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Horizontal runout distance prediction of potential landslides is of great
significance in hazard mitigation.In this study, predictive charts of landslide
horizontal runout distance were developed based on the support vector
regression (SVR) algorithm and Monte Carlo (MC) modeling. An SVR-based
prediction model was constructed using a dataset of 424 historical landslides,
which included six parameters: triggers, mass materials, volume, slope gradient,
vertical drop, and horizontal runout distance. The first five parameters were
employed as predictive indicators to estimate horizontal runout distance. To
investigate the optimization of the penalty factor (c) and influence parameter
in the kernel function (g) and their effects on prediction accuracy, 21 conditions
were tested with 7 training/testing ratios (7/1, 6/2, 5/3, 4/4, 3/5, 2/6, and 1/7)
in combination with three kernel functions: linear, radial basis function (RBF),
and sigmoid. Predictive charts were then created by adopting the MC method
to account for uncertainties in slope volume and slope gradient parameters.
The results show that (1) the coefficient of determination in each condition was
greater than 0.825, with the highest value of 0.854 obtained under the condition
of a 7/1 training/testing ratio in combination with the RBF kernel function;
(2) increasing the training/testing ratio improved prediction accuracy; (3) the
model with the RBF kernel function performed better than those with other
kernel functions; and (4) the optimization of ¢ and g parameters significantly
improved prediction accuracy. The feasibility and efficiency of the proposed
model were demonstrated using a practical case of the Zhonghai Village
landslide, highlighting the potential of SVR combined with MC modeling for
landslide runout prediction and hazard mitigation.

landslide runout distance, support vector regression for landslide, Monte Carlo,
predictive charts, slope

1 Introduction

Landslides are one of the most frequently occurring types of geological disasters
globally. China, being a mountainous country, experiences thousands of landslide-related
geological disasters annually, resulting in billions of dollars in property damage and
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hundreds of casualties (Dai et al, 2002; Gao et al., 2007;
Valagussa et al., 2019). Notable examples include the “2017.6.25”
Diexi landslide in Sichuan (Fan et al,, 2017) and the “2021.1.27”
Yongjing County landslide in Gansu (Chang et al, 2021),
both of which caused significant loss of life and property.
Therefore, risk prevention and control of landslide disasters
have been a major research focus in geotechnical engineering.
Two key issues are involved in landslide disaster risk prevention
and control: first, the stability analysis of potential landslides
and, second, the prediction of the impact range after the
landslide occurs (Corominas et al., 2014).

At present, research on predicting the impact range of landslides
has primarily focused on predicting the horizontal runout distance
of landslides, leading to the development of numerous models.
Among them, empirical statistical models are used to estimate the
horizontal runout distance of landslides by establishing regression
formulas based on landslide runout mechanisms (Fan et al., 2012;
Chen et al., 2015; Zheng et al., 2019; Lu et al., 2020). However, due
to differences in the collected landslide cases, research parameters,
and other factors, the forms of empirical statistical models vary
greatly, making them difficult to apply universally and posing
significant limitations. Additionally, some researchers use numerical
simulation software to predict landslide horizontal runout distances,
such as MassFlow (Ouyang et al., 2015), the material point method
(Sun and Song, 2018), and DAN3D (Wu et al., 2018). Zhang et al.
(2024) developed a coupled SPH model to simulate landslide
impacts on multiple barriers, validated using flume tests. Numerical
simulation methods require detailed physical and mechanical
parameters to model and analyze landslides, which can be time-
consuming and lack general applicability.

In recent years, scholars at home and abroad have applied
machine learning models (Huang and Zhao, 2018; Pham et al,
2020; Balogun et al, 2021; Guzzetti et al, 2024) to landslide
disaster early warning and prevention research, achieving good
results. Zhao et al. (2024) evaluated landslide susceptibility models
at varying resolutions, finding that integrated models and high-
resolution data greatly improve accuracy, with Random Subspace
and Alternating Decision Tree (RS-ADT) at 12.5m performing
best. Zhao et al. (2025) compared three models for landslide
susceptibility and found that the weights-of-evidence (WoE)
model performed best, offering valuable insights for disaster
risk reduction. The above studies have yielded some results
in terms of slope analysis. In addition, the support vector
regression (SVR) model has performed well in regression prediction
problems due to its robustness, reliable prediction results, and high
prediction accuracy (Peethambaran et al., 2020; Balogun et al,
2021). Nevertheless, the effectiveness of machine learning-based
predictions is greatly influenced by the model parameter settings
and optimization (Huang and Zhao, 2018; Peethambaran et al,,
2020; Balogun et al., 2021; Guzzetti et al., 2024). Furthermore, many
studies based on the SVR model show a certain degree of subjectivity
in optimizing model parameters such as the training set sampling
rate, kernel function type selection, and parameter ¢ and g values.

