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Lithology identification is crucial for characterizing complex unconventional 
reservoirs, where thin interlayers significantly influence hydrocarbon 
accumulation. Although deep learning-based methods utilizing well logs have 
become prevalent, most approaches treat well logs as generic 1D time series, 
frequently neglecting the multi-scale geological information inherent in the 
data. This oversight limits their accuracy and generalizability, especially in 
geologically complex environments. To overcome this limitation, we propose 
a novel geology-driven deep learning framework. Our key contribution is 
the transformation of 1D well logs into 2D multi-scale feature maps through 
multiresolution wavelet decomposition, a process designed to explicitly 
represent geological features resembling sedimentary cycles. These feature 
maps are subsequently processed by a novel Geology-Guided Hybrid Network 
with channel-spatial attention, which integrates a 2D CNN to capture geological 
patterns and a Bidirectional long short-term memory to model sequential 
dependencies. Evaluated on field data from complex reservoirs, our method 
achieves an outstanding F1-score of up to 0.966, outperforming four established 
deep learning benchmarks. Importantly, the approach demonstrates improved 
accuracy in identifying thin layers and enhanced generalization across wells 
with differing lithological distributions, attaining an F1-score of 0.885 on 
a challenging test well exhibiting significant data drift. This study validates 
the robustness of our geology-informed approach and offers an effective 
framework for high-precision lithology identification.

KEYWORDS

lithology identification, deep learning, wavelet decomposition, channel-
spatialattention mechanism, geological information-driven 

 1 Introduction

Lithology identification in well logging plays a vital role in hydrocarbon exploration, 
particularly in structurally complex areas (Chang et al., 2021; Saporetti et al., 2019; 
Wang et al., 2024). Accurate subsurface lithology characterization provides essential 
scientific foundations for reservoir evaluation and development planning, as lithology 
directly controls the rock’s mechanical properties, pore structure, and fluid flow behavior, 
which are critical for evaluating reservoir extraction dynamics and safety (Wang et al., 2025; 
Teng et al., 2025; Cao et al., 2025). Traditional lithology identification methods primarily rely 
on empirical analysis and cross-plots (Liu Y et al., 2021). While these approaches can yield 
reasonable interpretations in simple geological conditions, their accuracy and efficiency

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1662760
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1662760&domain=pdf&date_stamp=2025-09-23
mailto:wangxj@cdut.edu.cn
mailto:wangxj@cdut.edu.cn
https://doi.org/10.3389/feart.2025.1662760
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1662760/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1662760/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1662760/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Chen et al. 10.3389/feart.2025.1662760

face significant challenges when dealing with complex geological 
structures or large-scale multi-well data.

To overcome these challenges, machine learning (ML) 
techniques have been widely applied in processing well log data 
and lithology identification, such as support vector machines 
(Kumar T et al., 2022), random forests (Dev and Eden, 2019; 
Ao et al., 2020), and k-nearest neighbor algorithms (Wang et al., 
2018). However, these methods predominantly rely on shallow 
ML algorithms. With the advancement of deep learning (DL), 
methods based on deep neural networks, such as convolutional 
neural networks (CNNs) and recurrent neural networks (RNNs), 
have achieved remarkable progress in lithology identification. Due 
to their strong local feature extraction capabilities and sensitivity 
to sequential data, these approaches have become mainstream in 
lithology identification (Dos Santos et al., 2022; Jaikla et al., 2019; 
Park et al., 2022; Wang et al., 2023; Lin et al., 2020). These models 
have demonstrated remarkable capabilities across various geological 
settings, leveraging the rich information contained within multi-
type well logs to learn complex, non-linear relationships between 
log responses and lithological classes (Mukherjee B et al., 2024; 
Mohammadi K et al., 2025). The application of deep learning is 
increasingly focused on utilizing advanced deep learning models 
to address the ongoing challenge of characterizing thin layers, 
which typically have lower resolution than conventional methods 
(Ehsan M et al., 2024; Manzoor U et al., 2024).

