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The stability of open-pit slopes with weak interlayers is a critical issue in mining, 
as the design of bench parameters affects both slope safely and economic 
outcomes. Traditional optimization methods are often time-consuming and 
may not find global optimal solutions. This study presents an intelligent 
optimization approach combining machine learning (ML) and multi-objective 
optimization techniques. A numerical model simulating slopes with weak 
interlayers was developed and a dataset linking bench control parameters 
with slope stability and economic performance was created. Machine learning 
algorithms, including Support Vector Machines (SVM), were used to build 
predictive models to assess the impact of various parameter combinations 
on stability and economic performance. Optimization was carried out using 
the SVM-NSGAII and SVM-O algorithms. Results showed that SVM-NSGAII 
out performed SVM-BO, predicting a safety factor of 1.258 with a 3.8% error 
compared to 5.69%6 for SVM-BO, and achieving a relative economic error of 
1.296, significantly lower than the 9.0%6 error of SVM-BO. A software system 
for bench parameter optimization was developed on the Python platform with 
an intuitive graphical user interface (GUI), significantly improving slope stability 
and mining profitability, offering scientific support for mine design in complex 
environments, and demonstrating both theoretical and practical applications.
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 1 Introduction

The concept of weak interlayers was introduced early in geological and geotechnical 
research. Scholars both in China and abroad generally define weak interlayers as rock 
strata of a certain thickness composed of relatively soft materials (Furuya et al., 1999;
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Ma et al., 2018). These interlayers exhibit low mechanical strength 
and are highly susceptible to softening upon water exposure, 
making them one of the most challenging issues in geotechnical 
engineering. Weak interlayers are a commonly encountered 
unfavorable geological feature, especially in regions with abundant 
soft rock formations. In the southwestern regions of China, such 
as Sichuan and Yunnan, iron ore resources are abundant, and weak 
interlayer-bearing (soft rock) formations are widely distributed (Lei 
and Sha, 2016; Li Y et al., 2019). These weak interlayers are primarily 
composed of chlorite mineral layers, in which mineral fragments are 
broken into flaky structures. Although weak interlayers constitute 
only a small portion of the rock mass, they often represent its most 
vulnerable sections, posing significant engineering hazards. The 
presence of weak interlayers plays a critical role in slope stability 
and is a major controlling factor in slope failure. Despite extensive 
research on the impact of weak interlayers on slope stability, 
significant bottlenecks remain in the optimization of slope bench 
parameters. Current studies mainly focus on optimizing overall 
slope angles, with limited attention given to detailed optimization of 
specific bench parameters. This results in optimization outcomes 
that are difficult to directly apply in practical engineering. 
Traditional optimization methods often aim for local rather than 
global optimal solutions, making it challenging to balance safety 
and economic efficiency. The Limit Equilibrium Method (LEM), 
commonly used for slope stability analysis, has limitations in 
global optimization, particularly in complex geological conditions 
involving weak interlayers, where it fails to accurately account 
for interactions between multiple potential sliding surfaces
(Nanehkaran et al., 2023).

In recent years, with the continuous exploitation of open-
pit mines, deep concave open-pit mining (Zhu et al., 2022; 
Xu et al., 2018; Cheng et al., 2011) has become a prevailing 
trend. The economic benefits of open-pit mining are primarily 
reflected in resource extraction volume, while the safety factor 
is directly related to production safety, personnel safety, and 
environmental protection, serving as a crucial guarantee for the 
sustainable development of mining operations. However, these 
two objectives often conflict in practical applications—pursuing 
higher economic benefits may increase safety risks, whereas 
overemphasizing safety could limit economic gains. In summary, 
during the excavation design of high and steep slopes in mines 
containing gently dipping weak interlayers, it is essential to 
determine bench parameters rationally to achieve a balance 
between economic benefits and safe production. The optimization 
of bench parameters is not only a safety issue but also an 
economic concern, making it a multi-objective decision-making 
and optimization problem (Zeng, 2020; Guan et al., 2018; 
Li et al., 2018). This process involves finding the optimal 
trade-off between multiple conflicting objectives, namely, 
economic benefits and safety. Slope stability analysis is a crucial 
step in the optimization of slope bench parameters and is 
key to establishing a training dataset for the safety factor 
and bench parameters. To ensure the accuracy of the slope 
safety factor, it is essential to guarantee the objectivity and 
accuracy of the rock mass mechanical parameters. Therefore, 
conducting a thorough investigation of the slope rock mass 

structure is of paramount importance (Lin et al., 2021;
Lin et al., 2025).

Currently, the optimization of mine slopes is primarily 
conducted using two major categories of methods: deterministic 
analysis methods and uncertainty analysis methods. (1) Current 
Research on Deterministic Analysis Methods: Traditional 
deterministic approaches include empirical formula methods, 
limit equilibrium methods (Yan, 2023; Zhou et al., 2023; Liao, 
2023), and numerical simulation methods (Shen et al., 2021; 
Li, 2023; Wang, 2021). These methods rely on predefined 
parameters and assumptions to evaluate slope stability 
and optimize bench parameters. (2) Current Research on 
Uncertainty Analysis Methods: certainty-based approaches 
introduce random variables into bench design, combining 
probabilistic analysis with numerical simulation. This enables 
a more comprehensive assessment of how variations in 
geological parameters affect slope stability and bench 
optimization, providing a more realistic representation of natural 
variability (Tiwari et al., 2025).

The application of machine learning in slope stability analysis 
emerged alongside the second wave of machine learning research. 
In the 1990s, Chinese scholar (Feng et al., 1995) applied neural 
network theory to train models using collected slope case studies, 
enabling the prediction of safety factors for newly designed slopes. 
(Li et al., 2024). comprehensively considered both economic 
efficiency and stability in slope optimization and proposed an 
intelligent slope morphology optimization method (LM-LSO) based 
on the Levenberg-Marquardt (LM) algorithm and Least-Squares 
Optimization (LSO) to achieve rapid and efficient optimization 
of slope morphology parameters (Karir et al., 2022). explored 
the use of various machine learning algorithms to predict slope 
stability based on physical and geometric parameters. Their results 
indicated that tree-based algorithms, such as Random Forest and 
Gradient Boosting, outperformed Support Vector Regression and 
gradient descent-based neural networks in predictive accuracy 
(Qiao, 2023) conducted a sensitivity analysis on the influence 
factors of bench control parameters in open-pit mine slope 
design. Using the limit equilibrium method, he calculated the 
stability coefficients of 108 different slope control parameter 
sets and defined a comprehensive benefit weight. This approach 
enabled a quantitative analysis of the impact of various slope 
control parameters on both slope stability and economic efficiency 
(Fang et al., 2021) applied the strength reduction method to compute 
slope stability coefficients for different slope control parameter 
schemes, generating sample data to construct an SR-BP neural 
network-based optimization model for slope control parameters. 
This model was used to predict slope stability under various 
optimized parameter schemes, providing valuable guidance for 
the preliminary design and optimization of mine slope control 
parameters (He et al., 2025). A new method is proposed that utilizes 
energy dissipation theory and the Bayesian Gaussian Mixture 
Model (BGMM) to intelligently interpret dissipated energy data. 
By incorporating the concept of “reference slope,” the method 
calculates the safety factor, avoiding the nonlinear limitations of 
traditional reduction methods, and provides a more accurate and 
reliable slope stability assessment (Foong and Moayedi, 2022). A 
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combination of Equilibrium Optimization (EO) and Vortex Search 
Algorithm (VSA) with Multi-Layer Perceptron Neural Network 
(MLPNN) is proposed for optimizing the safety factor prediction 
of single-layer soil slopes. The results show that the hybrid model 
effectively reduces the root mean square error (RMSE) for both 
training and testing, with EO outperforming VSA, demonstrating 
higher accuracy and generalization ability (Yang et al., 2023). 
Based on 117 slope data points, the study optimizes machine 
learning model hyperparameters using a genetic algorithm and 
predicts slope stability with five algorithms, including Support 
Vector Machine and Random Forest. The results show that the 
Random Forest algorithm performs the best, with cohesion 
being the key factor influencing slope stability. The AUC 
values range from 0.824 to 0.964, confirming the effectiveness 
of the integrated technology in slope stability analysis and 
providing valuable references for future industrial engineering 
applications.