Moreover, due to the complex mechanism of landslide runout
and significant uncertainty in parameters, existing machine
learning-based prediction models, although capable of making
preliminary inferences about the horizontal runout distance of
landslides, have all overlooked the uncertainty of influencing
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factors. For instance, a formula for calculating the horizontal runout
distance of rock landslide-debris flows based on potential energy was
proposed and experimentally validated (Zheng et al., 2019). Du et al.
(2020) discussed the causes of translational landslides and built
a corresponding model, finding that higher water levels increase
total stress, thereby leading to stepped settlement of the bedrock.
Similarly, Fan et al. (2009) discussed the genetic mechanism
and limit equilibrium criterion of single and multi-translational
landslides based on physical model tests and numerical analysis.
Although these studies provide valuable guidance for disaster
early warning and prevention, they all overlook the uncertainties
associated with landslide parameters. Monte Carlo (MC) simulation
is an effective method for considering parameter randomness and
uncertainty as it generates independent sets of research parameters
based on probability distributions. It has been widely used to address
research involving high parameter uncertainty in geotechnical
engineering (Li et al., 2019; Marin and Mattos, 2020).

Based on the above analysis, this paper establishes a probabilistic
prediction model for landslide horizontal runout distance based
on MC simulation and SVR, taking earthquake- and rainfall-
induced landslides as the research object and addressing the
uncertainty of landslide parameters and the deficiencies of existing
models. To optimize the model, the effects of the ratio of the
training set to the prediction set, the kernel function type, and the
parameter ¢ and g values on the prediction performance of the SVR
model are discussed. To account for the uncertainty of landslide
parameters, the MC simulation method is introduced to predict
the probability distribution of landslide horizontal runout distances,
and a prediction diagram that can quickly determine the range of
landslide horizontal runout distances is provided. Finally, methods
for enhancing the applicability of the diagram are proposed, and the
effectiveness and reliability of the prediction diagram constructed in
this paper are verified through engineering case studies.

2 Landslide database and analysis

landslide
are shown in Figure 1. Landslides occur when external factors

The  essential  characteristics  of runout
such as heavy rainfall or earthquakes induce runout along a slope,
resulting in a slip. The horizontal distance from the front of the
landslide accumulation body to the rear edge of the landslide is
called the horizontal runout distance L, the vertical distance is called
the vertical drop H, the volume of the landslide accumulation body
is denoted as V, and the slope gradient of the landslide is denoted
as a. Horizontal runout distance (L) and vertical drop (H) are the
key indices that determine the influence range of landslide disasters,
and they are of great significance in preventing and controlling
landslide disasters. Among them, vertical drop H has a greater
relationship with the topographic structure of the slope, making
the prediction difficulty relatively lower than the horizontal runout
distance. Therefore, this paper focuses on predicting the horizontal
runout distance L and develops a prediction chart that enables the
rapid estimation of the potential runout range of landslides.

In predictive research using the machine learning model
and empirical regression model, the established database and
the selection of predictor variables directly affect predictive
performance. Table 1 lists several typical empirical regression
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FIGURE 1
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Schematic diagram of landslide movement. Diagram featuring two parts: (a) a side view of a volcano with a lava flow from point A on top to point B at
the base, and (b) a cross-sectional view showing the original ground level, height (H), and runout length (L) of the lava flow, labeled with volume (V)

TABLE 1 Typical empirical regression prediction models.

Reference Trigger Material Landslide number Regression model
Fan et al. (2012) Earthquake and rainfall Does not distinguish 75 (earthquake); 52 (rainfall) H/L=3381 v 013U

(R* = 0.3992, for earthquake)

H/L = 1475 y~010%

(R* = 0.4581, for rainfall)
Chen et al. (2015) Earthquake and rainfall Does not distinguish 31 (earthquake); 20 (rainfall) IgL = 0.184 + 0.069 1gV +

0.830 IgH (R* = 0.92)

Zheng et al. (2019) Does not distinguish Rock only 127 L =31.623 (d/B)**?! (tana)®®®?
(VH)O.ZS
Lu et al. (2020) Earthquake only Does not distinguish 380 IgL = 0.251gV +0.51 1gH

(R*=0.73)

d is the particle size, and B is the width of the chute.

prediction models for the horizontal runout distance. These models
are based on a certain number of documented landslide cases. Due
to the limited number of collected landslide cases, their applicability
is restricted to specific situations and is difficult to popularize.
To establish a prediction model with stronger applicability and
reliability, this paper collected data from 424 landslide cases with six
typical variables, namely, triggers, mass materials, landslide volume
V, landslide slope gradient a, vertical drop H, and horizontal runout
distance L, referring to the relevant literature and combining with
the movement mechanism of landslide movement. An overview of
the database is presented in Table 2.