Despite their successes, most DL methods treat well logs as 
simple one-dimensional time series, using 1D networks to extract 
depth-directional features while neglecting the rich geological and 
stratigraphic information embedded within. From a geological 
and sedimentological perspective, well log data reflect the physical 
and chemical properties of subsurface strata, which are directly 
linked to depositional environments, processes, and lithological 
characteristics (Song et al., 2021). Incorporating this geological 
context is crucial, as lithological variations are often influenced by 
stratigraphic sequences and depositional cycles (Li et al., 2024). 
Ignoring these factors may limit the predictive and generalization 
capabilities of ML and DL models in complex geological
settings.

To address this limitation, previous studies have incorporated 
geological information in various ways. For example, Zhu et al. 
(2020) employed wavelet transform to divide well logs into multi-
scale components and used a single 2-dimensional convolutional 
neural network (2DCNN) model for prediction. Jiang et al. (2021) 
integrated geological constraints into bidirectional gated recurrent 
units, while Sun et al. (2023) proposed a cross-domain lithology 
identification method combining wavelet transform and adversarial 
learning. Lv et al. (2024) introduced Gaussian windows to represent 
stratigraphic sequences with geological constraints, achieving 
notable results in identifying tight sandstone reservoirs. Pang et al. 
(2024) encoded raw well log data into graph structures using multi-
dimensional spectral maps and applied spatio-temporal neural 
networks for lithology identification. Although these methods 
consider the geological information in well logs, they often fail to 
integrate geological features with temporal information, leading to 
challenges in accuracy and generalization in complex geological 
conditions.

This study proposes a novel geology-driven deep learning 
framework designed to explicitly incorporate multi-scale geological 

information into the identification process. The main contributions 
are as follows. 

1. We propose a geology-informed feature engineering strategy 
based on multiresolution wavelet decomposition. This 
transforms conventional 1D well logs into 2D feature maps, 
where one axis represents depth and the other represents 
geological scale, making features analogous to sedimentary 
cycles explicitly available for model learning.

2. We design a novel hybrid deep learning architecture, the 
Geology-guided Channel-Spatial Attention Hybrid Network 
(CA-HybridNet). It synergistically combines a 2D ResNet to 
extract scale-dependent geological patterns, a Bidirectional 
LSTM to capture stratigraphic context, and a channel-spatial 
attention mechanism to focus on the most discriminative 
log types and depth intervals.

3. We validate our framework using field data from a complex 
reservoir in the Songliao Basin, demonstrating that our 
approach not only improves identification accuracy for 
challenging thin-bedded lithologies but also significantly 
enhances the model’s generalization and robustness.

2 Study area and data

The study area is located within the structural transition zone 
between the Sanzhao Depression and the Daqing Placanticline 
in the northern part of China’s Songliao Basin, specifically along 
the northwestern margin of the Sanzhao Depression adjacent to 
the Daqing Placanticline (Sun et al., 2007). This region, situated 
in the central depression zone of the northern Songliao Basin, 
exhibits gentle topographic dips of up to 0.2° and spans an area 
of approximately 100 km2, as illustrated in Figure 1A. The target 
interval for this study is the Putaohua Member of the Yaojia 
Formation, which belongs to the Lower Cretaceous. Within one of 
the target intervals in the study area, three dominant sedimentary 
facies are developed: interdistributary bays, channels, and sheets 
sand. The well locations utilized are annotated in Figure 1B. 
Specifically, Well 1 and Well 2 were selected for testing, with Well 1 
situated in the interdistributary facies and Well 2 positioned within 
the sand sheet facies. The target well-logging interval for model 
validation is primarily composed of four lithological types: shale, 
siltstone, sandstone, and calcareous sandstone. Their corresponding 
labels and sample distributions are presented in Table 1.

In this study, well-logging data and lithological records from 
ten wells were utilized to evaluate the predictive performance 
of the proposed model. Based on the sensitivity relationships 
between lithologies and well log curves, we selected six curves for 
lithology identification (AC, GR, RLLD, RLLS, RMG, and RMN 
curves). The well log curve data were obtained from actual logging 
operations and digitized at a sampling interval of 0.125 m. Gamma 
ray (GR) logging, which measures natural radioactivity, plays a 
critical role in distinguishing between lithologies such as shale 
and non-shale formations (Wang et al., 2023). The acoustic (AC) 
curve provides information on formation porosity and lithology, 
aiding in the differentiation of various rock types. In addition, the 
deep laterolog resistivity (RLLD) and shallow laterolog resistivity 
(RLLS) curves are used together to assess formation resistivity 
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FIGURE 1
Geology and location of the wells. (A) Structural units division and study area location; (B) Sedimentary facies of the target interval and distribution of 
training/test wells in the study area (modified from Xu et al., 2023).

