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Horizontal runout distance prediction of potential landslides is of great 
significance in hazard mitigation.In this study, predictive charts of landslide 
horizontal runout distance were developed based on the support vector 
regression (SVR) algorithm and Monte Carlo (MC) modeling. An SVR-based 
prediction model was constructed using a dataset of 424 historical landslides, 
which included six parameters: triggers, mass materials, volume, slope gradient, 
vertical drop, and horizontal runout distance. The first five parameters were 
employed as predictive indicators to estimate horizontal runout distance. To 
investigate the optimization of the penalty factor (c) and influence parameter 
in the kernel function (g) and their effects on prediction accuracy, 21 conditions 
were tested with 7 training/testing ratios (7/1, 6/2, 5/3, 4/4, 3/5, 2/6, and 1/7) 
in combination with three kernel functions: linear, radial basis function (RBF), 
and sigmoid. Predictive charts were then created by adopting the MC method 
to account for uncertainties in slope volume and slope gradient parameters. 
The results show that (1) the coefficient of determination in each condition was 
greater than 0.825, with the highest value of 0.854 obtained under the condition 
of a 7/1 training/testing ratio in combination with the RBF kernel function; 
(2) increasing the training/testing ratio improved prediction accuracy; (3) the 
model with the RBF kernel function performed better than those with other 
kernel functions; and (4) the optimization of c and g parameters significantly 
improved prediction accuracy. The feasibility and efficiency of the proposed 
model were demonstrated using a practical case of the Zhonghai Village 
landslide, highlighting the potential of SVR combined with MC modeling for 
landslide runout prediction and hazard mitigation.
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landslide runout distance, support vector regression for landslide, Monte Carlo, 
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 1 Introduction

Landslides are one of the most frequently occurring types of geological disasters 
globally. China, being a mountainous country, experiences thousands of landslide-related 
geological disasters annually, resulting in billions of dollars in property damage and
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hundreds of casualties (Dai et al., 2002; Gao et al., 2007; 
Valagussa et al., 2019). Notable examples include the “2017.6.25” 
Diexi landslide in Sichuan (Fan et al., 2017) and the “2021.1.27” 
Yongjing County landslide in Gansu (Chang et al., 2021), 
both of which caused significant loss of life and property. 
Therefore, risk prevention and control of landslide disasters 
have been a major research focus in geotechnical engineering. 
Two key issues are involved in landslide disaster risk prevention 
and control: first, the stability analysis of potential landslides 
and, second, the prediction of the impact range after the 
landslide occurs (Corominas et al., 2014).

At present, research on predicting the impact range of landslides 
has primarily focused on predicting the horizontal runout distance 
of landslides, leading to the development of numerous models. 
Among them, empirical statistical models are used to estimate the 
horizontal runout distance of landslides by establishing regression 
formulas based on landslide runout mechanisms (Fan et al., 2012; 
Chen et al., 2015; Zheng et al., 2019; Lu et al., 2020). However, due 
to differences in the collected landslide cases, research parameters, 
and other factors, the forms of empirical statistical models vary 
greatly, making them difficult to apply universally and posing 
significant limitations. Additionally, some researchers use numerical 
simulation software to predict landslide horizontal runout distances, 
such as MassFlow (Ouyang et al., 2015), the material point method 
(Sun and Song, 2018), and DAN3D (Wu et al., 2018). Zhang et al. 
(2024) developed a coupled SPH model to simulate landslide 
impacts on multiple barriers, validated using flume tests. Numerical 
simulation methods require detailed physical and mechanical 
parameters to model and analyze landslides, which can be time-
consuming and lack general applicability.

In recent years, scholars at home and abroad have applied 
machine learning models (Huang and Zhao, 2018; Pham et al., 
2020; Balogun et al., 2021; Guzzetti et al., 2024) to landslide 
disaster early warning and prevention research, achieving good 
results. Zhao et al. (2024) evaluated landslide susceptibility models 
at varying resolutions, finding that integrated models and high-
resolution data greatly improve accuracy, with Random Subspace 
and Alternating Decision Tree (RS-ADT) at 12.5 m performing 
best. Zhao et al. (2025) compared three models for landslide 
susceptibility and found that the weights-of-evidence (WoE) 
model performed best, offering valuable insights for disaster 
risk reduction. The above studies have yielded some results 
in terms of slope analysis. In addition, the support vector 
regression (SVR) model has performed well in regression prediction 
problems due to its robustness, reliable prediction results, and high 
prediction accuracy (Peethambaran et al., 2020; Balogun et al., 
2021). Nevertheless, the effectiveness of machine learning-based 
predictions is greatly influenced by the model parameter settings 
and optimization (Huang and Zhao, 2018; Peethambaran et al., 
2020; Balogun et al., 2021; Guzzetti et al., 2024). Furthermore, many 
studies based on the SVR model show a certain degree of subjectivity 
in optimizing model parameters such as the training set sampling 
rate, kernel function type selection, and parameter c and g values.

