D CNN to capture geological
patterns and a Bidirectional long short-term memory to model sequential
dependencies. Evaluated on field data from complex reservoirs, our method
achieves an outstanding F1-score of up to 0.966, outperforming four established
deep learning benchmarks. Importantly, the approach demonstrates improved
accuracy in identifying thin layers and enhanced generalization across wells
with differing lithological distributions, attaining an Fl-score of 0.885 on
a challenging test well exhibiting significant data drift. This study validates
the robustness of our geology-informed approach and offers an effective
framework for high-precision lithology identification.

KEYWORDS

lithology identification, deep learning, wavelet decomposition, channel-
spatialattention mechanism, geological information-driven

1 Introduction

Lithology identification in well logging plays a vital role in hydrocarbon exploration,
particularly in structurally complex areas (Chang et al., 2021; Saporetti et al., 2019;
Wang et al., 2024). Accurate subsurface lithology characterization provides essential
scientific foundations for reservoir evaluation and development planning, as lithology
directly controls the rock’s mechanical properties, pore structure, and fluid flow behavior,
which are critical for evaluating reservoir extraction dynamics and safety (Wang et al., 2025;
Tengetal., 2025; Cao etal., 2025). Traditional lithology identification methods primarily rely
on empirical analysis and cross-plots (Liu Y et al., 2021). While these approaches can yield
reasonable interpretations in simple geological conditions, their accuracy and efficiency
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face significant challenges when dealing with complex geological
structures or large-scale multi-well data.

To overcome these challenges, machine learning (ML)
techniques have been widely applied in processing well log data
and lithology identification, such as support vector machines
(Kumar T et al., 2022), random forests (Dev and Eden, 2019;
Ao et al., 2020), and k-nearest neighbor algorithms (Wang et al.,
2018). However, these methods predominantly rely on shallow
ML algorithms. With the advancement of deep learning (DL),
methods based on deep neural networks, such as convolutional
neural networks (CNNs) and recurrent neural networks (RNNs),
have achieved remarkable progress in lithology identification. Due
to their strong local feature extraction capabilities and sensitivity
to sequential data, these approaches have become mainstream in
lithology identification (Dos Santos et al., 2022; Jaikla et al., 2019;
Park et al., 2022; Wang et al., 2023; Lin et al., 2020). These models
have demonstrated remarkable capabilities across various geological
settings, leveraging the rich information contained within multi-
type well logs to learn complex, non-linear relationships between
log responses and lithological classes (Mukherjee B et al., 2024;
Mohammadi K et al., 2025). The application of deep learning is
increasingly focused on utilizing advanced deep learning models
to address the ongoing challenge of characterizing thin layers,
which typically have lower resolution than conventional methods
(Ehsan M et al., 2024; Manzoor U et al., 2024).

Despite their successes, most DL methods treat well logs as
simple one-dimensional time series, using 1D networks to extract
depth-directional features while neglecting the rich geological and
stratigraphic information embedded within. From a geological
and sedimentological perspective, well log data reflect the physical
and chemical properties of subsurface strata, which are directly
linked to depositional environments, processes, and lithological
characteristics (Song et al., 2021). Incorporating this geological
context is crucial, as lithological variations are often influenced by
stratigraphic sequences and depositional cycles (Li et al., 2024).
Ignoring these factors may limit the predictive and generalization
capabilities of ML and DL models in complex geological
settings.

To address this limitation, previous studies have incorporated
geological information in various ways. For example, Zhu et al.
(2020) employed wavelet transform to divide well logs into multi-
scale components and used a single 2-dimensional convolutional
neural network (2DCNN) model for prediction. Jiang et al. (2021)
integrated geological constraints into bidirectional gated recurrent
units, while Sun et al. (2023) proposed a cross-domain lithology
identification method combining wavelet transform and adversarial
learning. Lv et al. (2024) introduced Gaussian windows to represent
stratigraphic sequences with geological constraints, achieving
notable results in identifying tight sandstone reservoirs. Pang et al.
(2024) encoded raw well log data into graph structures using multi-
dimensional spectral maps and applied spatio-temporal neural
networks for lithology identification. Although these methods
consider the geological information in well logs, they often fail to
integrate geological features with temporal information, leading to
challenges in accuracy and generalization in complex geological
conditions.