TABLE 1  Lithology attribute and samples.

Attribute Label Sample numbers

Shale 0 5,230

Silt Stone 1 1,066

Sand Stone 2 635

Calcareous Sandstone 3 147

at different depths, thereby enabling more accurate lithology 
interpretation. Furthermore, medium electrode spacing resistivity 
logging (RMG) and near electrode spacing resistivity logging 
(RMN) are combined to further refine lithology interpretation and 
enhance the ability to distinguish between different lithologies. 
Detailed information regarding the well log curves and lithologies 
can be found in Zhu et al., 2020 and will not be reiterated here. No 
seismic data were incorporated in the current work, demonstrating 
the potential of extracting rich geological information solely from 
well log measurements. 

3 Methodology

The main workflow and neural network framework of this study 
are shown in Figure 2: First, multi-scale wavelet decomposition 

is applied to each well log curve, dividing it into components at 
different scales. The decomposed curves undergo normalization and 
other preprocessing steps. The processed data are then input into the 
proposed network model, where geological features are extracted by 
2D convolution kernels, and temporal features are captured by the 
long short-term memory (LSTM) structure. The extracted features 
are flattened by a fully connected layer and finally passed through a 
Softmax function to output lithology identification results.

3.1 Multiresolution wavelet decomposition

In recent years, wavelet transform, as a multi-scale analysis 
tool, has been increasingly applied in well log data processing. By 
decomposing well logs into components across different frequency 
bands, hidden details in the data can be better revealed (Zhang et al., 
2018). Unlike Fourier transform, wavelet transform provides 
simultaneous signal information in both the time and frequency 
domains. Therefore, in well log data processing, wavelet 
decomposition is particularly effective in capturing lithological 
variations.

From the perspective of high-resolution sequence stratigraphy, 
well log curves are not random series but are records of geological 
history, controlled by the cyclic rise and fall of the base level 
over different time scales. These base-level cycles, which can be 
categorized into long-term, mid-term, and short-term orders, 
govern the formation of depositional sequences and their internal 
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FIGURE 2
The framework of the proposed method for lithology identification (A). The network mainly includes a residual module (B), an attention module (C), 
and a BiLSTM module. Each logging curve is decomposed into multi-scale sub-curves through wavelet decomposition, which serves as the input data 
for the network, with the training target being the true logging lithology.

stacking patterns (e.g., fining-upward or coarsening-upward 
trends). Multiresolution wavelet decomposition provides a powerful 
mathematical tool to deconstruct the well log signal into various 
frequency components that can be directly correlated with 
these different orders of geological cycles (Yu et al., 2023). The 
low-frequency components (smooth curves) capture the broad 
trends associated with long-term cycles, reflecting major changes 
in depositional environments. Conversely, the high-frequency 
components (detailed curves) highlight localized, rapid variations 
corresponding to short-term cycles, such as thin interbeds or sharp 
lithological contacts. Therefore, by transforming the 1D log into a 
2D multi-scale representation, we are not just augmenting the data 
but are explicitly engineering features that align with established 
geological principles, providing the deep learning model with a 
geologically constrained input. Figure 3 illustrates a commonly 
used approach in geology, utilizing wavelet transform to analyze 
sedimentary cycles and stratify well logs. Decomposing raw curves 
into multi-scale sub-curves serves as an effective data augmentation 
method, enriching geological information such as stratigraphic 
sequences and sedimentary cycles, and enhancing deep learning 
models’ ability to extract features and improve accuracy.

We employ the discrete wavelet transform (DWT) in 
conjunction with a multiresolution analysis (MRA) framework 
(Akansu and Haddad, 2001). For a given signal f(t), its 
representation at different resolution levels is constructed using 
wavelet functions and scaling functions to capture both detailed 
and abstract features. The fundamental principle of wavelet 
transform is to decompose a signal into components at various 
scales (frequencies). By selecting an appropriate wavelet basis 
function ψ(t), the signal f(t) can be decomposed into low-frequency 

components (representing trends) and high-frequency components 
(representing details), the one-dimensional formula of discrete 
wavelet transform is given by Equation 1:

f (t) = ∑
n

Cnψn(t) (1)