Moreover, due to the complex mechanism of landslide runout 
and significant uncertainty in parameters, existing machine 
learning-based prediction models, although capable of making 
preliminary inferences about the horizontal runout distance of 
landslides, have all overlooked the uncertainty of influencing 

factors. For instance, a formula for calculating the horizontal runout 
distance of rock landslide-debris flows based on potential energy was 
proposed and experimentally validated (Zheng et al., 2019). Du et al. 
(2020) discussed the causes of translational landslides and built 
a corresponding model, finding that higher water levels increase 
total stress, thereby leading to stepped settlement of the bedrock. 
Similarly, Fan et al. (2009) discussed the genetic mechanism 
and limit equilibrium criterion of single and multi-translational 
landslides based on physical model tests and numerical analysis. 
Although these studies provide valuable guidance for disaster 
early warning and prevention, they all overlook the uncertainties 
associated with landslide parameters. Monte Carlo (MC) simulation 
is an effective method for considering parameter randomness and 
uncertainty as it generates independent sets of research parameters 
based on probability distributions. It has been widely used to address 
research involving high parameter uncertainty in geotechnical 
engineering (Li et al., 2019; Marin and Mattos, 2020).

Based on the above analysis, this paper establishes a probabilistic 
prediction model for landslide horizontal runout distance based 
on MC simulation and SVR, taking earthquake- and rainfall-
induced landslides as the research object and addressing the 
uncertainty of landslide parameters and the deficiencies of existing 
models. To optimize the model, the effects of the ratio of the 
training set to the prediction set, the kernel function type, and the 
parameter c and g values on the prediction performance of the SVR 
model are discussed. To account for the uncertainty of landslide 
parameters, the MC simulation method is introduced to predict 
the probability distribution of landslide horizontal runout distances, 
and a prediction diagram that can quickly determine the range of 
landslide horizontal runout distances is provided. Finally, methods 
for enhancing the applicability of the diagram are proposed, and the 
effectiveness and reliability of the prediction diagram constructed in 
this paper are verified through engineering case studies. 

2 Landslide database and analysis

The essential characteristics of landslide runout 
are shown in Figure 1. Landslides occur when external factors 
such as heavy rainfall or earthquakes induce runout along a slope, 
resulting in a slip. The horizontal distance from the front of the 
landslide accumulation body to the rear edge of the landslide is 
called the horizontal runout distance L, the vertical distance is called 
the vertical drop H, the volume of the landslide accumulation body 
is denoted as V, and the slope gradient of the landslide is denoted 
as α. Horizontal runout distance (L) and vertical drop (H) are the 
key indices that determine the influence range of landslide disasters, 
and they are of great significance in preventing and controlling 
landslide disasters. Among them, vertical drop H has a greater 
relationship with the topographic structure of the slope, making 
the prediction difficulty relatively lower than the horizontal runout 
distance. Therefore, this paper focuses on predicting the horizontal 
runout distance L and develops a prediction chart that enables the 
rapid estimation of the potential runout range of landslides.

In predictive research using the machine learning model 
and empirical regression model, the established database and 
the selection of predictor variables directly affect predictive 
performance. Table 1 lists several typical empirical regression 

Frontiers in Earth Science 02 frontiersin.org

https://doi.org/10.3389/feart.2025.1666554
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kang et al. 10.3389/feart.2025.1666554

FIGURE 1
Schematic diagram of landslide movement. Diagram featuring two parts: (a) a side view of a volcano with a lava flow from point A on top to point B at 
the base, and (b) a cross-sectional view showing the original ground level, height (H), and runout length (L) of the lava flow, labeled with volume (V) 
and angle (α).