Generally, according to different landslide volumes (Qi et al.,
2011), landslides can be divided into small landslides (V < 10° m?),
medium landslides (10° m® < V < 10° m?), large landslides (10° m®
<V <10” m?),and giant landslides (107 m® < V). Figure 2 shows the
distribution of variables in the dataset of 424 collected landslides.

Figure 2 shows the detailed distribution of six variables in
the landslide database: triggers, mass materials, landslide volume
V, landslide slope gradient «, vertical drop H, and horizontal
runout distance L. The numbers of small, medium, large, and giant
landslides are 133, 104, 114, and 73, respectively, among which the
numbers of soil and rock landslides are 130 and 294 and the numbers
of landslides induced by earthquake and rainfall are 251 and 173,

Frontiers in Earth Science

03

TABLE 2 Overview of the landslide database.

Contains variables

Range (type) ‘ Unit ‘

Landslide triggers Earthquake and rainfall -

Landslide material Rock and soil -

1.0 x 10°-1.2 x 10°

Landslide volume (V) m
Landslide slope () 6-63 °
Vertical drop (H) 14-1500 m
Horizontal runout distance (L) 20-6530 m

respectively. The data on slope gradient, vertical drop, and horizontal
runout distance have good continuity. It shows that the landslide
data collected in this paper are representative to some extent.

In previous studies, due to the wide data span of landslide
volume V, landslide slope gradient «, vertical drop H, and horizontal
runout distance L, V, H, and L are usually taken as logarithms, and
« is taken as the tangent value. To analyze the relationships between
the parameters, a scatterplot matrix of the parameters is presented,
as shown in Figure 3.
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Distribution of each variable. Four charts analyze landslide characteristics: (a) Bar chart categorizing landslides as Small, Medium, Large, and Giant with
counts and a pie chart of triggering factors: soil, rock, earthquake, and rainfall. (b) Histogram showing landslide counts by slope angle with cumulative
percent. (c) Histogram showing landslide counts by vertical drop with cumulative percent. (d) Histogram showing landslide counts by horizontal
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The upper-right section of Figure3 depicts the scatter
distribution between the two factors classified by triggers, while
the lower-left section represents the scatter distribution between the
two factors classified by mass materials. It can be observed that there
is a notable linear correlation between IgH and IgL, gV and IgL, and
IgH and IgV. Conversely, the scatter distribution between tana and
IgL, along with IgH and IgV, is relatively discrete. In addition, under
the distinction of different triggers and mass materials, the data
are also clearly differentiated, indicating that triggers and mass
materials are also among the influential factors that cannot be
ignored. Additionally, it validates the rationale for the parameters
selected in this study for analysis and calculation.

3 Experimental program design

The objective of this paper is to evaluate the performance of the
prediction model for the horizontal runout distance of landslides
based on MC-SVR and provide a prediction chart that can rapidly
ascertain the horizontal runout distance of landslides. The specific
test scheme design is presented below.

For the MC-SVR model, the trained SVR model’s reliability
is paramount as it directly affects the reliability of the landslide
horizontal runout distance prediction chart. Therefore, this paper
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first studies the reliability of the SVR model, selecting R? as the
characteristic parameter of the evaluation model, and its calculation
formula is presented in Equation 1:

2o (lZizlfiJ’i - Zi’:l)?iZizlyi)z ’
(YL -(XL ) )y - (X))

where [ is the number of samples, y; is the true value of the ith

1

sample, and y, is the predicted value of the ith sample. A coefficient
of determination (R*) approaching 1 indicates a superior predictive
performance. In addition, the research aspects of the SVR model in
this paper are as follows:

1. Ratio of the training set to the prediction set. A total of 424
landslide data groups collected were randomly shuffled and
then divided into eight parts according to different training-
to-prediction set ratios, which were set at 1/7, 2/6, 3/5, 4/4,
5/3,6/2, and 7/1. As an illustration, the ratio of 1/7 comprises
seven sample combinations; all results in these seven cases are
calculated, and the average coefficient of determination R is
then obtained. The methodology is consistent for all ratios.