This study proposes a novel geology-driven deep learning
framework designed to explicitly incorporate multi-scale geological
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information into the identification process. The main contributions
are as follows.

1. We propose a geology-informed feature engineering strategy
based on multiresolution wavelet decomposition. This
transforms conventional 1D well logs into 2D feature maps,
where one axis represents depth and the other represents
geological scale, making features analogous to sedimentary
cycles explicitly available for model learning.

. We design a novel hybrid deep learning architecture, the
Geology-guided Channel-Spatial Attention Hybrid Network
(CA-HybridNet). It synergistically combines a 2D ResNet to
extract scale-dependent geological patterns, a Bidirectional
LSTM to capture stratigraphic context, and a channel-spatial
attention mechanism to focus on the most discriminative
log types and depth intervals.

. We validate our framework using field data from a complex
reservoir in the Songliao Basin, demonstrating that our
approach not only improves identification accuracy for
challenging thin-bedded lithologies but also significantly
enhances the model’s generalization and robustness.

2 Study area and data

The study area is located within the structural transition zone
between the Sanzhao Depression and the Daqing Placanticline
in the northern part of China’s Songliao Basin, specifically along
the northwestern margin of the Sanzhao Depression adjacent to
the Daqing Placanticline (Sun et al.,, 2007). This region, situated
in the central depression zone of the northern Songliao Basin,
exhibits gentle topographic dips of up to 0.2° and spans an area
of approximately 100 km?, as illustrated in Figure 1A. The target
interval for this study is the Putaohua Member of the Yaojia
Formation, which belongs to the Lower Cretaceous. Within one of
the target intervals in the study area, three dominant sedimentary
facies are developed: interdistributary bays, channels, and sheets
sand. The well locations utilized are annotated in Figure 1B.
Specifically, Well 1 and Well 2 were selected for testing, with Well 1
situated in the interdistributary facies and Well 2 positioned within
the sand sheet facies. The target well-logging interval for model
validation is primarily composed of four lithological types: shale,
siltstone, sandstone, and calcareous sandstone. Their corresponding
labels and sample distributions are presented in Table 1.

In this study, well-logging data and lithological records from
ten wells were utilized to evaluate the predictive performance
of the proposed model. Based on the sensitivity relationships
between lithologies and well log curves, we selected six curves for
lithology identification (AC, GR, RLLD, RLLS, RMG, and RMN
curves). The well log curve data were obtained from actual logging
operations and digitized at a sampling interval of 0.125 m. Gamma
ray (GR) logging, which measures natural radioactivity, plays a
critical role in distinguishing between lithologies such as shale
and non-shale formations (Wang et al., 2023). The acoustic (AC)
curve provides information on formation porosity and lithology,
aiding in the differentiation of various rock types. In addition, the
deep laterolog resistivity (RLLD) and shallow laterolog resistivity
(RLLS) curves are used together to assess formation resistivity
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TABLE 1 Lithology attribute and samples.

Attribute Label ‘ Sample numbers
Shale 0 5,230
Silt Stone 1 1,066
Sand Stone 2 635
Calcareous Sandstone 3 147

at different depths, thereby enabling more accurate lithology
interpretation. Furthermore, medium electrode spacing resistivity
logging (RMG) and near electrode spacing resistivity logging
(RMN) are combined to further refine lithology interpretation and
enhance the ability to distinguish between different lithologies.
Detailed information regarding the well log curves and lithologies
can be found in Zhu et al., 2020 and will not be reiterated here. No
seismic data were incorporated in the current work, demonstrating
the potential of extracting rich geological information solely from
well log measurements.

3 Methodology

The main workflow and neural network framework of this study
are shown in Figure 2: First, multi-scale wavelet decomposition
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is applied to each well log curve, dividing it into components at
different scales. The decomposed curves undergo normalization and
other preprocessing steps. The processed data are then input into the
proposed network model, where geological features are extracted by
2D convolution kernels, and temporal features are captured by the
long short-term memory (LSTM) structure. The extracted features
are flattened by a fully connected layer and finally passed through a
Softmax function to output lithology identification results.