TABLE 1  Typical empirical regression prediction models.

Reference Trigger Material Landslide number Regression model

Fan et al. (2012) Earthquake and rainfall Does not distinguish 75 (earthquake); 52 (rainfall) H/L = 3.381 V−0.1311

(R2 = 0.3992, for earthquake)
H/L = 1.475 V−0.1045

(R2 = 0.4581, for rainfall)

Chen et al. (2015) Earthquake and rainfall Does not distinguish 31 (earthquake); 20 (rainfall) lgL = 0.184 + 0.069 lgV + 
0.830 lgH (R2 = 0.92)

Zheng et al. (2019) Does not distinguish Rock only 127 L = 31.623 (d/B)0.321 (tanα)0.663

(VH)0.25

Lu et al. (2020) Earthquake only Does not distinguish 380 lgL = 0.25 lgV + 0.51 lgH
(R2 = 0.73)

d is the particle size, and B is the width of the chute.

prediction models for the horizontal runout distance. These models 
are based on a certain number of documented landslide cases. Due 
to the limited number of collected landslide cases, their applicability 
is restricted to specific situations and is difficult to popularize. 
To establish a prediction model with stronger applicability and 
reliability, this paper collected data from 424 landslide cases with six 
typical variables, namely, triggers, mass materials, landslide volume 
V, landslide slope gradient α, vertical drop H, and horizontal runout 
distance L, referring to the relevant literature and combining with 
the movement mechanism of landslide movement. An overview of 
the database is presented in Table 2.

Generally, according to different landslide volumes (Qi et al., 
2011), landslides can be divided into small landslides (V ≤ 105 m3), 
medium landslides (105 m3 < V ≤ 106 m3), large landslides (106 m3 
< V ≤ 107 m3), and giant landslides (107 m3 < V). Figure 2 shows the 
distribution of variables in the dataset of 424 collected landslides.

Figure 2 shows the detailed distribution of six variables in 
the landslide database: triggers, mass materials, landslide volume 
V, landslide slope gradient α, vertical drop H, and horizontal 
runout distance L. The numbers of small, medium, large, and giant 
landslides are 133, 104, 114, and 73, respectively, among which the 
numbers of soil and rock landslides are 130 and 294 and the numbers 
of landslides induced by earthquake and rainfall are 251 and 173, 

TABLE 2  Overview of the landslide database.

Contains variables Range (type) Unit

Landslide triggers Earthquake and rainfall -

Landslide material Rock and soil -

Landslide volume (V) 1.0 × 103–1.2 × 109 m3

Landslide slope (α) 6–63 °

Vertical drop (H) 14–1500 m

Horizontal runout distance (L) 20–6530 m

respectively. The data on slope gradient, vertical drop, and horizontal 
runout distance have good continuity. It shows that the landslide 
data collected in this paper are representative to some extent.

In previous studies, due to the wide data span of landslide 
volume V, landslide slope gradient α, vertical drop H, and horizontal 
runout distance L, V, H, and L are usually taken as logarithms, and 
α is taken as the tangent value. To analyze the relationships between 
the parameters, a scatterplot matrix of the parameters is presented, 
as shown in Figure 3.
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FIGURE 2
Distribution of each variable. Four charts analyze landslide characteristics: (a) Bar chart categorizing landslides as Small, Medium, Large, and Giant with 
counts and a pie chart of triggering factors: soil, rock, earthquake, and rainfall. (b) Histogram showing landslide counts by slope angle with cumulative 
percent. (c) Histogram showing landslide counts by vertical drop with cumulative percent. (d) Histogram showing landslide counts by horizontal 
runout distance with cumulative percent.

The upper-right section of Figure 3 depicts the scatter 
distribution between the two factors classified by triggers, while 
the lower-left section represents the scatter distribution between the 
two factors classified by mass materials. It can be observed that there 
is a notable linear correlation between lgH and lgL, lgV and lgL, and 
lgH and lgV. Conversely, the scatter distribution between tanα and 
lgL, along with lgH and lgV, is relatively discrete. In addition, under 
the distinction of different triggers and mass materials, the data 
are also clearly differentiated, indicating that triggers and mass 
materials are also among the influential factors that cannot be 
ignored. Additionally, it validates the rationale for the parameters 
selected in this study for analysis and calculation. 