Where cn is the wavelet coefficient and ψn(t) is the wavelet basis 
function of different scales. Multiresolution analysis builds upon 
this concept by progressively analyzing the signal at varying scales, 
from coarse to fine. At each scale, the signal is decomposed into a 
low-frequency component, capturing the overall trend, and a high-
frequency component, representing fine-grained details. For a signal 
f(t), the multiresolution decomposition process can be described by 
Equation 2:

f(t) = ∑
j
∑kcj,kψj,k(t) (2)

where cj,k are the wavelet coefficients of the multiresolution analysis, 
and ψj,k(t) is the wavelet basis function at scale j and position k. The 
signal f(t) is decomposed into low-frequency and high-frequency 
components at each level j. Assuming they are represented by f j

a(t)
and f j

d(t), the original signal can be expressed as Equation 3:

f (t) =
J

∑
j
∑k f j

a(t) +∑k f j
d(t) (3)

In this study, the Daubechies ‘db4’ wavelet was selected as the 
basis function. The reason for this choice is its favorable properties 
for analyzing geological signals like well logs. The ‘db4’ wavelet 
is compactly supported and orthogonal, providing a good balance 
between time and frequency localization. Its shape is also well-
suited for detecting abrupt changes and discontinuities in the 
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FIGURE 3
Analysis of stratigraphic depositional cycles based on wavelet-transformed logging curves. The original GR curve is decomposed into several 
sub-curves of different scales through wavelet transform. The low-frequency curve corresponds to long-term cycles, the medium-frequency curve 
corresponds to medium-term cycles, and the high-frequency curve corresponds to short-term cycles. The yellow upright triangle represents the 
positive cycle, while the green inverted triangle represents the negative cycle.

log data, which often correspond to lithological boundaries or key 
stratigraphic surfaces. This makes it effective for decomposing the 
logs into components that are geologically meaningful.

This decomposition is based on wavelet coefficients and wavelet 
basis functions, used to separate components of different frequency 
bands in the signal, thereby analyzing the signal at different 
resolutions. Through layer-by-layer decomposition, the original 
signal can be reconstructed into multiple smooth curves, each 
representing the low-frequency characteristics of the signal at 
different resolutions. Then, we retain specific levels of components in 
the wavelet decomposition results and set the coefficients cj,k of other 
scales to zero. At this point, it can be used as a low-pass filter with 
resolution j. Further processing through the low-pass filter yields 
smooth curves with different time resolutions.

Through this method, the original logging curves are 
transformed into a multi-layer structure containing information 
at different scales, and the dimensionality of the input data changes 
from two-dimensional to three-dimensional (Figure 4). It should be 
noted that the training and validation sets in this study are based on 
single well, so there is no issue of data leakage.

The change of lithology is usually the comprehensive response 
of a section of logging curve (Park et al., 2022). The deep learning 
network model receives a sequence of length n as input, including 
continuous logging parameters such as resistivity and gamma 
ray. These parameters together constitute a multi-dimensional 
eigenvector that changes continuously with time. The goal of 
the model is to understand the pattern of these characteristics 
changing with time, and to predict the main lithology in the time 
period represented by the sequence. In order to more intuitively 
explain our model architecture and data processing process, Figure 5 
shows how to divide the continuous logging data into multiple 
sequences with length N, and input each sequence as an independent 

sample into the LSTM network. Each sequence corresponds to 
a label, that is, the lithology predicted in this time period. In 
this way, our model can improve the accuracy and reliability of 
lithologic identification by using local patterns and global trends
in time series. 

3.2 Network structure

We propose a hybrid framework integrating 2DCNN and RNN, 
consisting of a channel-spatial attention-based residual network 
structure and a BiLSTM network. Two-dimensional convolutional 
neural networks are typically used in image processing tasks, while 
1D convolutional kernels are commonly applied to time-series tasks 
to extract sequential features. Residual network (ResNet) are an 
innovative network structure in the field of deep learning in recent 
years, named after the introduction of skip connections (He et al., 
2016). Compared to traditional two-dimensional convolutional 
neural networks, ResNet exhibits stronger expressive power in 
processing deep features. Through “skip connections” (Figure 6A), 
ResNet effectively alleviates the vanishing gradient problem in 
deep network training, allowing the network to learn deeper 
features without significantly increasing computational complexity. 
In logging lithology identification, logging curves after wavelet 
decomposition often exhibit complex nonlinear and hierarchical 
features. Using the ResNet model can more accurately extract 
these details. In contrast, traditional 2DCNN models may face 
information attenuation when processing deep features, while 
ResNet ensures information transmission through residual 
structures, thereby improving model classification accuracy and
generalization ability.
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FIGURE 4
Decomposition of each original logging curve into multi-scale sub-curves using multiresolution wavelet decomposition. The training data is 
transformed from two-dimensional to three-dimensional.