Although significant progress has been made in the optimization 
of open-pit slope bench parameters, current research still 
faces several key challenges: (1) Limitations of Quantitative 
Analysis: Existing studies primarily focus on optimizing the 
overall slope angle of open-pit mines based on elastoplastic 
theory and numerical analysis software. However, these studies 
often fail to provide specific bench parameters, such as bench 
width, bench height, and bench face angle, making it difficult 
to directly apply the optimization results to practical mining 
operations. (2) Lack of a Global Optimal Solution: Traditional 
research methods tend to seek a relatively optimal solution 
by comparing different design schemes rather than employing 
systematic scientific methods to achieve a truly global optimum. 
As a result, these approaches struggle to simultaneously 
balance both safety and economic efficiency in open-pit slope 
design, creating a bottleneck in the optimization of bench 
parameters.

With the rapid development of artificial intelligence, many 
researchers have introduced AI technologies into the field of 
geotechnical engineering (Ragam et al., 2024; Kurnaz et al., 
2024; Erzin and Cetin, 2013; Lin et al., 2022) proposing slope 
stability prediction methods based on machine learning (ML) 
and optimization algorithms (Xia et al., 2024; Ali and Reza, 
2021; Ghasemi et al., 2024; Yang et al., 2023; Lin et al., 2022). 
Leveraging its powerful data processing and pattern recognition 
capabilities, machine learning offers new approaches for the 
intelligent optimization of slope bench parameters in geological 
disaster prevention. This study constructs a training dataset 
linking safety factors, economic benefits, and bench parameters, 
and applies data analysis and machine learning techniques 
to conduct intelligent collaborative optimization based on 
a multi-objective optimization strategy. The research deeply 
investigates the conflict between geological hazard risk control 
and economic benefit maximization in open-pit mine slopes, 
providing significant practical value for disaster prevention and 
mitigation (Pham et al., 2021). Furthermore, the study supplements 
and improves intelligent optimization schemes for slope bench 
parameters in open-pit slopes containing weak interlayers, offering 
strong theoretical support and engineering guidance to enhance 
geological disaster prevention capabilities and ensure safe mining 
operations. 

2 Slope engineering geological survey 
and rock mass mechanical parameter 
calculation

2.1 Overview of engineering geological 
conditions

Field investigations reveal that the slope is defined by primary 
and tectonic structural surfaces, weak interlayers, and fault fracture 
zones, as illustrated in Figure 1, which provides an overview of 
the study area’s geology. Primary structural surfaces result from 
magma intrusion and cooling, with diabase occurring in clusters 
within the slope’s rock mass. The weak interlayers are composed of 
chlorite mineral layers, where the minerals have fragmented into 
flaky formations. Some weak interlayers show significant openings, 
with minerals eroded by external forces, resulting in fractures of 
varying widths. Table 1 displays the distribution of these weak 
interlayers. Joint parameters are provided in Table 2, which shows 
considerable geometric variation, reflecting the area’s complex 
geological structure. Most joints are tight and filled with chlorite 
or calcareous minerals, contributing to their stability, while some 
rough, slightly open joints may exhibit higher permeability.

2.2 Radar detection

2.2.1 Detection principle
Ground-penetrating radar (GPR) is a subsurface exploration 

method that uses high-frequency to microwave electromagnetic 
waves to detect reflections. The system works by emitting 
electromagnetic waves from a transmitter antenna directed towards 
the surrounding rock. The antenna is positioned on the rock’s 
surface, and as the waves propagate through the subsurface, they 
are reflected when encountering interfaces with varying electrical 
properties. The reflected waves are captured by the receiver antenna. 
The initial signal received from the transmitter to the receiver 
serves as the system’s time zero reference point. After processing 
the reflected signal, the depth of the reflection target is determined 
by halving the round-trip time and multiplying by the radar wave 
velocity in the corresponding medium. The characteristics of the 
reflection target, such as fractured rock masses, cavities, loose zones, 
weak interlayers, and cracks in unfavorable geological formations, 
are identified based on the intensity, shape, and variations of the 
reflected wave in both horizontal and vertical directions. The 
detection principle of geological radar is illustrated in Figure 2. 

2.2.2 Image interpretation
The Ground Penetrating Radar (GPR) provides critical input 

data for the 3DEC model, facilitating accurate simulation of slope 
stability. Through radar detection, structural information of the rock 
mass, such as fractures, joints, weak interlayers, and fault zones, 
can be obtained, which is essential for defining the mechanical 
properties in the 3DEC model. Additionally, GPR offers depth-
related data, enabling precise determination of layer thickness, 
distribution, and the strength and stiffness of rock masses at 
different depths. Variations in the intensity and frequency of the 
reflected radar waves reveal the characteristics of weak interlayers 
and fracture zones, thereby aiding in the accurate representation 
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FIGURE 1
Schematic diagram of study area and geology condition.

TABLE 1  Distribution of weak interlayers.

Weak interlayer Occurrence Thickness/cm Opening width Fillings

F1 160∠24 50 Larger Chlorite

of the rock mass heterogeneity in the 3DEC model. The collected 
data, along with field conditions, surrounding geological survey 
reports, and geological investigation data, are analyzed to provide 
a comprehensive interpretation of the geological conditions in the 
detected area, with particular focus on axial direction, amplitude, 
and frequency.

In this study, radar lines 1# and 2# were positioned on the 
safety platform of the open-pit slope. The combined results of the 
field geological survey and radar detection indicate the following: 
(1) The surrounding rock joints and fractures are generally well 
to moderately developed, and the rock mass exhibits a blocky 
structure; (2) At a depth of 30–35 m below the surface, significant 
variations in the frequency and amplitude of the reflected waves 
suggest poor rock integrity, well-developed joint fractures, and 
the presence of weak interlayers and fault zones. The field survey 
shows that these weak interlayers consist of chlorite mineral layers, 
where the minerals have fragmented into flaky structures. Some 
of these weak interlayers exhibit wide openings, and the minerals 
have been eroded by external forces, leading to the formation of 
fractures of varying widths. These observations are consistent with 
the findings from the geological radar survey. The detection results 
are presented in Figures 3a,b. 