3 Experimental program design

The objective of this paper is to evaluate the performance of the 
prediction model for the horizontal runout distance of landslides 
based on MC–SVR and provide a prediction chart that can rapidly 
ascertain the horizontal runout distance of landslides. The specific 
test scheme design is presented below.

For the MC–SVR model, the trained SVR model’s reliability 
is paramount as it directly affects the reliability of the landslide 
horizontal runout distance prediction chart. Therefore, this paper 

first studies the reliability of the SVR model, selecting R2 as the 
characteristic parameter of the evaluation model, and its calculation 
formula is presented in Equation 1:

R2 =
(l∑l

i=1
̂yiyi −∑

l
i=1
̂yi∑

l
i=1

yi)
2

(l∑l
i=1
̂y2
i − (∑

l
i=1
̂yi)

2
)(l∑l

i=1
y2

i − (∑
l
i=1

yi)
2
)
, (1)

where l is the number of samples, yi is the true value of the ith 
sample, and ̂yi is the predicted value of the ith sample. A coefficient 
of determination (R2) approaching 1 indicates a superior predictive 
performance. In addition, the research aspects of the SVR model in 
this paper are as follows: 

1. Ratio of the training set to the prediction set. A total of 424 
landslide data groups collected were randomly shuffled and 
then divided into eight parts according to different training-
to-prediction set ratios, which were set at 1/7, 2/6, 3/5, 4/4, 
5/3, 6/2, and 7/1. As an illustration, the ratio of 1/7 comprises 
seven sample combinations; all results in these seven cases are 
calculated, and the average coefficient of determination R2 is 
then obtained. The methodology is consistent for all ratios.

2. Kernel function type. The type of kernel function used in the 
SVR model affects its performance. This paper examines the 
influence of three kernel functions, namely, the linear function, 
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FIGURE 3
Matrix scatter plot of each parameter.

the Gaussian radial basis function (RBF), and the S-shape 
function (sigmoid), on the resulting outcomes.

3. Additional instructions. In terms of data preprocessing, the 
variables lgV, tanα, lgH, and lgL are standardized. Triggers and 
mass materials are processed using one-hot coding, in which 
categorical variables are represented using binary vectors (e.g., 
rainfall is represented as [0, 1], and earthquake is represented 
as [1, 0]).

After studying the reliability of the SVR model, the MC 
simulation method was introduced to obtain the probability 
distribution of the horizontal runout distance of the landslide. 
Finally, the vertical drop was entered as a sequence, thereby 
generating the prediction chart of the horizontal runout distance of 
the landslide. The overall test process is shown in Figure 4.

4 MC–SVR-based model for 
predicting the horizontal runout 
distance of landslides

4.1 Support vector regression

SVR is an application of support vectors in functional regression, 
using a support vector machine (SVM) to solve regression 
fitting problems.

Furthermore, in this paper, triggers, mass materials, landslide 
volume, landslide slope gradient, and vertical drop are selected 

as inputs to the SVR model, with horizontal runout distance 
as the output, to establish a predictive model for landslide 
horizontal runout distance. The specific building process is as
follows:

Assuming that the number of training samples is l, the training 
set is {(xi, yi), i = 1, 2,…, l}, where xi is the input vector for 
the ith training sample. xi = [x1i, x2i,…, x5i]T represents the 
five training parameters of the ith training sample (triggers, mass 
materials, landslide volume, landslide slope gradient, and vertical 
drop), while yi is the horizontal runout distance of the ith training
sample.

The linear regression function established in the high-
dimensional feature space is presented in Equation 2:

f(x) = wΦ(x) + b, (2)

where w is the weight vector of high-dimensional feature space, Φ(x) 
is mapping function, and b is the threshold value.

Then, to represent the quality of the regression effect, a loss 
function is introduced in Equation 3:

L( f(x),y,ε) =
{
{
{

0|y− f(x)| ≤ ε

|y− f(x)| − ε|y− f(x)| > ε
, (3)

where f (x) is the predicted value of the landslide horizontal 
runout distance returned by the regression function and y is the 
corresponding true value. If the difference between f (x) and y is less 
than ε, the loss value is 0.
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FIGURE 4
Test procedure.

TABLE 3  Distribution parameter.