3.1 Multiresolution wavelet decomposition

In recent years, wavelet transform, as a multi-scale analysis
tool, has been increasingly applied in well log data processing. By
decomposing well logs into components across different frequency
bands, hidden details in the data can be better revealed (Zhang et al.,
2018). Unlike Fourier transform, wavelet transform provides
simultaneous signal information in both the time and frequency
domains. Therefore, in well logdata processing, wavelet
decomposition is particularly effective in capturing lithological
variations.

From the perspective of high-resolution sequence stratigraphy,
well log curves are not random series but are records of geological
history, controlled by the cyclic rise and fall of the base level
over different time scales. These base-level cycles, which can be
categorized into long-term, mid-term, and short-term orders,

govern the formation of depositional sequences and their internal
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FIGURE 2

for the network, with the training target being the true logging lithology.

The framework of the proposed method for lithology identification (A). The network mainly includes a residual module (B), an attention module (C),
and a BiLSTM module. Each logging curve is decomposed into multi-scale sub-curves through wavelet decomposition, which serves as the input data

stacking patterns (e.g., fining-upward or coarsening-upward
trends). Multiresolution wavelet decomposition provides a powerful
mathematical tool to deconstruct the well log signal into various
frequency components that can be directly correlated with
these different orders of geological cycles (Yu et al.,, 2023). The
low-frequency components (smooth curves) capture the broad
trends associated with long-term cycles, reflecting major changes
in depositional environments. Conversely, the high-frequency
components (detailed curves) highlight localized, rapid variations
corresponding to short-term cycles, such as thin interbeds or sharp
lithological contacts. Therefore, by transforming the 1D log into a
2D multi-scale representation, we are not just augmenting the data
but are explicitly engineering features that align with established
geological principles, providing the deep learning model with a
geologically constrained input. Figure 3 illustrates a commonly
used approach in geology, utilizing wavelet transform to analyze
sedimentary cycles and stratify well logs. Decomposing raw curves
into multi-scale sub-curves serves as an effective data augmentation
method, enriching geological information such as stratigraphic
sequences and sedimentary cycles, and enhancing deep learning
models’ ability to extract features and improve accuracy.

We employ the discrete wavelet transform (DWT) in
conjunction with a multiresolution analysis (MRA) framework
(Akansu and Haddad, 2001). For a given signal f(t), its
representation at different resolution levels is constructed using
wavelet functions and scaling functions to capture both detailed
and abstract features. The fundamental principle of wavelet
transform is to decompose a signal into components at various
scales (frequencies). By selecting an appropriate wavelet basis
function y(t), the signal f(t) can be decomposed into low-frequency
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components (representing trends) and high-frequency components
(representing details), the one-dimensional formula of discrete
wavelet transform is given by Equation 1:

f®) =) Coy, (1) 1)

Where ¢, is the wavelet coefficient and v, () is the wavelet basis
function of different scales. Multiresolution analysis builds upon
this concept by progressively analyzing the signal at varying scales,
from coarse to fine. At each scale, the signal is decomposed into a
low-frequency component, capturing the overall trend, and a high-
frequency component, representing fine-grained details. For a signal
f(t), the multiresolution decomposition process can be described by
Equation 2:

JOEDIY IRNO! ©)
j

where ¢; are the wavelet coefficients of the multiresolution analysis,
and y; (t) is the wavelet basis function at scale j and position k. The
signal f(t) is decomposed into low-frequency and high-frequency
components at each level j. Assuming they are represented by L)

and fjd(t), the original signal can be expressed as Equation 3:

J

F@O =Y Ykfult)+ Y kfi(0) (3)

J

In this study, the Daubechies ‘db4” wavelet was selected as the
basis function. The reason for this choice is its favorable properties
for analyzing geological signals like well logs. The ‘db4” wavelet
is compactly supported and orthogonal, providing a good balance
between time and frequency localization. Its shape is also well-
suited for detecting abrupt changes and discontinuities in the
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FIGURE 3
Analysis of stratigraphic depositional cycles based on wavelet-transformed logging curves. The original GR curve is decomposed into several
sub-curves of different scales through wavelet transform. The low-frequency curve corresponds to long-term cycles, the medium-frequency curve
corresponds to medium-term cycles, and the high-frequency curve corresponds to short-term cycles. The yellow upright triangle represents the
positive cycle, while the green inverted triangle represents the negative cycle.

log data, which often correspond to lithological boundaries or key
stratigraphic surfaces. This makes it effective for decomposing the
logs into components that are geologically meaningful.