2.3 Rock mass mechanical parameters

Field sampling of the mine slope was conducted, and rock 
mechanics tests were performed. The physical and mechanical 
parameters of the rock were obtained through laboratory tests. Based 
on the structural characteristics of the slope rock mass, the modified 
BQ value was determined. The rock mass mechanical parameters 
for each subdivision were then calculated based on the GSI and 
Hoek-Brown strength criteria. Figure 4 shows the flowchart for the 
laboratory rock. Similar to the effects of cyclic thermal loading on the 
stability of underground backfill, slope stability under varying step 
geometries also involves complex interactions between mechanical 
and environmental factors. For example, factors such as the slope 
geometry, bench height, and angle directly influence the mechanical 
response of the rock mass, while environmental factors such as 
temperature changes and precipitation may also affect the physical 
properties of the rock mass, further influencing the stability of the 
slope (Ahmad et al., 2025; Ahmad et al., 2021; Ahmad et al., 2019). 

2.3.1 Uniaxial compression test and test results
After determining the Geological Strength Index (GSI) value, 

rock mass mechanical parameters were analyzed based on the 
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TABLE 2  Statistical table of Dominant structural surfaces in the study area.

Survey 
Location

Structural 
surface

Dip 
direction

/°

Dip angle 
/°

Spacing 
range/m

Trace 
Length 

range/m

Roughness Opening 
width

Fillings

1 J1 235 80 0.5∼1.0 >20 Smooth Slightly Open Chlorite

2

J2 250 68 0.3∼0.5 10∼20 Smooth Relatively 
Tight

Chlorite

J3 160 55 0.3∼0.5 10∼20 Smooth Relatively 
Tight

Calcareous

3

J4 235 60 0.5∼1.0 10∼20 Smooth Relatively 
Tight

Chlorite

J5 160 55 0.5∼1.0 10∼20 Smooth Relatively 
Tight

Calcareous

4 J6 235 60 0.5∼1.0 10∼20 Smooth Relatively 
Tight

Chlorite

5 J7 260 82 0.3∼0.5 10∼20 Rough Relatively 
Tight

Calcareous

6

J8 275 81 0.3∼0.5 >20 Smooth Relatively 
Tight

Chlorite

J9 160 35 0.3∼0.5 >20 Smooth Relatively 
Tight

Chlorite

J10 115 84 0.3∼0.5 >20 Smooth Relatively 
Tight

Calcareous

7

J11 275 81 0.3∼0.5 >20 Rough Relatively Chlorite

J12 160 35 0.3∼0.5 >20 Rough Relatively Chlorite

J13 115 84 0.3∼0.5 >20 Rough Relatively Chlorite

Hoek-Brown strength criterion. The final rock mass mechanical 
parameters for each zone are shown in Table 3. In the 3DEC 
calculation process, the rock mechanics parameters from Table 3 
are selected as input variables for numerical calculations. These 
parameters, such as compressive strength and shear strength of 
the rock mass, are chosen based on field geological surveys 
and laboratory test data, accurately reflecting the physical and 
mechanical properties of the rock mass. This provides a reliable basis 
for subsequent slope stability analysis. 

3 Intelligent optimization of slope 
bench parameters based on machine 
learning algorithms and 
multi-objective optimization methods

In open-pit mining, both economic benefits and slope safety 
are closely tied to the parameters of the slope benches. Any 
changes to these parameters directly impact both economic returns 
and safety. Although economic benefits are the primary objective, 
they must be balanced with safety considerations. Both goals 
must be achieved under certain conditions. To address this, a 

multi-objective optimization problem is formulated to maximize 
economic benefits while meeting safety constraints. This is solved 
through a combination of multi-objective optimization and machine 
learning methods for intelligent optimization of open-pit slope 
bench parameters. 

3.1 Scheme design

In this study, the data preparation stage follows the principles 
of systematization and reproducibility, and a database system based 
on the collaborative optimization of numerical simulation and 
machine learning is constructed. Firstly, based on the open-pit 
mining engineering geological conditions and design specifications, 
key control parameters such as bench height (15–23 m), slope face 
angle (60°–75°), platform width (3–5 m), and cleaning platform 
(fixed value of 8 m) are selected. Using orthogonal experimental 
design, 100 sets of parameter combinations are generated, and the 
safety factor and economic benefits (calculated based on the ore 
quantity as the economic measure) of the slope under different 
bench parameter combinations are determined. This study uses the 
mined ore quantity and slope safety factor as supervisory indicators, 
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FIGURE 2
Flowchart of rock mechanics testing process.

i.e., target variables, and bench parameters (including bench width 
L, bench height H, and bench profile angle α) as feature variables. 
The bench parameter design scheme is shown in Table 4. The 
step parameters listed in Table 4 (including bench height, slope 
angle, and platform width) are selected as input variables for the 
3DEC model. These parameters are chosen based on mining design 
requirements and geological conditions to ensure that the model can 
accurately simulate various scenarios encountered in actual mining 
operations. The results from the 3DEC calculations are subsequently 
used as input for a machine learning dataset in Python, facilitating 
further optimization of slope design and enhancing prediction 
accuracy. During the data processing phase, all input variables are 
standardized and normalized to ensure consistency and suitability 
for model training. 

3.2 Technical approach

1. Data Preparation–Constructing the Training Dataset

Based on the strength reduction method, numerical calculation 
models were developed using 3DEC software. According to 
the above step parameter schemes, a total of 100 numerical 
models were established. Each model calculates the slope 
safety factor under different step parameter combinations. For 
each of the 100 parameter combinations, the corresponding 
recoverable ore quantity under open-pit mining conditions 

was calculated, serving as the economic benefit value for each
combination. 

2. Developing Prediction Models Using Machine Learning

Two predictive models were constructed using machine learning 
algorithms:

Economic Benefit Prediction Model: Inputs the step parameters 
and outputs the corresponding economic benefit.

Safety Factor Prediction Model: Inputs the step parameters and 
outputs the corresponding safety factor. 

3. Intelligent Optimization of Bench Parameters for Open-Pit 
Slopes Based on Machine Learning

1. Environment Construction

In machine learning algorithms, the environment defines 
how the agent interacts with the external world. In multi-
objective optimization, environment construction is especially 
critical, requiring clear definitions of state, action, and reward
functions:

State: Represents the current combination of bench parameters, 
e.g., [L, a, H]

Action: Refers to the agent’s adjustment to the bench parameters, 
such as increasing or decreasing L, a, or H; Reward Function: The 
reward should consider both economic benefit and safety factor. 
This can be achieved by integrating the two objectives into a single 
weighted reward function or designing separate reward functions for 
individual optimization. 
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FIGURE 3
Slope radar detection Image. (a) Detection results of line 1#. (b) Detection results of line 2#.

2. Multi-Objective Optimization Implementation

Based on the trained economic benefit and safety factor 
prediction models, a combined approach of multi-objective

optimization and machine learning algorithms is adopted to 
determine the optimal bench parameter combinations that 
maximize economic benefit while satisfying safety factor
constraints.
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FIGURE 4
Flowchart of rock mechanics testing process.