2. Kernel function type. The type of kernel function used in the
SVR model affects its performance. This paper examines the
influence of three kernel functions, namely, the linear function,
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FIGURE 3
Matrix scatter plot of each parameter.

the Gaussian radial basis function (RBF), and the S-shape
function (sigmoid), on the resulting outcomes.

. Additional instructions. In terms of data preprocessing, the
variables gV, tana, IgH, and IgL are standardized. Triggers and
mass materials are processed using one-hot coding, in which
categorical variables are represented using binary vectors (e.g.,
rainfall is represented as [0, 1], and earthquake is represented
as [1,0]).

After studying the reliability of the SVR model, the MC
simulation method was introduced to obtain the probability
distribution of the horizontal runout distance of the landslide.
Finally, the vertical drop was entered as a sequence, thereby
generating the prediction chart of the horizontal runout distance of
the landslide. The overall test process is shown in Figure 4.

4 MC-SVR-based model for
predicting the horizontal runout
distance of landslides

4.1 Support vector regression

SVRis an application of support vectors in functional regression,
using a support vector machine (SVM) to solve regression
fitting problems.

Furthermore, in this paper, triggers, mass materials, landslide
volume, landslide slope gradient, and vertical drop are selected
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as inputs to the SVR model, with horizontal runout distance
as the output, to establish a predictive model for landslide
horizontal runout distance. The specific building process is as
follows:

Assuming that the number of training samples is /, the training
set is {(x;, y;), i = 1, 2,..., I}, where x; is the input vector for
the ith training sample. x; = [x,;, X;..., X5]" represents the
five training parameters of the ith training sample (triggers, mass
materials, landslide volume, landslide slope gradient, and vertical
drop), while y; is the horizontal runout distance of the ith training
sample.

The linear regression function established in the high-
dimensional feature space is presented in Equation 2:

flx) =wd(x) + b, 2)
where w is the weight vector of high-dimensional feature space, @(x)
is mapping function, and b is the threshold value.

Then, to represent the quality of the regression effect, a loss
function is introduced in Equation 3:

Oy - flx)| <e

, 3)
ly = fx)| —ely— flx)| > &

L(f(x),y,€) = {

where f(x) is the predicted value of the landslide horizontal
runout distance returned by the regression function and y is the
corresponding true value. If the difference between f(x) and y is less
than g, the loss value is 0.
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Test procedure.

TABLE 3 Distribution parameter.

Parameter Slope (°) Slope volume (m?3)
Medium Large Giant
Distribution form Normal distribution Log-normal distribution
Mean value (1) 36.80 9.71 12.68 15.04 17.52
Standard deviation (o) 9.10 1.12 0.76 0.67 1.24

Next, relaxation variables ¢; and &; are introduced to set up a
minimization objective function to determine the weight vector w
and threshold value b:

I
.1 -
min 2 Iwll? +CY (&+&),
i

¥ —wo(x;)-b<e+,

i=1,2,-,1,

-y, +wd(x;) +b<e+ &,
. §=0,E >0,

where C is the penalty factor (parameter c) and ¢ specifies the error
requirement of the regression function.
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To solve Equation 4, Lagrange function is introduced and

converted into dual form, as shown in Equation 5:

11
%z z (o;— cx;‘)(txj - tx;)K(xi,
i=1j=1
I I
Z(‘xi+“;‘)€+ Z(“z’_“;)}’i’

i=1 i=1

max[— xj)_

a,a*

5)

1

Z("‘i“"?)’

i=1
0<o;<C0<a; <C,

s.t.
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FIGURE 7 . . . .
R? change in the predicted result. Finally, the final regression function can be obtained
according to Equation 2.
K( )7 _"xi—xj"2 _ (_ ” _ ”2) )
X;»Xj) = exp 2 )7 exp ( —g||xi— x| )-
where K (x;, xj) is the kernel function, with different kernel functions
exerting varying influences on model performance, and g is the Equation 7 represents the expression of the Gaussian kernel
influence parameter of the kernel function. function, where ¢ is the bandwidth of the Gaussian kernel and is
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greater than 0. The parameter g is the influence parameter of the
Gaussian kernel, which is inversely proportional to twice the square
of the Gaussian kernel bandwidth, and is usually adjusted during
model training to improve training effectiveness.