FIGURE 5
Mapping of logging time series segments to corresponding lithology labels through a deep learning model. When constructing the training set, a 
window of length n slides downward each time, and the lithology at the depth corresponding to the bottom of the window is used as the label.
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FIGURE 6
The structure of network: (A) residual network and (B) LSTM network.

TABLE 2  Hyperparameters for the CA-HybridNet model training.

Parameter Value

Optimizer Adam

Initial Learning Rate 0.001

Batch Size 16

Epochs 200

Loss Function Cross-Entropy Loss

Wavelet Decomposition Levels 8

LSTM Hidden Units 128

For a given layer input x, with the output after two convolutional 
layers and activation as F(x), the output of the residual block is 
defined as Equation 4 (He et al., 2016):

y = F(x) + x (4)

where F(x) represents the learned feature map, and x is the input 
carried over as the “shortcut connection.” This structure allows 
gradients to propagate efficiently, even in deep networks, reducing 
the risk of vanishing gradients.

To enhance global feature extraction in 2DCNN, we inserted a 
channel-spatial attention mechanism (CA) module between the two 
convolutional layers of the residual module (Liu N et al., 2021). The 
channel attention module amplifies cross-dimensional interactions, 
fully capturing different information for different logging curves, 
while the spatial attention module enhances the residual network’s 
ability to extract global features from multi-scale logging curves 
(Figure 2C). Here, Mc and Ms are the channel attention map and 
spatial attention map, respectively, F1 is the input feature, F2 is the 
intermediate state, and F3 is the output feature, defined as Equation 5 

and Equation 6 (Liu Y et al., 2021):

F2 =Mc(F1) ⊗ F1 (5)

F3 =Ms(F2) ⊗ F2 (6)

Where ⊗ denotes element-wise multiplication. We constructed 
a three-layer residual neural network structure (Figure 6A). 
Unlike ResNet18 (He et al., 2016), considering the relatively small 
amount of input data from logging curves in the experiments, we 
chose 3 × 3 convolutional kernels for the convolutional layers, 
with a stride of 1 and padding of 1, replacing the original 7 × 7 
large convolutional kernels, and the input feature maps are not 
downsampled. Additionally, the max-pooling layer was removed to 
retain as much original information as possible.

The long-term and short-term memory network (Hochreiter, 
1997) is a special cyclic neural network (Figure 6B), which is 
specially used to process and learn the long-term dependence in 
sequential data. Traditional recurrent neural networks (RNN) are 
prone to vanishing or exploding gradients during backpropagation, 
but LSTM effectively solves this problem by introducing memory 
cells and gating mechanisms, allowing the network to “remember” 
or “forget” key information, thereby maintaining information flow 
in long sequence data. LSTM networks are used to process sequence 
data and remember important information over multiple time steps 
through gating mechanisms. The LSTM unit includes an input 
gate it, a forget gate ft, and an output gate ot, with the following 
equations (Hochreiter, 1997):

C̃t = tanh(WC · [ht−1,xt] + bC) (7)

Ct = σ(W f · [ht−1,xt] + b f) ×Ct−1 + σ(Wi · [ht−1,xt] + bi) × C̃t (8)

ht = σ(Wo · [ht−1,xt] + bo) × tanh(Ct) (9)

In Equations 7–9, Ct and ht represent the current cell state and 
hidden state, respectively, while Ct−1 and ht represent the cell state 
and hidden state from the previous time step. C̃t denotes the current 
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TABLE 3  Description of the proposed model and comparison models.