TABLE 3  Summary of slope rock mass mechanical parameters.

Rock Mass Compressive 
strength (MPa)

Tensile strength 
(MPa)

Cohesion (MPa) Internal friction 
angle

Elastic modulus 
(GPa)

Poisson

Diabase 4.48 0.03 0.51 32.9 7.56 0.31

Weak
Interlayer

0.08 0.015 0.05 23 0.8 0.36

TABLE 4  Scheme design table.

Serial number Bench Width (m) Bench profile angle/° Bench height/m

1 6 60°、65°、70°、75°、80° 15 m、17 m、19 m、21 m、23 m

2 5 60°、65°、70°、75°、80° 15 m、17 m、19 m、21 m、23 m

3 4 60°、65°、70°、75°、80° 15 m、17 m、19 m、21 m、23 m

4 3 60°、65°、70°、75°、80° 15 m、17 m、19 m、21 m、23 m

3. Validation and Optimization

The optimization results from the machine learning 
algorithm are applied to practical engineering cases. To 
ensure the accuracy of the dual-objective optimization 
results for “economic benefit–safety,” the following 

evaluation procedure is adopted: “numerical simulation 
verification →economic validation →correlation analysis.” 
Feedback from real-world applications is continuously 
incorporated to refine algorithms and parameters, 
improving the accuracy and reliability of the optimization
results. 

Frontiers in Earth Science 08 frontiersin.org

https://doi.org/10.3389/feart.2025.1666375
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Deng et al. 10.3389/feart.2025.1666375

FIGURE 5
Technical Route of the research.

a. Numerical Simulation Verification

A three-dimensional slope stability model is constructed in 
3DEC using the optimized bench parameters (bench height H, slope 
angle a and platform width L) to calculate the safety factor. 

b. Economic Validation

The economic benefit is recalculated based on the optimized 
bench parameters (H, a, L) to validate the predicted economic 
performance.

The technical roadmap of this study is illustrated in Figure 5. 

3.3 Construction of the economic benefit 
training dataset–Ore quantity calculation 
under different bench configurations

In practical engineering applications, the economic benefit 
of a mine primarily depends on the quantity of ore extracted. 
Therefore, in the mathematical model that links economic benefit 
to bench control parameters, it is assumed that, as long as the 
stability factor is greater than or equal to the design safety 
factor, the economic benefit is maximized when the ore extraction 
quantity is maximized. Given that mining depth is defined by 
mining rights, the maximum recoverable ore quantity within 
a cross-section can be easily determined. Figure 6a: Schematic 
of recoverable ore volume with a bench slope angle of 60°, 
bench height (H) of 15 m, and platform width (L) of 5 m. 
Figure 6b: Schematic of recoverable ore volume with a bench 
slope angle of 60°, bench height (H) of 15 m, and platform 
width (L) of 4 m Figure 6c: Schematic of recoverable ore volume with 
a bench slope angle of 60°, bench height (H) of 15 m, and platform
width (L) of 3 m. 

3.4 Construction of the safety factor 
training dataset

Based on the bench design schemes presented in Table 4 
and with reference to the geological cross-section of the mining 
area, bench cross-sectional diagrams of the open-pit mine 
were drawn. Figure 7 illustrates several examples of these bench 
con-figurations. Subsequently, numerical models were developed 
under different bench parameter combinations using the drawn 
cross-sections. A 3D mesh model was constructed in Rhino and 
imported into 3DEC for safety factor calculation.

The calculated safety factor values under various bench 
parameter combinations were then compiled to form the training 
dataset for machine learning. This dataset was fed into the pre-
defined machine learning model to train and develop a predictive 
model for the safety factor. 

3.4.1 Introduction to 3DEC software
3DEC (3-Dimensional Distinct Element Code), developed by 

Itasca Consulting Group, Inc., is a three-dimensional numerical 
analysis software based on the Distinct Element Method (DEM). 
This program is specifically designed to simulate the mechanical 
behavior of discontinuous media and is equipped with an extensive 
library of material models.

During the model process, 3DEC can realistically represent 
the geometric characteristics of rock masses with structural 
planes in three-dimensional space. It offers distinct advantages 
in analysing rock mass deformation and failure that are 
governed by structural features. As a result, it has been 
widely applied in studies of the mechanical behavior of slopes, 
surrounding rock of underground excavations, and other jointed
rock masses.
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FIGURE 6
Schematic diagram of recoverable ore volume under different bench 
parameter combinations in open-pit mining. (a) a = 60°、H = 15 m、L 
= 5 m, Schematic Diagram of Recoverable Ore Volume. (b) a = 60°、H 
= 15 m、L = 4 m, Schematic Diagram of Recoverable Ore Volume. (c)
a = 60°、H = 15 m、L = 3 m, Schematic Diagram of Recoverable 
Ore Volume.

3DEC provides powerful and comprehensive pre-processing 
capabilities, including slope model construction, rock mass 
structural division, and structural plane net-work simulation. 
These features allow for a more accurate representation of the 
geo-metric characteristics of engineering slopes, making 3DEC 
an excellent tool for de-tailed investigations of three-dimensional 
stress responses in rock slopes. Lattice element-based modeling 
of cemented geomaterials provides further validation for using 
discontinuum-based tools, such as 3DEC, in simulating slope failure 
mechanisms with weak interlayers (Rizvi et al., 2020). 

3.4.2 Principle of strength reduction method
The basic principle of the strength reduction method is to 

divide the strength parameters of the slope soil-rock mass, namely, 
cohesion c and internal friction angle φ, by a reduction factor F 
simultaneously, obtaining a new set of values. These reduced values 
are then used as the new parameters for the calculation. The reduced 
shear strength parameters are as follows Equations 1, 2:

C′ = C
F

(1)

φ′ = arctan(
tan φ

F
) (2)

As shown in Figure 7, the value of F when Intensity line after 
discounting is tangent to the Mohr’s stress circle is the slope safety 
factor required for the calculation. 

3.4.3 Establishment of the 3DEC numerical 
calculation model

This calculation only presents a portion of the results. 
As shown in Figure 8, the schematic diagrams of the models with 
a slope angle of 60°, bench heights of 15 m and 17 m, and safety 
platform widths of 5 m, 4 m, and 3 m, respectively. 

3.4.4 Calculation of safety factor
As shown in Figure 9a, the slope safety factor varies with 

different bench widths and heights. Specifically, Figure 9a presents 
the safety factor for a slope with a 60° angle, a bench height of 
15 m, and a bench width of 5 m. Figure 9b shows the safety factor 
for the same slope angle and height but with a bench width of 4 m, 
while Figure 9c illustrates the safety factor for a bench width of 3 m. 
Figures 9d–f correspond to a slope with a height of 17 m and bench 
widths of 5 m, 4 m, and 3 m, respectively. According to the safety 
factor results in Table 5, as the bench width decreases, the safety 
factor gradually declines. Although increasing the bench height 
slightly reduces the safety factor, the change is minimal, suggesting 
that higher benches still maintain relatively good stability. 

3.5 Sample training set for slope safety 
factor, economic benefits, and bench 
parameters

Once all the schemes have been calculated, they are organized 
into a table to serve as input for model training data. A portion of 
the data is presented in Table 6. 