4.2 MC-SVR model

In this paper, triggers, mass materials, landslide volume,
landslide slope gradient, and vertical drop are taken as inputs to
the SVR model. There are uncertainties in triggers, mass materials,
landslide volume, landslide slope gradient, and vertical drop for
landslides that have not yet occurred. The triggers of landslides can
be inferred from the disaster situation in the landslide area, the
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vertical drop can be roughly inferred from the landform structure
of the landslides, and the landslide volume and slope gradient are
highly uncertain. Based on the above considerations, this paper
adopts the Monte Carlo simulation combined with the SVR model
to develop a landslide horizontal runout distance prediction model
that accounts for parameter uncertainty, thereby better meeting the
practical needs of engineering.

First, the corresponding distribution form and parameters are
determined by analyzing the statistical characteristics of the slope
gradient and landslide volume in the landslide database. The slope
gradient is normally distributed, and the landslide volumes of small,
medium, large, and giant landslides are log-normally distributed.
The specific distribution parameters are shown in Table 3.
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FIGURE 10
Distribution of landslide data in the chart (small, earthquake, and
rock quality).

Next, according to the determined distribution form and
corresponding parameters, a sequence of 10,000 length is randomly
generated using a computer, which meets the requirements,
as shown in Figure 5 (the slope gradient). By inputting the generated
sequences (slope gradient and landslide volume are distribution
sequences, while triggers, mass materials, and vertical drop are
determined values) into the trained SVR model, a prediction
sequence of landslide horizontal runout distance with a length of
10,000 can be obtained.

Finally, the probability density function f(x) can be obtained
according to the prediction sequence of the horizontal runout
distance of the landslide to determine the value of P{L1 < x < L2} (the
probability value of the predicted value in the range of L1-L12). The
above section describes the process of building the MC-SVR model.

5 Prediction of the horizontal runout
distance

Four hundred twenty-four landslide data groups were used to
predict the horizontal runout distance of landslides when the ratios
of the training set and prediction set were 1/7, 2/6, 3/5, 4/4, 5/3, 6/2,
and 7/1, and the kernel function types were linear, RBE, and sigmoid.
In the SVR model, ¢ and g are important parameters that affect the
model’s performance. This paper uses the currently more common
grid search method to determine the parameters ¢ and g, with their
research scope defined as [2’10, 2795 293, 210]; the grid search
steps are Log,c and Log,g = 0.5. Figure 6 shows the coefficient of
determination (R?) of the prediction results of the prediction set
when the ratio of the training set to the prediction set is 7/1 and
the kernel function is RBF with different parameters c and g.
the
determination (R*) of the prediction results when the ratio of the

Figure 6 reflects distribution of the coefficient of
training set to the prediction set is 7/1 with RBF as the kernel
function. Since there are seven combination cases when the ratio is
7/1, the coefficient of determination R? at each point is the average
of the calculated results for the seven cases. Figure 6 shows that
when parameters ¢ and g are (21, 27%7), the absolute value of the

coefficient of determination (R?) reaches its maximum of 0.854. In
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particular, this value is smaller than the coefficient of determination
R? for some of the models in Table 1 because of the different objects.
The coefficient of determination (R?) in Table 1 is the regression
fitting of all data (equivalent to the training set in this paper),
and the maximum value of the determination coefficient R? of the
training set predicted using the model in this paper is more than
0.95. In addition, Figure 7 shows that the R? of the prediction result
of the prediction set changes with the change in the ratio between
the training and prediction sets when the linear function, the RBF
function, and the sigmoid function are selected as kernel functions.

It can be observed from Figure7 that the coefficient of
determination (R*) surpasses 0.825 in all cases. Notably, the ratio of
the training set to the prediction set, along with the kernel function
type, exerts substantial influence on the predictive outcomes. In
particular, with an increase in the proportion of the training set, R*
of the same kernel function model also increases. When the training-
to-prediction set ratios are 1/7 and 2/6, the R? values of the results
of the three kernel function models are close. Subsequently, with the
continuous increase in the training set proportion, the RBF kernel
function performs better than the linear kernel function and the
sigmoid kernel function. In general, the linear and sigmoid kernel
models yield similar results, but the sigmoid kernel model performs
slightly better.