Model name Network architecture Input data dimensions

CA-HybridNet ResNet + BiLSTM + CA N × C × H × W

HybridNet ResNet + BiLSTM N × C × H × W

ResNet ResNet N × C × H × W

BiLSTM BiLSTM N × C × T

LSTM LSTM N × C × T

candidate cell state. W represents the weight matrices for the gates, 
and b represents the bias terms for the gates. σ and tanh denote the 
sigmoid activation function and the hyperbolic tangent activation 
function, respectively.

The BiLSTM network structure (Schuster and paliwal, 1997) is 
selected. It is composed of two LSTM layers, which extract temporal 
features from the positive and negative directions respectively, better 
grasp the long-term dependence of temporal features, and make 
up for the deficiency of two-dimensional convolution kernel of 
ResNet network. From the perspective of geological sedimentology, 
the strata are deposited from old to new, and the log lithology 
interpretation using BiLSTM network is more in line with the 
law of geological deposition. The parameters used in this study 
are shown in Figure 2A, including one BiLSTM layer with 128 
hidden units. 

3.3 Experiments

To prevent information leakage after applying wavelet 
transform, we divided the dataset into 8 training wells and 
2 test wells, ensuring that the wells used for training and 
testing are independent. Additionally, since the ranges of each 
logging curve vary, it is necessary to normalize the six types 
of curves before training. In this study, we used the min-
max normalization method (Equation 10), X represents the original 
data values to be normalized, such as the measured values in each 
well log curve, and min(X) and max(X) refer to the minimum 
and maximum values of the dataset, respectively. X′ represents 
the normalized values, which will be scaled to between 0 and 1.

X′ =
X−Xmin

Xmax −Xmin
(10)

During the training of the neural network model, we used the 
cross-entropy loss function, selected Adam as the optimizer, set the 
initial learning rate to 0.001, batch size to 16, and trained for 200 
epochs (Table 2). The GPU was NVIDIA GeForce RTX 4060 Ti. To 
comprehensively evaluate the superiority of the proposed model, 
we designed four comparison models, described in Table 3, and 
compared the results of these five models. The comparison models 
included a Res-BiLSTM model without attention mechanisms, 
ResNet, BiLSTM, and LSTM models. Except for the architectural 
differences, the parameters of these comparison models were 
consistent with the proposed model. Note that BiLSTM and LSTM 

models used raw well log curves without wavelet decomposition as 
input, meaning the input data is two-dimensional.

In machine learning experiments, the commonly used model 
evaluation indicators include accuracy, recall, F1 score and root 
mean square error (RMSE). For logging lithology interpretation 
task, precision and recall indexes of network model is equally 
important, so F1 score is used as the final evaluation index of the 
model, and its formula is as Equation 11:

F1− Score = 2×TP
2×TP+ FP+ FN

(11)

Where TP represents the number of correctly classified positive 
samples, TN represents the number of correctly classified negative 
samples, FP represents the number of incorrectly classified negative 
samples, and FN represents the number of incorrectly classified 
positive samples. It is important to note that this study exclusively 
utilizes well log data for lithology identification. 

4 Results

As shown in Figure 7, the training loss and accuracy curves of 
the five networks indicate that the three models incorporating the 
2DCNN module (CA-HybridNet, HybridNet without the attention 
mechanism, and ResNet) exhibit significantly lower loss values 
compared to the BiLSTM and LSTM network models. Moreover, 
these three models achieve an accuracy rate of over 95% on the 
validation set. Further comparison of the performance of the two 
temporal network structures reveals that BiLSTM outperforms the 
LSTM network. This result fully demonstrates that the multi-scale 
logging curves processed by wavelet decomposition contain richer 
geological information. Using this data as training data for deep 
learning enables the network models to better extract the mapping 
relationships between logging curves and lithology. Compared to the 
BiLSTM and LSTM time series prediction models, the performance 
has been significantly improved. We counted the F1 scores of five 
models on the identification results of two wells, and the results 
showed that the performance of our proposed method was the best 
in both test wells.