4 Intelligent optimization of open-pit 
mine bench parameters based on 
multi-objective optimization and 
machine learning methods

4.1 Algorithm introduction

4.1.1 SVM algorithm
Support Vector Machine (SVM) is a widely used machine 

learning algorithm. Its main principle is to construct a decision 
surface—a classification hyperplane—that maximizes the separation 
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FIGURE 7
Diagram of the strength reduction method.

FIGURE 8
3D mesh model.

boundary between positive and negative examples. There-fore, 
the SVM algorithm exhibits excellent generalization performance 
in classification problems. The algorithm’s principles and system 
structure are shown in Figures 10, 11.

If the training set T of the SVM is given in the following form 
are as follows Equations 3–6:

T = {(x1,y1), (x2,y2), ......, (xl,yl)} ∈ (X×Y)′ (3)

In the equation: xi ∈ X = Rn, yi ∈ Y = {1,−1}, Where, i = 1,2,… ,l.
Select an appropriate kernel function K (without loss of 

generality, we choose the Radial Basis Function (RBF) as the 
kernel) and parameter C to construct the optimization problem, as 
shown below.

min
α

1
2

l

∑
i=1

l

∑
j=1

αiαjyiyjK(xi,xj) −
l

∑
j=1

αj (4)

K(x,xi) = exp(−gx− xi
2) g > 0 (5)

s.t.
l

∑
i=1

αiyi = 0 0 ≤ αi ≪ C i, j = 1,2, ..., l (6)

In the equation, α represents the Lagrange multiplier.
Thus, the optimal solution α=(α1,α2,…,αl)T can be obtained. 

Select a positive component 0<αl < C to calculate the threshold are 
as follows Equations 7, 8.

b∗ = yj −
l

∑
i=1

α∗i  K(xi − xj) (7)

The final decision function can be constructed as follows:

f(x) = sgn(
l

∑
i=1

α∗i yiK(x,xi) + b∗) (8)

Overall, the SVM algorithm has the following advantages: 
it is well-structured according to the framework of Vapnik-
Chervonenkis generalization theory; it possesses good robustness; 
and it can be applied to a wide range of functions.

When using the machine learning SVM algorithm for model 
training, the penalty coefficient ccc and the kernel function 
parameter g have a significant impact on the model’s accuracy. 
The penalty coefficient c represents the tolerance for errors. A 
larger c indicates a smaller tolerance for errors, which may lead 
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FIGURE 9
(Continued).

to overfitting, while a smaller c may lead to underfitting. On the 
other hand, both excessively large and small values of c can weaken 
the model’s generalization ability. The kernel function parameter g 

affects the number of support vectors: as g increases, the number of 
support vectors decreases, and as g decreases, the number of support 
vectors increases. However, in practical applications of the SVM 
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FIGURE 9
(Continued). Safety Factor and Maximum Shear Strain Contour Map for Scheme 1. (a) The safety factor of the slope with a = 60°,H = 15 m,L = 5 m. (b)
The safety factor of the slope with a = 60°,H = 15 m,L = 4 m. (c) The safety factor of the slope with a = 60°,H = 15 m,L = 3 m. (d) The safety factor of the 
slope with a = 60°,H = 17 m,L = 5 m. (e) The safety factor of the slope with a = 60°、H = 17 m,L = 4 m. (f) The safety factor of the slope with a = 60°,H = 
17 m,L = 3 m.
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TABLE 5  Safety factor calculation results for scheme 1.

Scheme 1 Bench height/m Bench width/m Safety factor

Bench Slope
Angle = 60°

15 5 1.4

15 4 1.387

15 3 1.379

17 5 1.387

17 4 1.371

17 3 1.363

TABLE 6  Sample training set for economic benefits, safety factor, and bench parameters.

Serial
Number

Safety platform 
Width L (m)

Bench slope angle 
a (°)

Bench height
H (m)

Economic benefits 
(mined Ore 
Quantity)

Safety
Factor

1 5 60 15 18,537.4321 1.4

2 4 60 15 18,946.3252 1.387

3 3 60 15 19,351.3252 1.379

4 5 60 17 18,948.9686 1.387

5 4 60 17 19,253.8685 1.371

6 3 60 17 19,655.4147 1.363

7 5 60 19 19,291.4423 1.365

8 4 60 19 19,603.4423 1.355

9 3 60 19 19,915.4423 1.345

10 5 60 21 19,553.7465 1.355

… … … … … …

algorithm, the parameters c and g are often set based on empirical 
experience or system default values, lacking theoretical foundation, 
and are not necessarily the optimal solution for a specific problem. 

4.1.2 Bayesian optimization
Bayesian Optimization is a global optimization method based 

on Bayes' theorem and Gaussian Processes (GP), primarily used to 
optimize black-box functions, i.e., functions that do not have an 
analytical form, are computationally expensive, and are noisy. In 
general, Bayesian Optimization allows us to find the best solution 
with fewer trials in a smarter way, making it particularly suitable for 
problems where the “trial-and-error cost” is high.

Problem Definition:
Suppose we need to optimize an unknown objective function is 

as follows Equation 9:

f:x→ R (9)

Here, χ is the domain (typically a high-dimensional continuous 
space), and f(x) is the objective function to be optimized (the black-
box function).

The goal is to find the optimal solution are as follows 
Equations 10, 11:

x∗ = arg max f(x)x ∈ x (10)

or

x∗ = arg min f(x)x ∈ x (11)

Since f(x) is unknown and computationally expensive, ordinary 
grid search or gradient descent cannot be used, so Bayesian 
Optimization is employed.

Bayes Theorem.
The core idea of Bayesian Optimization is to use existing 

observational data, combined with Bayes' Theorem, to 
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FIGURE 10
Svm algorithm principle.

update the estimation of the objective function is as follows
Equation 12:

p(θ/D) =
P(D/θ)P(θ)

P(D)
(12)

Where:
θ represents the parameters of the objective function (i.e., 

the variables we want to estimate); D = (xi,yi)ni=1 is the existing 
observational data, with yi = f(xi) + ε being the noisy observations; 
P(θ) is the prior probability, representing our prior assumption 
about the objective function; P(D/θ) is the likelihood function, 
representing the likelihood of the data given the parameters; 
P(D) is the normalization factor, ensuring that the sum of all 
probabilities equals 1.

The core idea of Bayesian Optimization is to continuously 
update the posterior distribution of the objective function after each 
sampling, and then use the posterior distribution to select the next 
optimal sampling point.

Gaussian Process (GP) for Modeling the Objective Function.
Since the objective function f(x) is unknown, we need to 

represent it using a probabilistic model. Bayesian optimization 
typically uses a Gaussian process (GP) to model f(x).