This decomposition is based on wavelet coeflicients and wavelet
basis functions, used to separate components of different frequency
bands in the signal, thereby analyzing the signal at different
resolutions. Through layer-by-layer decomposition, the original
signal can be reconstructed into multiple smooth curves, each
representing the low-frequency characteristics of the signal at
different resolutions. Then, we retain specific levels of components in
the wavelet decomposition results and set the coefficients ¢; of other
scales to zero. At this point, it can be used as a low-pass filter with
resolution j. Further processing through the low-pass filter yields
smooth curves with different time resolutions.

Through this method, the original logging curves are
transformed into a multi-layer structure containing information
at different scales, and the dimensionality of the input data changes
from two-dimensional to three-dimensional (Figure 4). It should be
noted that the training and validation sets in this study are based on
single well, so there is no issue of data leakage.

The change of lithology is usually the comprehensive response
of a section of logging curve (Park et al., 2022). The deep learning
network model receives a sequence of length n as input, including
continuous logging parameters such as resistivity and gamma
ray. These parameters together constitute a multi-dimensional
eigenvector that changes continuously with time. The goal of
the model is to understand the pattern of these characteristics
changing with time, and to predict the main lithology in the time
period represented by the sequence. In order to more intuitively
explain our model architecture and data processing process, Figure 5
shows how to divide the continuous logging data into multiple
sequences with length N, and input each sequence as an independent
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sample into the LSTM network. Each sequence corresponds to
a label, that is, the lithology predicted in this time period. In
this way, our model can improve the accuracy and reliability of
lithologic identification by using local patterns and global trends
in time series.

3.2 Network structure

We propose a hybrid framework integrating 2DCNN and RNN,
consisting of a channel-spatial attention-based residual network
structure and a BiLSTM network. Two-dimensional convolutional
neural networks are typically used in image processing tasks, while
1D convolutional kernels are commonly applied to time-series tasks
to extract sequential features. Residual network (ResNet) are an
innovative network structure in the field of deep learning in recent
years, named after the introduction of skip connections (He et al.,
2016). Compared to traditional two-dimensional convolutional
neural networks, ResNet exhibits stronger expressive power in
processing deep features. Through “skip connections” (Figure 6A),
ResNet effectively alleviates the vanishing gradient problem in
deep network training, allowing the network to learn deeper
features without significantly increasing computational complexity.
In logging lithology identification, logging curves after wavelet
decomposition often exhibit complex nonlinear and hierarchical
features. Using the ResNet model can more accurately extract
these details. In contrast, traditional 2DCNN models may face
information attenuation when processing deep features, while
ResNet ensures information transmission through residual
structures, thereby improving model classification accuracy and
generalization ability.
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window of length n slides downward each time, and the lithology at the depth corresponding to the bottom of the window is used as the label.
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TABLE 2 Hyperparameters for the CA-HybridNet model training. and Equation 6 (Liu Y et al., 2021):
Parameter Value
oMo, ©
Optimizer Adam
F; = M(F,)®F, (6)
Initial Learning Rate 0.001
Where ® denotes element-wise multiplication. We constructed
Batch Size 16 . .
a three-layer residual neural network structure (Figure 6A).
Epochs 200 Unlike ResNet18 (He et al., 2016), considering the relatively small

Loss Function Cross-Entropy Loss

Wavelet Decomposition Levels

LSTM Hidden Units 128

For a given layer input x, with the output after two convolutional
layers and activation as F(x), the output of the residual block is
defined as Equation 4 (He et al., 2016):

y=Fx)+x (4)
where F(x) represents the learned feature map, and x is the input
carried over as the “shortcut connection” This structure allows
gradients to propagate efficiently, even in deep networks, reducing
the risk of vanishing gradients.

To enhance global feature extraction in 2DCNN, we inserted a
channel-spatial attention mechanism (CA) module between the two
convolutional layers of the residual module (Liu N et al., 2021). The
channel attention module amplifies cross-dimensional interactions,
fully capturing different information for different logging curves,
while the spatial attention module enhances the residual network’s
ability to extract global features from multi-scale logging curves
(Figure 2C). Here, M, and My are the channel attention map and
spatial attention map, respectively, F1 is the input feature, F2 is the
intermediate state, and F3 is the output feature, defined as Equation 5
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amount of input data from logging curves in the experiments, we
chose 3 x 3 convolutional kernels for the convolutional layers,
with a stride of 1 and padding of 1, replacing the original 7 x 7
large convolutional kernels, and the input feature maps are not
downsampled. Additionally, the max-pooling layer was removed to
retain as much original information as possible.