In the lithology identification results for Well 1 (Figure 8), 
CA-HybridNet, HybridNet, and ResNet achieved high accuracy. 
In the lithological interval from 1210 m to 1270m, these models 
demonstrated over 95% accuracy, particularly excelling in lithology 
transition zones (e.g., 1235–1245 m). Notably, ResNet failed to 
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FIGURE 7
Training loss (A) and accuracy (B) curves of the proposed and compared models. In both subplots, the red solid line, blue dashed line, green dotted line, 
orange dash-dot line, and purple solid line represent the CA-HybridNet, HybridNet, ResNet, BiLSTM, and LSTM models, respectively. The results 
demonstrate that the models incorporating 2DCNN modules converge faster and to lower loss values.

identify thin layers between 1275 and 1285 m, while HybridNet 
misclassified two thin layers at 1275 m. By contrast, CA-HybridNet 
accurately identified four thin layers at the bottom of Well 
1, showcasing its superior capability in capturing thin-layer 
lithological features. Confusion matrix results further revealed that 
CA-HybridNet and HybridNet performed better in identifying 
siltstone and sandstone, whereas ResNet, lacking temporal sequence 
modules, had lower accuracy for shale predictions (Figure 9).

In Well 2, where thin layers were more prevalent (Figure 10), the 
performance differences between models became more pronounced. 
CA-HybridNet maintained the highest prediction accuracy despite 
some misclassifications near 1250 m. Overall, it outperformed other 
models, underscoring its strong lithology identification capabilities. 
The other four models exhibited significant errors in thin-layer 
regions, particularly in the 1,270–1300 m interval, where ResNet 
and LSTM performed poorly. These results highlight the superiority 

of CA-HybridNet in handling complex stratigraphic structures. 
For example, CA-HybridNet correctly identified nearly half of the 
siltstone samples, whereas the other four models showed poor 
performance, with a 0% success rate for siltstone identification in 
their confusion matrices (Figure 11).

The imbalance in lithology sample distribution in the training 
and testing sets was also examined (Figure 12). In the training 
set and Well 1, shale accounted for approximately 72% of the 
samples, increasing to 80% in Well 2. Additionally, the proportion 
of sandstone and calcareous sandstone samples in Well 2 differed 
significantly from those in the training set and Well 1.

To investigate the impact of the number of well log curves 
generated by the multi-scale wavelet decomposition method on 
the results, additional experiments were conducted to examine 
the lithology interpretation accuracy when the well log curves 
were decomposed into 3 to 10 curves. As shown in Table 4, 
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FIGURE 8
True lithology and prediction lithology results of five models on well 1: (A) True lithology, (B) CA-HybridNet, (C) HybridNet, (D) ResNet, (E) BiLSTM, and
(F) LSTM.

FIGURE 9
Confusion matrix of five models on well 1: (A) CA-HybridNet, (B) HybridNet, (C) ResNet, (D) BiLSTM, and (E) LSTM.
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FIGURE 10
True lithology and prediction lithology results of five models on well 2: (A) True lithology, (B) CA-HybridNet, (C) HybridNet, (D) ResNet, (E) BiLSTM, and
(F) LSTM.

FIGURE 11
Confusion matrix of five models on well 2: (A) CA-HybridNet, (B) HybridNet, (C) ResNet, (D) BiLSTM, and (E) LSTM.
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FIGURE 12
Proportion of lithology samples in the training set and testing wells. In the training set, well1 and well2, the number of samples from shale accounts for 
the vast majority. The number of samples from calcareous sandstone and sand stone ranges from 10% to 20%, while the number of samples from silt 
stone accounts for less than 5%. The proportion of lithological samples is highly imbalanced.

TABLE 4  F1 score of lithology prediction in two test wells using different models.

Models CA-HybridNet HybridNet ResNet BiLSTM LSTM

Well_1 F1 score 0.966 0.949 0.924 0.873 0.874

Well_2 F1 score 0.885 0.816 0.793 0.777 0.820

Note: Bold values indicate the best performance in each row.

the model’s F1 score gradually increased with an increasing 
number of decomposed curves. Figure 13 presents the lithology 
identification results for different numbers of decomposed curves. 
The observations reveal that when fewer than 6 curves are 
decomposed, the model exhibits a higher error rate, with a 
noticeable error at 1,250 m; whereas, with more than 6 curves, 
this error is effectively mitigated. Notably, although using 10 
decomposed curves resulted in improved lithology identification 
between 1,304 m and 1,312 m, it also led to an increased 
misclassification of lithologies as shale. 