Definition of Gaussian Process.
The Gaussian process is a distribution over functions, meaning 

that for any set of input points x1,x2, ....,xn, the corresponding 
function values f(x) follow a multivariate Gaussian distribution is 
as follows Equation 13.

f(x) ∼ GP(m(x),k(x,x′)) (13)

m(x) is the mean function (usually set to 0) is as follows Equation 14:

m(x) = E[ f(x)] (14)

k(x,x′) is the covariance function (or kernel function), which 
represents the correlation between different input point is 
as follows Equation 15.

k(x,x′) = Cov( f(x), f(x′)) (15)

Commonly used kernel functions include the RBF kernel 
(Radial Basis Function kernel), Matern kernel, polynomial kernel, 
and so on. The definition of the RBF kernel is as follows Equation 16:

k(x,x′) = σ2 exp(−
‖x− x′‖2

2l2
) (16)

Where: 

σ2 : Controls the variance.
l : is the scale parameter, which determines the rate of decay of 
correlation.

Prediction with Gaussian Processes
Given n observed points Dn = {xi, yi}ni=1, we want to predict 

the distribution of f(x∗) at a new point x∗. Assume the existing 
data y = [y1,...yn], with mean vector and covariance matrix is 
as follows Equation 17: 

μn =m(X) = [m(x1), ....,m(xn)]

Kn =(

k(x1,x1) … k(x1,xn)

⋮ ⋱ ⋮

k(xn,x1) ⋯ k(xn,xn)

) (17)

For the new point x∗, define are as follows Equations 18, 19:

k∗ = [k(x∗,x1], [k(x∗,x2]....[k(x∗,xn] (18)

k∗∗ = k(x∗,x∗) (19)

The predicted distribution at x∗ is as follows Equation 20:

μ∗ = kT
∗K
−1
n y

σ2
∗ = k∗∗ − kT

∗K
−1
n k∗

(20)

the new point x∗ is as follows Equation 21:

f(x∗)|Dn ∼Ν(μ∗,σ
2
∗) (21)

This gives the posterior distribution of f(x), which is used to 
guide the selection of the next sampling point.

Acquisition function.
The acquisition function (AF) is used to determine the next 

sampling point, aiming to efficiently explore the optimal solution 
while minimizing the number of trials.

Common acquisition functions include:
Expected Improvement (EI) is as follows Equation 22.

EI(x) = E[max f(x) − f(x+),0] (22)

Probability of Improvement, PI is as follows Equation 23

PI(x) = P( f(x) > f(x+) + ξ) (23)

Where f(x+) is the current optimal value. Where ξ is the 
exploration parameter.

Upper Confidence Bound, UCB is as follows Equation 24.

UCB(x) = μ(x) + κσ(x) (24)
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FIGURE 11
System structure of the SVM algorithm.

Where κ controls the trade-off between exploration and 
exploitation.

The next step selects the point that maximizes the acquisition 
function is as follows Equation 25.

xn+ 1 = arg maxAF(x)x ∈ x (25)
 

4.1.3 NSGA-II algorithm
NSGA-II is a genetic algorithm-based multi-objective 

optimization method introduced by Deb et al., in 2002. It is 
designed to solve multi-objective optimization problems (MOPs) 
and can simultaneously optimize multiple conflicting objectives, 
generating a set of uniformly distributed Pareto optimal solutions. 
The NSGA-II algorithm mainly involves steps such as nondominated 
sorting, crowding distance calculation, selection, crossover, 
and mutation. 

1. Definition of Multi-Objective Optimization Problem is 
as follows Equation 26

minF(x) = ( f1(x), f2(x),… fm(x)),xϵS (26)

where x represents the decision variables, defined in the feasible 
solution space S;

fm(x) represents the m-the objective function, m = 1,2, ...,M; 
The definition of a Pareto optimal solution is as follows: If there exists 
a solution x∗ such that:
∃ fm(x

∗) ≤ fm(x) fm(x
∗) < fm(x) and there exists at least one m

such that fm(x
∗) < fm(x) , then x∗ is called a Pareto optimal solution. 

2. Non-dominated Sorting

In NSGA-II, individuals are ranked in layers based on the non-
dominance relationship. For a given solution a and b, the dominance 
relationship is defined as follows Equation 27:

∀m ∈ {1,2, ...,M}, fm(a) ≤ fm(b) (27)

and there exists at least 1 m such that fm(a) < fm(b), this is called “a 
dominates b”.

In the non-dominated sorting process, all individuals that are 
not dominated by any other solution form the first front F1 is 
as follows Equation 28.

F1 = {xi|∀xj ∈ S,xj ⊄ xi} (28)

After removing F1, the Pareto front F2 of the remaining 
population is determined by finding all individuals that are 
not dominated by any solution in the remaining population is 
as follows Equation 29.

F2 = {xi|∀xj ∈ S− F1,xj ⊄ xi} (29)

This process is iteratively repeated until all individuals are 
assigned to a specific level or front. 

3. Crowding Distance Calculation

To improve the uniformity of the Pareto solutions' distribution, 
NSGA-II introduces the crowding distance (Crowding Distance) 
metrics CCC and DDD to evaluate the sparsity of an individual’s 
neighborhood.

For the sorted individual iii, its crowding distance in the m 
objective direction is calculated is as follows Equation 30:

CDm
i =

fi+1
m − fi−1

m

fmax
m − fmin

m
(30)

fi+1
m  and fi−1

m  are the function values of the neighboring individuals 
in the m-the objective dimension.

fmax
m  and fmin

m  are the maximum and minimum values of the 
objective in that dimension.

The total crowding distance calculation is as follows Equation 31:

CDi =
M

∑
m=1

CDm
i (31)

The crowding distance of boundary solutions is set to infinity is 
as follows Equation 32.

CDmin =∞,CDmax =∞ (32)
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FIGURE 12
Convergence diagram of the algorithm. (a) Bayesian optimization sampling point convergence plot (b).

4. Selection mechanism
NSGA-II uses a tournament selection based on 
non-domination rank and crowding distance is 
as follows Equation 33.

Select
{{{{
{{{{
{

xa a is at a lower level

xb b is at a lower level

arg max(CDa,CDb)at the same level

(33)
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FIGURE 13
Algorithm Fitting Degree Diagram. (a) Schematic diagram of the 
SVM-NSGAII; algorithm for economic indicator R2. (b) Schematic 
diagram of the SVM-NSGAII; algorithm for safety indicator R2. (c)
Schematic diagram of the SVM-BO algorithm for economic indicator 
R2. (d) Schematic diagram of the SVM-BO algorithm for safety 
indicator R2.

The individual with the lower level is given priority; if the levels 
are the same, the individual with higher congestion is chosen. 

5. Crossover and Mutation Operations

Simulated Binary Crossover:
Crossover between parent individuals xi and xj to produce 

offspring are as follows Equations 34, 35:

x′i =
(1+ β)xi + (1− β)xj

2
(34)

x′j =
(1− β)xi + (1+ β)xj

2
(35)

Where,
β = (2r)

1
η+1  if r ≤ 0.5

β = (2(1− r))−
1

η+1  if r > 0.5
Polynomial Mutation are as follows Equations 36, 37

x′i = xi +Δi(xmax − xmin) (36)

Δi
{
{
{

(2r)
1

η+! r < 0.5

(2(1− r))−
1

η+1 r ≥ 0.5
(37)

6. Population Update Mechanism
1. Merging Parent Pt and Offspring Qt is as follows Equation 38:

Rt = Pt ∪Qt (38)

Pt is the current population with size N;
Qt is the new population generated by selection, crossover, and 

mutation with size N; after merging, R will have a size of 2N. 