The long-term and short-term memory network (Hochreiter,
1997) is a special cyclic neural network (Figure 6B), which is
specially used to process and learn the long-term dependence in
sequential data. Traditional recurrent neural networks (RNN) are
prone to vanishing or exploding gradients during backpropagation,
but LSTM effectively solves this problem by introducing memory
cells and gating mechanisms, allowing the network to “remember”
or “forget” key information, thereby maintaining information flow
in long sequence data. LSTM networks are used to process sequence
data and remember important information over multiple time steps
through gating mechanisms. The LSTM unit includes an input
gate i, a forget gate f,, and an output gate o,, with the following
equations (Hochreiter, 1997):

C, = tanh (W¢- [h,_;,%,] +bc) (7)

Cr=0(Wp+ [hy_1,x] +bs) x Cp_y +0(W, - [h,_1,x] +b,) xC, (8)

h,=a(W,- [h._,,x,] +b,) x tanh (C,) 9)

In Equations 7-9, C, and h, represent the current cell state and
hidden state, respectively, while C,_; and h, represent the cell state
and hidden state from the previous time step. C, denotes the current
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TABLE 3 Description of the proposed model and comparison models.

10.3389/feart.2025.1662760

Model name Network architecture Input data dimensions
CA-HybridNet ResNet + BiLSTM + CA NxCxHxW
HybridNet ResNet + BiLSTM NxCxHxW
ResNet ResNet NxCxHxW
BiLSTM BiLSTM NxCxT
LSTM LSTM NxCxT

candidate cell state. W represents the weight matrices for the gates,
and b represents the bias terms for the gates. 0 and tanh denote the
sigmoid activation function and the hyperbolic tangent activation
function, respectively.

The BiLSTM network structure (Schuster and paliwal, 1997) is
selected. It is composed of two LSTM layers, which extract temporal
features from the positive and negative directions respectively, better
grasp the long-term dependence of temporal features, and make
up for the deficiency of two-dimensional convolution kernel of
ResNet network. From the perspective of geological sedimentology,
the strata are deposited from old to new, and the log lithology
interpretation using BiLSTM network is more in line with the
law of geological deposition. The parameters used in this study
are shown in Figure 2A, including one BiLSTM layer with 128
hidden units.

3.3 Experiments

To prevent information leakage after applying wavelet
transform, we divided the dataset into 8 training wells and
2 test wells, ensuring that the wells used for training and
testing are independent. Additionally, since the ranges of each
logging curve vary, it is necessary to normalize the six types
of curves before training. In this study, we used the min-
max normalization method (Equation 10), X represents the original
data values to be normalized, such as the measured values in each
well log curve, and min(X) and max(X) refer to the minimum
and maximum values of the dataset, respectively. X' represents
the normalized values, which will be scaled to between 0 and 1.

X- Xmin
Xm

X' = (10)

ax Xmin

During the training of the neural network model, we used the
cross-entropy loss function, selected Adam as the optimizer, set the
initial learning rate to 0.001, batch size to 16, and trained for 200
epochs (Table 2). The GPU was NVIDIA GeForce RTX 4060 Ti. To
comprehensively evaluate the superiority of the proposed model,
we designed four comparison models, described in Table 3, and
compared the results of these five models. The comparison models
included a Res-BiLSTM model without attention mechanisms,
ResNet, BiLSTM, and LSTM models. Except for the architectural
differences, the parameters of these comparison models were
consistent with the proposed model. Note that BILSTM and LSTM
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models used raw well log curves without wavelet decomposition as
input, meaning the input data is two-dimensional.