5 Discussion

These results demonstrate that the proposed CA-HybridNet 
significantly outperforms other baseline models, particularly 
in identifying thin-bedded lithologies and navigating complex 
stratigraphic transitions. This performance advantage can be 
attributed to the synergistic architecture: the wavelet decomposition 
provides a rich, multi-scale feature set, the 2D ResNet extracts 
geological patterns from these features, the bidirectional LSTM 
captures the crucial depth-dependent context, and the attention 

mechanism focuses the model on the most informative features. The 
bidirectional nature of the LSTM is particularly vital, as it allows the 
model to leverage both underlying and overlying strata information 
for prediction, mimicking how a geologist interprets logs within a 
stratigraphic sequence.

This study is conducted within a specific geological context 
of the Sanzhao Depression. We acknowledge that the model’s 
robustness has not yet been validated on data from entirely different 
geological basins, which remains an important direction for future 
work. However, the performance difference between Well 1 and 
Well 2 provides a valuable insight into the model’s generalization 
under conditions of ‘domain shift’. As shown in Figure 12, 
Well 2 exhibits a significantly different lithological distribution 
compared to the training set, with the proportion of shale 
increasing from 72% to 80%. This compositional shift explains 
the overall decrease in F1 scores for all models in Well 2. 
Critically, our proposed CA-HybridNet model demonstrated the 
most graceful degradation in performance and remained the 
top-performing model which F1 score is 0.885, significantly 
outperforming others. This suggests that by learning multi-
scale geological features, our model has achieved a higher 
degree of robustness and is better equipped to handle natural 
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FIGURE 13
True lithology and prediction lithology results of different decomposition curves on well 2: (A) True lithology, (B) 3 curves, (C) 4 curves, (D) 6 curves, (E)
8 curves, and (F) 10 curves.

TABLE 5  F1 score of different decomposition curves on well 2.

Number of curves 3 curves 4 curves 6 curves 8 curves 10 curves

F1 score 0.803 0.812 0.843 0.885 0.862

Note: Bold values indicate the best performance.

geological variability compared to models that treat logs as 
simple 1D series.

Beyond the numerical improvement, it is important to 
interpret how the extracted “geological features” might reflect 
actual sedimentary processes. The wavelet-decomposed sub-curves 
provide a hierarchical view of the subsurface. The low-frequency 
components likely enable the model to identify macro-scale 
patterns, such as the gradual fining-upward sequence typical of a 
meandering channel migration, which might manifest as a slow, 
overarching trend in the logs. In contrast, the high-frequency 
components are essential for capturing sharp, localized events, 
such as the thin siltstone layers that represent crevasse splays or 
minor cyclic interfaces within a larger shale body. Traditional 1D 
models might smooth over these subtle, high-frequency details. Our 
hybrid architecture, by using a 2D CNN to process these multi-scale 
features, learns to recognize these complex patterns in a manner 
analogous to how a geologist interprets logs at different scales, thus 
moving beyond simple point-wise classification to a more context-
aware interpretation. This aligns with recent advancements that 
leverage deep learning for complex subsurface characterization and 
reservoir performance prediction (Li et al., 2024; Deng et al., 2025).

Finally, the experiment on the number of decomposition 
curves (Table 5) indicates that more decomposition yields richer 
information up to a certain point (8 curves), after which 
performance may slightly decline due to potential redundancy or 
overfitting. This suggests that an optimal number of decomposition 
levels exists, likely related to the characteristic scales of geological 
heterogeneity in the study area. While our CA-HybridNet involves 
more parameters and higher training costs, the substantial 
improvement in accuracy and generalization, especially for 
economically significant thin reservoirs, justifies the additional 
computational expense. Future work could also explore integrating 
other data sources, such as seismic attributes or core data, leveraging 
techniques from related fields like rock physics (Zhang et al., 2024) 
and seepage characteristic analysis (Zhang et al., 2024), to further 
constrain the geological model and improve its physical realism. 

6 Conclusion

This study proposes a novel geology-driven deep learning 
framework to address the critical challenge of accurately
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identifying thin-bedded lithologies from well logs. Our proposed 
CA-HybridNet architecture, designed around these geological 
principles, demonstrates superior performance over four baseline 
models in field data tests. This approach not only significantly 
improves identification accuracy but also exhibits enhanced 
generalization and robustness, maintaining high performance even 
on a test well that features a lithological distribution different from 
the training set. Overall, this work demonstrates that explicitly 
integrating geological principles into deep learning model design 
is a powerful strategy to improve lithology identification.
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