2. Perform Non-Dominated Sorting

Perform fast non-dominated sorting on Rt and assign 
individuals to different Pareto layers is as follows Equation 39.

F1,F2, ...Fk (39)

Perform non-dominated sorting on Rt and select the top N 
individuals based on hierarchy. F1 is the Pareto-optimal front 
(not dominated by any individual); F2 is the next-best front (only 
dominated by individuals in F1); and so on, forming multiple ranks. 

3. Select the top N individuals is as follows Equation 40

|Pt+1| < N (40)

If a certain front Fk cannot fully fill Pt+1, select the best solutions 
based on crowding distance ranking. 

4.2 Model training and testing

1. Convergence Analysis

As shown in Figure 12a, the Bayesian optimization convergence 
plot for SVM-BOA illustrates the sampling points. In an ideal 

Frontiers in Earth Science 18 frontiersin.org

https://doi.org/10.3389/feart.2025.1666375
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Deng et al. 10.3389/feart.2025.1666375

FIGURE 14
(Continued).

FIGURE 14
(Continued). Sensitivity Analysis Plot of Economic Benefits, Safety 
Factor, and Step Parameters for Open-Pit Slopes. (a) Economic 
Efficiency (fixed l-h, varying a). (b) Safety Factor (fixed I-h, varying a).
(c) Economic Efficiency (fixed a-h, varying l). (d) Safety Factor (fixed 
a-h, varying l). (e) Economic Efficiency (fixed a-l, varying h). (f) Safety 
Factor (fixed a-l, varying h).
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TABLE 7  Algorithm accuracy evaluation table.

Method Evaluation method Safety factor Economic benefit

SVM-NSGAII

MAE 0.0097 0.0853

R2 0.9050 0.8921

MSE 0.0001 0.0023

MAPE 0.74% 1.35%

SVM-BO

MAE 0.0114 4.7

R2 0.8761 0.7168

MSE 0.0002 3.4

MAPE 0.88% 2.35%

Bayesian optimization plot, the average test score should initially 
increase or decrease quickly, followed by a gradual reduction in 
variation, eventually stabilizing in the later stages. Simultaneously, 
the confidence interval of the surrogate model should narrow 
significantly in the optimal region, indicating that the optimizer 
has thoroughly explored the high-potential parameter space and 
identified the optimal solution. If the score stagnates or fluctuates for 
an extended period, it may suggest entrapment in a local optimum 
or high noise in the objective function, requiring an increase in the 
number of iterations. As shown in the figure, SVM-BO stabilizes at 
the 23rd iteration.

Additionally, analysis based on the NSGA-II algorithm shows 
that the data points in Figure 12b represent the corresponding 
values of the safety factor and economic efficiency under different 
parameter combinations. Most of the points are concentrated in 
the range of safety factors from 0.5 to 1.5 and economic efficiency 
from 20,000 to 22,500, indicating that economic efficiency fluctuates 
significantly when the safety factor is relatively low. As the safety 
factor approaches 1.3, economic efficiency tends to increase, while 
a safety factor below one results in a decline in economic efficiency. 
This reflects the diminishing marginal return effect when the safety 
factor is too low. These data points form the Pareto front of the 
bi-objective optimization involving safety and economic efficiency, 
highlighting the trade-off: improving one objective often comes at 
the expense of the other. The figure clearly illustrates the balance 
between the two objectives and provides essential guidance for 
selecting optimal parameters during the optimization process. 

2. Algorithm Validation

The training was conducted using sample datasets with SVM-
NSGAII; and SVM-BO. Common evaluation metrics include Mean 
Squared Error (MSE), the coefficient of determination (R2), and 
Mean Absolute Percentage Error (MAPE). Root Mean Squared Error 
(RMSE) reflects the expected value of the squared model error. The 
R2 value ranges from [0, 1], with values closer to one indicating 
better alignment between predicted and observed values, thereby 
reflecting superior model fitting performance. Conversely, a lower 
R2 value suggests poorer prediction accuracy. A smaller MAPE 
indicates higher prediction accuracy, while a lower Mean Absolute 

Error (MAE) implies smaller prediction errors, indicating that the 
predicted results are closer to the true values.

Figures 13a,b display the R2 plots for SVM-NSGAII;, while 
Figures 13c,d show the R2 plots for SVM-BO. Combining these 
with the data presented in Table 7, it can be concluded that the 
SVM-NSGAII; algorithm demonstrates superior performance.

The formulas for calculating the error are given in 
Equations 41–44.

MSE = 1
n

n

∑
i=1
(yi − ̂yi) (41)

R2 = 1−
∑n

i=1
(yi − ŷi)

2

∑n
i=1
(yi − yi)

2
(42)

MAPE = 1
n

n

∑
i=1
[
|ŷi − yi|

yi
]× 100 (43)

MAE = 1
n

n

∑
i=1
|yi − ŷi| (44)

3. Sensitivity Analysis

Figure 14a: Heatmap of Economic Efficiency (fixed l-h, 
varying a), Figure 14b: heatmap of Safety Factor (fixed l-h, 
varying a), Figure 14c: heatmap of Economic Efficiency (fixed 
a-h, varying l), Figure 14d: heatmap of Safety Factor (fixed a-h, 
varying l), Figure 14e: heatmap of Economic Efficiency (fixed a-l, 
varying h), Figure 14f: heatmap of Safety Factor (fixed a-l, varying 
h).The six heatmaps clearly illustrate the trade-off between economic 
efficiency and safety factor, influenced by the combined effects of 
production scale (h), resource allocation (l), and input cost (a). 
Economic efficiency generally increases at the expense of safety. 
Among the three parameters, resource allocation (l) has the most 
significant impact: when l = 5, efficiency peaks at 22,856, but the 
safety factor drops sharply to 1.253, indicating a substantial risk. 
Input cost (a) follows as the second most influential factor: at a 
= 80, efficiency reaches 22,403, while the safety factor decreases by 
approximately 6%. Production scale (h) exerts the weakest influence: 
when h = 23, efficiency increases by only 4%, and the safety factor 
decreases by about 3%.
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FIGURE 15
Comparison of Actual Value Labels and Predicted Values for Slope 
Step Parameter Optimization under Two Algorithms. (a) Comparison 
of real and predicted safety factor values using SVM-NSGAII. (b)
Comparison of real and predicted economic benefit values using 
SVM-NSGAII. (c) Comparison of real and predicted safety factor values 
using SVM-BO. (d) Comparison of real and predicted economic 
benefit values using SVM-BO.

In general, high-efficiency combinations (e.g., l = 5, a = 80, 
h = 23) deliver optimal performance but fall short of meeting 
safety requirements, whereas high-safety configurations (e.g., l = 3, 
a = 60, h = 15) maintain safety factors above 1.34, but efficiency 
drops to around 19,000. Thus, parameter selection should be aligned 
with project priorities: for safety-first scenarios, it is recommended 
that l ≤ 4, a ≤70, and h ≤ 19; for maximum efficiency, l = 5, a 
≥75, and h ≥ 21 are preferred; and for a balanced approach, a 
= 70, h = 19, and l = 4 offer a reasonable trade-off (efficiency: 
21,000; safety factor: 1.298). Geometrical configurations have
a significant impact on failure behavior, particularly in sensitivity 
to interfacial shear zones, as observed in both tunnel stability and 
bench design (Alsabhan et al., 2021). 