Having validated the commendable predictive prowess of the
SVR model, we proceed to incorporate the Monte Carlo simulation
for the purpose of forecasting the horizontal runout distance of
landslides using the MC-SVR framework. Taking 424 cases of
landslide data as the training set, the horizontal runout distance
of the Weiba landslide is predicted (the Weiba landslide is a large-
scale soil landslide triggered by an earthquake in Pingwu County,
with a horizontal runout distance of 550 m and a vertical drop
of 345 m) (Guo et al., 2014). For this case, the RBF function is
selected as the kernel function, and slope gradient and landslide
volume are randomly generated following the distribution forms and
parameters outlined in Table 3. The probability density distribution
of the predicted results is shown in Figure 8 (this paper studies the
range of 95% and 80% probabilities, with similar analyses applicable
to other probability thresholds).

Figure 8 shows the prediction of the horizontal runout distance
of the Weiba landslide using the MC-SVR model, the true value
of which is L = 550 m. According to the results of the model,
the model’s forecast not only falls within the 95% confidence
interval (431 m-951 m) but also comfortably resides within the
narrower 80% probability range (487 m-818 m), indicating a
significant safety margin. It proves that the prediction model of the
landslide horizontal runout distance based on MC-SVR has good
performance.

Considering that the number and variety of landslides in actual
projects are substantial, to obtain a more applicable landslide
horizontal runout distance prediction chart, the MC-SVR model
was used to calculate the distribution range of the horizontal runout
distance of rock and soil landslides (a total of four categories) caused
by rainfall or earthquake, varying with the vertical drop, as shown
in Figure 9. It shows the prediction chart of the horizontal runout
distance of the landslide. A suitable prediction chart can be selected
according to the type of landslide (volume, triggers, and materials).
The corresponding range of the horizontal runout distance can be
determined using the vertical drop. To test the accuracy of the
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TABLE 4 Statistics of the model performance.

10.3389/feart.2025.1666554

Type Range Small ’ Medium Large Giant
80% 1/4 = 25% 10/30 = 33% 9/28 = 32% 8/16 = 59%
Rainfall-rock
95% 2/4 =50% 13/30 = 43% 13/28 = 46% 12/16 = 75%
80% 12/32 =38% 10/22 = 45% 4/24=17% 11/17 = 65%
Rainfall-soil
95% 24/32=75% 15/22 = 68% 10/24 = 42% 14/17 = 82%
80% 77194 = 82% 23/43 =53% 24/46 = 52% 16/33 = 48%
Earthquake-rock
95% 87/94 = 93% 32/43 = 74% 34/46 = 74% 27/33 = 82%
80% 1/3=33% 6/9 =67% 10/16 = 63% 717 = 100%
Earthquake-soil
95% 3/3 =100% 9/9 =100% 13/16 = 81% 717 = 100%

Due to the limited data, the model (rainfall-induced small rock) predictive performance may be less reliable and should be interpreted with caution.
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FIGURE 11
Distribution of small-scale landslide data in the chart.

prediction chart, the distribution of landslide data in the chart was
calculated, among which the distribution of earthquake-induced
small rock landslides is shown in Figure 10.

Among the 424 landslide cases, 94 small rock landslides were
triggered by earthquakes. As illustrated in Figure 10, 87 of these
landslides (93%) fall within the 95% probability range of horizontal
runout distance predicted using the MC-SVR model, while 77
cases (82%) were within the 80% probability range. In addition, the
statistical distribution of other landslides in the prediction chart
is shown in Table 4.

Table 4 presents the statistical distribution of landslide data
within the predictive chart, demonstrating that the accuracy of
the horizontal runout distance prediction chart based on the
MC-SVR model is significantly influenced by the training data
samples. Overall, the prediction chart for landslide horizontal
runout distance exhibits good accuracy and ease of use, allowing
for the determination of horizontal runout distance based on the
vertical drop of the landslide. This is of great significance for early
warning and disaster prevention of landslides. However, due to
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insufficient cases of certain types of landslides in the database
(e.g., small-scale rainfall-induced rock landslides and medium-scale
rainfall-induced rock landslides), the accuracy of the distribution of
some landslides within the corresponding chart is relatively poor.

Furthermore, considering the unknown triggers and complex
material compositions (mix of rock and soil) of non-moving
landslides in real engineering scenarios, to enhance the applicability
of the horizontal runout distance prediction chart in practical
projects, the prediction chart (Figure 9) should be processed.
Assuming that an area is subject to both earthquake hazards and
heavy rainfall, and the landslide material comprises both soil and
rock in non-negligible proportions, the range of the horizontal
runout distance with a given probability p can be denoted as L,
to L. as shown in Equation 8:

P{L<L<L.}=p, 8)

where L ;. represents the minimum value of all L lower limits

min
corresponding to rock or soil landslides triggered by rainfall or
earthquakes, with a probability p, and L, represents the maximum
value of all L upper limits under the same conditions. Taking
small-scale landslides as an example, the processed horizontal
runout distance prediction chart (derived from Figures 9a-d) is
presented in Figure 11.