In machine learning experiments, the commonly used model
evaluation indicators include accuracy, recall, F1 score and root
mean square error (RMSE). For logging lithology interpretation
task, precision and recall indexes of network model is equally
important, so F1 score is used as the final evaluation index of the
model, and its formula is as Equation 11:

2x TP

—— (11)
2x TP+ FP+FN

F1—Score =

Where TP represents the number of correctly classified positive
samples, TN represents the number of correctly classified negative
samples, FP represents the number of incorrectly classified negative
samples, and FN represents the number of incorrectly classified
positive samples. It is important to note that this study exclusively
utilizes well log data for lithology identification.

4 Results

As shown in Figure 7, the training loss and accuracy curves of
the five networks indicate that the three models incorporating the
2DCNN module (CA-HybridNet, HybridNet without the attention
mechanism, and ResNet) exhibit significantly lower loss values
compared to the BiLSTM and LSTM network models. Moreover,
these three models achieve an accuracy rate of over 95% on the
validation set. Further comparison of the performance of the two
temporal network structures reveals that BILSTM outperforms the
LSTM network. This result fully demonstrates that the multi-scale
logging curves processed by wavelet decomposition contain richer
geological information. Using this data as training data for deep
learning enables the network models to better extract the mapping
relationships between logging curves and lithology. Compared to the
BiLSTM and LSTM time series prediction models, the performance
has been significantly improved. We counted the F1 scores of five
models on the identification results of two wells, and the results
showed that the performance of our proposed method was the best
in both test wells.

In the lithology identification results for Well 1 (Figure 8),
CA-HybridNet, HybridNet, and ResNet achieved high accuracy.
In the lithological interval from 1210 m to 1270m, these models
demonstrated over 95% accuracy, particularly excelling in lithology
transition zones (e.g., 1235-1245 m). Notably, ResNet failed to
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orange dash-dot line, and purple solid line represent the CA-HybridNet, HybridNet, ResNet, BiLSTM, and LSTM models, respectively. The results
demonstrate that the models incorporating 2DCNN modules converge faster and to lower loss values.

identify thin layers between 1275 and 1285 m, while HybridNet
misclassified two thin layers at 1275 m. By contrast, CA-HybridNet
accurately identified four thin layers at the bottom of Well
1, showcasing its superior capability in capturing thin-layer
lithological features. Confusion matrix results further revealed that
CA-HybridNet and HybridNet performed better in identifying
siltstone and sandstone, whereas ResNet, lacking temporal sequence
modules, had lower accuracy for shale predictions (Figure 9).

In Well 2, where thin layers were more prevalent (Figure 10), the
performance differences between models became more pronounced.
CA-HybridNet maintained the highest prediction accuracy despite
some misclassifications near 1250 m. Overall, it outperformed other
models, underscoring its strong lithology identification capabilities.
The other four models exhibited significant errors in thin-layer
regions, particularly in the 1,270-1300 m interval, where ResNet
and LSTM performed poorly. These results highlight the superiority
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of CA-HybridNet in handling complex stratigraphic structures.
For example, CA-HybridNet correctly identified nearly half of the
siltstone samples, whereas the other four models showed poor
performance, with a 0% success rate for siltstone identification in
their confusion matrices (Figure 11).

The imbalance in lithology sample distribution in the training
and testing sets was also examined (Figure 12). In the training
set and Well 1, shale accounted for approximately 72% of the
samples, increasing to 80% in Well 2. Additionally, the proportion
of sandstone and calcareous sandstone samples in Well 2 differed
significantly from those in the training set and Well 1.

To investigate the impact of the number of well log curves
generated by the multi-scale wavelet decomposition method on
the results, additional experiments were conducted to examine
the lithology interpretation accuracy when the well log curves
were decomposed into 3 to 10 curves. As shown in Table 4,
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TABLE 4 F1 score of lithology prediction in two test wells using different models.

Models CA-HybridNet HybridNet ResNet BiLSTM LSTM
Well_1 FI score 0.966 0.949 0.924 0.873 0.874
Well_2 F1 score 0.885 0.816 0.793 0.777 0.820

Note: Bold values indicate the best performance in each row.

the model's F1 score gradually increased with an increasing
number of decomposed curves. Figure 13 presents the lithology
identification results for different numbers of decomposed curves.
The observations reveal that when fewer than 6 curves are
decomposed, the model exhibits a higher error rate, with a
noticeable error at 1,250 m; whereas, with more than 6 curves,
this error is effectively mitigated. Notably, although using 10
decomposed curves resulted in improved lithology identification
between 1,304 m and 1,312m, it also led to an increased
misclassification of lithologies as shale.