4. Comparison and Analysis of Actual and Predicted Values

In the above prediction analysis, this study trains the data using 
the SVM-NSGAII and SVM-BO algorithms and compares the actual 
and predicted values through curve plots. As shown in Figure 15a, 
the comparison of real and predicted safety factor values using 
SVM-NSGAII is presented; Figure 15b displays the comparison of 
real and predicted economic benefit values using SVM-NSGAII; 
Figure 15c shows the comparison of real and predicted safety factor 
values using SVM-BO; and Figure 15d illustrates the comparison 
of real and predicted economic benefit values using SVM-BO. The 
comparison of the actual and predicted values for each algorithm 
reveals that SVM-NSGAII exhibits lower dispersion, whereas 
SVM-BO demonstrates higher dispersion. The analysis indicates 
that the SVM-NSGAII algorithm achieves higher accuracy in 
multi-objective optimization compared to the SVM-BO algorithm, 
showcasing its superior predictive performance.

AI frameworks have proven effective in subsurface degradation 
analysis, and these methods can be extended to predict slope damage 
evolution in high-risk mining environments (Ahmad et al., 2025).

4.3 Optimization results

As shown in Table 8, the optimization objective is to maximize 
economic benefits while ensuring that the safety factor is greater 
than 1.25. The final optimized step parameters are: step width 
of 3 m, step face angle of 80°, and step height of 17.7 m. Under 
these conditions, the economic benefit is 20,850.78, and the safety 
factor is 1.288. 

4.4 Result validation

To validate the algorithm’s predicted values against the actual 
values, the relative error is used to calculate the error rate. In 
the calculation process, if the error is less than 5%, the result 
is considered reasonable; otherwise, if the error exceeds 5%, the 
result is considered to have a significant error are as follows 
Equations 45, 46.

Strue − Spre

Strue
= SE (45)

Etrue −Epre

Etrue
= PE (46)
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TABLE 8  Algorithm optimization results.

Method Predicted
Parameter

l a h Economic benefit Safety factor

SVM-BO Predicted Result 3 80 17.7 20,850.78 1.258

SVM-NSGAII Predicted Result 3 70 21 19,206.32 1.325

FIGURE 16
Safety factor Contour map. (a) Safety factor of slope step parameters based on SVM-NSGAII algorithm. (b) Safety factor of slope step parameters based 
on SVM-BO algorithm.
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TABLE 9  Error between actual and predicted safety indicator values.

Relative error SVM-NSGAII SVM-BO

Error Rate 3.8% 5.6%

TABLE 10  Error between actual and predicted economic benefit values.

Relative error SVM-NSGAII SVM-BO

Error Rate 1.2% 9.0%

 

4.4.1 Safety factor validation
The safety factor obtained by model the predicted slope step 

parameters using 3DEC is shown in the As shown in Figure 16a 
the result calculated by SVM-NSGAII is 1.211, Figure 16b, 
the result obtained from the SVM-BO predicted parameters 
is 1.254. In Table 9 The error for SVM-NSGAII is 4.0%, and 
the error for SVM-BO is 6.0%. By comparing the results with 
machine learning metrics such as MAE, MSE, MAPE, and R2, it 
is evident that the optimization result obtained using SVM-NSGAII 
is more accurate. 

4.4.2 Economic benefit validation
Based on the relative error verification calculation shown in

Table 10, the error rate for the SVM-NSGAII algorithm is 3.8%, 
while the error rate for the SVM-BO algorithm is 5.6%. From 
the analysis, it can be concluded that using SVM-NSGAII is more
accurate. 

4.5 Optimiation system for slope step 
parameters in open pit mines

As shown in Figure 17, the Slope Step Parameter Prediction 
System is an intelligent system based on multi-objective 
optimization algorithms and machine learning technologies, aimed 
at optimizing key parameters in slope design, such as step width, 
slope angle, and step height, to achieve the optimal balance between 
safety and economic efficiency. The system utilizes Support Vector 
Regression (SVR) models, trained with actual engineering data, to 
predict safety factors and economic benefits under various design 
parameters.

By inputting different slope design parameters (such as step 
width, slope angle, and step height), the system can intelligently 
predict the corresponding safety and economic values. Advanced 
optimization algorithms, such as NSGA-II, are employed to 
automatically adjust the slope design parameters while ensuring 
safety constraints (e.g., safety factor >1.2), thereby maximizing 
economic benefits. This system not only enhances the scientific 
and rational nature of slope design but also provides decision 
support for engineers, enabling them to optimize resource 
utilization while ensuring safety and reducing project costs. 
Through visual analysis and optimized result displays, users can 

gain a more intuitive understanding of how adjustments to design 
parameters impact safety and economy, facilitating more accurate
decision-making. 

5 Conclusion

This study integrates radar and high-density electrical 
methods to conduct detailed surveys of surrounding rocks 
on slopes. By leveraging advanced equipment and techniques, 
the research analyzes the relationship between slope stability 
and economic benefits under various step parameter 
combinations. The novel contributions of the study are
as follows: 

1. Surveying Methods and Equipment: The use of radar and 
high-density electrical surveys enabled a comprehensive 
mapping of weak interlayers, fracture zones, and broken 
zones on the slope. These methods provided high-
precision geological data, which significantly enhanced 
the accuracy of numerical simulations and slope stability
analysis.

2. Impact of Weak Interlayers on Slope Stability: The study 
highlights the critical role of weak interlayers, particularly 
gently inclined ones, in controlling slope stability. It 
was found that weak interlayers are more likely to 
form potential sliding surfaces, which has a significant 
impact on high slope stability in complex geological
conditions.

3. Prediction Model for Safety Factor and Economic Benefit: A 
novel prediction model using the Support Vector Machine 
(SVM) algorithm was developed to link safety factors 
and economic benefits with step parameters. This model 
accurately predicted safety and economic performance 
under various design conditions, offering a reliable tool for
optimization.

4. Optimization of Step Parameter Combinations: The 
combination of machine learning and multi-objective 
optimization allowed for the intelligent optimization of 
slope step parameters. The SVM-NSGA-II algorithm was 
particularly effective in addressing high-dimensional, 
nonlinear optimization problems, achieving a balance between 
slope stability and economic benefits. The optimized step 
parameters not only met safety requirements but also enhanced 
economic performance in open-pit mining operations.

5. Engineering Application and Validation: Numerical 
simulations validated the optimized step parameter 
combinations, confirming that the design effectively balanced 
slope stability and economic benefits. This provides a 
scientifically rigorous and practical method for slope design, 
particularly in complex geological settings.

6. Innovation and Practical Significance: This research introduces 
a novel approach by combining machine learning and 
multi-objective optimization, filling a gap in existing 
slope optimization methods, especially under complex 
geological conditions. The findings offer significant support 
for improving the safety and economic performance of 
open-pit mining operations, providing new insights and 
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FIGURE 17
Open-pit mine step parameter optimization system.

technical references for slope design in challenging geological 
environments.
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