Figure 11 shows that 119 cases of landslides (89%) fall
within the 95% probability range and 110 cases (83%) within
the 80% probability range in the processed horizontal runout
distance prediction chart for landslides. This processed chart
exhibits good reliability and enhanced applicability compared to
that shown in Figure 9, making it suitable for small-scale rock or soil
landslides triggered by rainfall or earthquakes.

The above discussion focuses on small-scale landslides with
unknown triggers and mixed rock-soil compositions. For other
landslide scenarios, Figure 9 and Equation 7 can be flexibly applied,
but further elaboration is omitted here. For example, it applies
to small-scale soil landslides triggered by rainfall or earthquakes
(from Figures 9b,d) and medium-scale mixed soil-rock landslides
triggered by earthquakes (from Figures 9g,h).
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1 Landslide

The real movement distance is 600m

439 ~ 893m (95%)

491 ~ 721m (80%)

(a)

FIGURE 12
Landslide area and section map: (a) landslide area; (b) landslide profile.

(b)

FIGURE 13

Three-dimensional geologic model map of Mibei village. A 3D
topographic model of a hilly, forested area with three regions outlined
in red. The foreground shows a scattered settlement with houses and
roads at the base of the hills.

TABLE 5 Comparison of predicted and true horizontal runout distances
of the landslide.

Vertical drop 90 m 65m 75m 60 m
Real horizontal runout 158 120 120 110
80% 42-143 37-109 39-123 34-100
95% 30-160 27-124 30-135 27-116

6 Engineering application
6.1 Large landslide cases
To validate the applicability and reliability of the MC-SVR-

based horizontal runout distance prediction chart in practical
engineering and illustrate its usage, the Zhonghaicun landslide is
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used as a case study to demonstrate early warning and disaster
prevention measures (Ye et al., 2021).

On 21 August 2020, a rainfall-induced landslide occurred in
Zhonghaicun, Fuquan Town, Hanyuan County, Sichuan Province,
with a maximum horizontal runout distance of approximately
600 m, as shown in Figure 12. Located at 102°41'40"E, 29°20"30" N
in China, Zhonghaicun features abundant rainfall and active seismic
activity. The Zhonghaicun landslide primarily consists of silty
clay, breccia, and block stones. Based on geological structures,
its vertical drop is estimated at approximately 210 m, classifying
it as a large-scale landslide. Considering the potential triggers of
rainfall and earthquakes and the mixed rock-soil composition, the
horizontal runout distance prediction chart for large-scale landslides
derived from Figures 9i-1 indicates a 95% probability range of
439 m-893 m and an 80% probability range of 491 m-721 m, which
are set as the early warning ranges for this landslide disaster.

Figure 12a illustrates the extensive impact area and significant
hazard of the Zhonghaicun landslide. Figure 12b presents the
cross-sectional view of the landslide, where the actual horizontal
runout distance falls within both the 95% and 80% probability
prediction ranges, with additional safety margins. It could have
significantly reduced casualties and losses if early warning and
disaster prevention measures had been implemented based on the
80% or 95% probability prediction ranges. Based on the above
analysis, the horizontal runout distance probability range chart
presented in this study demonstrates simplicity, high accuracy, and
strong applicability, providing valuable support for early warning
and disaster prevention of landslide hazards.

6.2 Small landslide cases

In June 2019, Longchuan County in Guangdong Province
experienced sustained heavy rainfall, affecting 352 villages across
24 towns. Mibei Village was one of the hardest-hit areas, suffering
extensive landslides that damaged houses, roads, bridges, and
utilities. The landslides in Mibei Village had a large distribution
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FIGURE 14

Comparison of satellite images before and after the landslide in Mibei village. (a) Before landslides; (b) After landslides. Two satellite images depicting
landslide risk zones in a hilly area. In image (a), areas L1, L2, L3, and L4 are marked with dashed lines, highlighting 80% (orange) and 95% (red) risk levels.
In image (b), similar risk indicators highlight the same geographic location from a slightly different angle. Surrounding the marked zones are vegetation,

a road, and clustered buildings.

range, affecting multiple landslide bodies and posing significant
threats to many people. The landslides occurred in a hilly terrain
characterized by steep, conical peaks and numerous “V”-shaped
valleys. The terrain is highly dissected, with elevation differences of
100-200 m and slopes of 40°-45°. The slope area primarily consists
of residual slope deposits of silty clay, sandy clay, and fully weathered
granite, which are moderately weakly permeable with poor water
retention.