5 Discussion

These results demonstrate that the proposed CA-HybridNet
significantly outperforms other baseline models, particularly
in identifying thin-bedded lithologies and navigating complex
stratigraphic transitions. This performance advantage can be
attributed to the synergistic architecture: the wavelet decomposition
provides a rich, multi-scale feature set, the 2D ResNet extracts
geological patterns from these features, the bidirectional LSTM
captures the crucial depth-dependent context, and the attention

Frontiers in Earth Science

mechanism focuses the model on the most informative features. The
bidirectional nature of the LSTM is particularly vital, as it allows the
model to leverage both underlying and overlying strata information
for prediction, mimicking how a geologist interprets logs within a
stratigraphic sequence.

This study is conducted within a specific geological context
of the Sanzhao Depression. We acknowledge that the model’s
robustness has not yet been validated on data from entirely different
geological basins, which remains an important direction for future
work. However, the performance difference between Well 1 and
Well 2 provides a valuable insight into the model’s generalization
under conditions of ‘domain shift. As shown in Figure 12,
Well 2 exhibits a significantly different lithological distribution
compared to the training set, with the proportion of shale
increasing from 72% to 80%. This compositional shift explains
the overall decrease in F1 scores for all models in Well 2.
Critically, our proposed CA-HybridNet model demonstrated the
most graceful degradation in performance and remained the
top-performing model which F1 score is 0.885, significantly
outperforming others. This suggests that by learning multi-
scale geological features, our model has achieved a higher
degree of robustness and is better equipped to handle natural
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TABLE 5 F1 score of different decomposition curves on well 2.

Number of curves 3 curves 4 curves 6 curves 8 curves 10 curves

F1 score 0.803 0.812 0.843 0.885 0.862

Note: Bold values indicate the best performance.

geological variability compared to models that treat logs as Finally, the experiment on the number of decomposition
simple 1D series. curves (Table 5) indicates that more decomposition yields richer
Beyond the numerical improvement, it is important to  information up to a certain point (8 curves), after which
interpret how the extracted “geological features” might reflect — performance may slightly decline due to potential redundancy or
actual sedimentary processes. The wavelet-decomposed sub-curves  overfitting. This suggests that an optimal number of decomposition
provide a hierarchical view of the subsurface. The low-frequency  levels exists, likely related to the characteristic scales of geological
components likely enable the model to identify macro-scale  heterogeneity in the study area. While our CA-HybridNet involves
patterns, such as the gradual fining-upward sequence typical of a ~ more parameters and higher training costs, the substantial
meandering channel migration, which might manifest as a slow,  improvement in accuracy and generalization, especially for
overarching trend in the logs. In contrast, the high-frequency  economically significant thin reservoirs, justifies the additional
components are essential for capturing sharp, localized events,  computational expense. Future work could also explore integrating
such as the thin siltstone layers that represent crevasse splays or  other data sources, such as seismic attributes or core data, leveraging
minor cyclic interfaces within a larger shale body. Traditional 1D techniques from related fields like rock physics (Zhang et al., 2024)
models might smooth over these subtle, high-frequency details. Our ~ and seepage characteristic analysis (Zhang et al., 2024), to further
hybrid architecture, by using a 2D CNN to process these multi-scale  constrain the geological model and improve its physical realism.
features, learns to recognize these complex patterns in a manner
analogous to how a geologist interprets logs at different scales, thus
moving beyond simple point-wise classification to a more context- 6 Conclusion
aware interpretation. This aligns with recent advancements that
leverage deep learning for complex subsurface characterization and This study proposes a novel geology-driven deep learning
reservoir performance prediction (Li et al., 2024; Deng et al., 2025).  framework to address the critical challenge of accurately
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identifying thin-bedded lithologies from well logs. Our proposed
CA-HybridNet architecture, designed around these geological
principles, demonstrates superior performance over four baseline
models in field data tests. This approach not only significantly
improves identification accuracy but also exhibits enhanced
generalization and robustness, maintaining high performance even
on a test well that features a lithological distribution different from
the training set. Overall, this work demonstrates that explicitly
integrating geological principles into deep learning model design
is a powerful strategy to improve lithology identification.
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