Figure 13 shows the 3D geological model of Mibei Village,
with red markers indicating the landslide locations. Based on the
estimated volume, most of the slope failures in this area are small-
scale. The internal slopes here are small landslides triggered by
rainfall, composed of a mix of soil and rock materials. The vertical
drop of the slopes obtained from the 3D model is used in Figure 11 to
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generate the results shown in Table 5. In the table, the actual sliding
distances for L1, L2, and L4 exceed the 80% confidence interval for
landslide distances but are within the 95% confidence interval.
Figure 14 shows a comparison of satellite images before and
after the landslide. Figure 14a shows the satellite image before the
landslide, while Figure 14b shows the image after the landslide. By
combining the data from Table 5 with the pre-landslide satellite
image, the landslide location and actual length were determined.
In the image, the yellow dashed line represents the 80% horizontal
sliding distance and the red dashed line represents the 95%
horizontal sliding distance. As shown in Figure 14a, some buildings
in the L4 area fall within the 95% confidence interval, indicating that
they were affected by the landslide. Figure 14b shows the satellite
image of the village after the post-disaster repairs. It is evident that

frontiersin.org


https://doi.org/10.3389/feart.2025.1666554
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Kang et al.

some landslides have been reinforced, and buildings within the 95%
landslide probability area have been relocated. This demonstrates
that the method proposed in this study can quickly determine
the horizontal runout distance of potential landslides, estimate the
potential threat, and facilitate the selection of building sites in
hazardous areas.

7 Discussion and challenges

This study presents a method for predicting the horizontal
distance of slope landslides based on SVMs and MC simulation.
A total of 424 landslide cases of various types were collected
and analyzed, and predictive charts for the horizontal landslide
distance under different landslide volume categories were developed
to facilitate easy reference and use by engineers. However, several
challenges were encountered during the research process. For
instance, most existing studies categorize slopes into soil slopes
and rock slopes, with limited attention given to mixed soil-rock
slopes. Additionally, the dataset used in this study was imbalanced
in terms of landslide types—for example, there were only a few
cases of small-scale rainfall-induced rock landslides—leading to
insufficient samples under certain conditions during model training.
This, in turn, negatively affected the prediction performance.
Therefore, future research should focus on constructing a more
comprehensive and balanced slope landslide database to avoid
overfitting or underfitting in specific landslide categories. Despite
these challenges, this study represents an exploratory effort toward
developing a simple and efficient landslide reference chart. Future
work will focus on further expanding the database and developing
more practical tools based on this foundation.

8 Conclusion

Based on the parameter analysis of the established landslide data,
this paper investigates the effects of the training set-to-prediction
set ratio, kernel function type, and parameter c and g values on the
predictive performance of the SVR model. Subsequently, a landslide
horizontal runout distance prediction model based on MC-SVR
is proposed, and a prediction diagram for landslide horizontal
runout distance is developed. The accuracy of the model and the
convenience and applicability of the diagram are validated through
engineering case studies. The main conclusions are as follows:

1. The parameter analysis indicates that there is a certain
correlation between landslide triggers, landslide material,
landslide volume, landslide slope angle, vertical runout
distance, and horizontal runout distance.

2. Inthe SVR model, the ratio of the training set to the prediction
set, the type of kernel function, and the values of parameters
c and g have a significant impact on the prediction results.
In particular, the larger the proportion of the training set, the
better the prediction results. The RBF kernel function performs
better than the linear and sigmoid kernel functions; parameters
cand g are crucial factors influencing model performance.
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3. Considering parameter uncertainty, it is found through the
established landslide database that the slope angle conforms
relatively well to a normal distribution, and the landslide
volumes of small, medium, large, and giant landslides generally
follow a log-normal distribution.

. The MC-SVR model can provide the probability density
distribution of the landslide horizontal runout distance.
Validation demonstrates that the prediction results are highly
accurate and reliable.

5. The developed prediction diagram for the landslide horizontal
runout distance can quickly determine the probability
range of the horizontal runout distance for landslides
triggered by earthquakes or rainfall in rock or soil. Case
studies demonstrate that the prediction diagram can provide
strong support for landslide early warning and disaster
prevention.
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