Parameter Slope (°) Slope volume (m3)

Small Medium Large Giant

Distribution form Normal distribution Log-normal distribution

Mean value (μ) 36.80 9.71 12.68 15.04 17.52

Standard deviation (σ) 9.10 1.12 0.76 0.67 1.24

Next, relaxation variables ξi and ξ
∗

i are introduced to set up a 
minimization objective function to determine the weight vector w
and threshold value b:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

min 1
2
‖w‖2 +C

l

∑
i=4
(ξi + ξ∗i ),

s.t.

{{{{{{{
{{{{{{{
{

yi −wΦ(xi) − b ≤ ε+ ξi,

i = 1,2,⋯, l,

−yi +wΦ(xi) + b ≤ ε+ ξ∗i ,

ξi ≥ 0,ξ∗i ≥ 0,

(4)

where C is the penalty factor (parameter c) and ε specifies the error 
requirement of the regression function.

To solve Equation 4, Lagrange function is introduced and 
converted into dual form, as shown in Equation 5:

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

max
α,α∗
[−1

2

l

∑
i=1

l

∑
j=1
(αi − α∗i )(αj − α∗j )K(xi,xj)−

l

∑
i=1
(αi + α∗i )ε+

l

∑
i=1
(αi − α∗i )yi,

s.t.
{{{
{{{
{

l

∑
i=1
(αi − α∗i ),

0 ≤ αi ≤ C,0 ≤ α∗i ≤ C,

(5)
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FIGURE 5
Simulated distribution: (a) slope gradient; (b) volume.

FIGURE 6
R2 distribution of forecast results (7/1, RBF).

FIGURE 7
R2 change in the predicted result.

where K (xi, xj) is the kernel function, with different kernel functions 
exerting varying influences on model performance, and g is the 
influence parameter of the kernel function.

FIGURE 8
Probability distribution of the landslide horizontal runout 
distanceprediction distribution range. Probability density graph 
showing horizontal runout distance in meters for landslides. The curve 
peaks near 600 meters with shaded areas under the curve indicating 
probability ranges: gray for 95% (431 m to 951 m) and blue for 80% 
(487 m to 818 m). The line at 550 meters marks the expected true 
runout distance.

The weight vector w and threshold b are determined according 
to αi and α

∗

I  obtained using Equation 5, as shown in Equation 6:

{{{{{{{{{{{
{{{{{{{{{{{
{

w =
l

∑
i=1
(αi − α∗i )Φ(xi),

b = 1
l
{

l

∑
i=1
[yi −∑(αi − α∗i )K(xi,xj) − ε]+

l

∑
i=1
[yi −∑(αj − α∗j )K(xi,xj) + ε]},

(6)

Finally, the final regression function can be obtained 
according to Equation 2.

K(xi,xj) = exp(−
‖xi − xj‖

2

2σ2 ) = exp(−g‖xi − xj‖
2). (7)

Equation 7 represents the expression of the Gaussian kernel 
function, where σ is the bandwidth of the Gaussian kernel and is 

Frontiers in Earth Science 07 frontiersin.org

https://doi.org/10.3389/feart.2025.1666554
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Kang et al. 10.3389/feart.2025.1666554

FIGURE 9
Prediction scheme of the horizontal runout distance of various landslides: (a) small-rainfall-rock; (b) small-rainfall-soil; (c) small-earthquake-rock; (d)
small-earthquake-soil; (e) medium-rainfall-rock; (f) medium-rainfall-soil; (g) medium-earthquake-rock; (h) medium-earthquake-soil; (i)
large-rainfall-rock; (j) large-rainfall-soil; (k) large-earthquake-rock; (l) large-earthquake-soil; (m) giant-rainfall-rock; (n) giant-rainfall-soil; (o)
giant-earthquake-rock; and (p) giant-earthquake-soil.

greater than 0. The parameter g is the influence parameter of the 
Gaussian kernel, which is inversely proportional to twice the square 
of the Gaussian kernel bandwidth, and is usually adjusted during 
model training to improve training effectiveness. 

4.2 MC–SVR model

In this paper, triggers, mass materials, landslide volume, 
landslide slope gradient, and vertical drop are taken as inputs to 
the SVR model. There are uncertainties in triggers, mass materials, 
landslide volume, landslide slope gradient, and vertical drop for 
landslides that have not yet occurred. The triggers of landslides can 
be inferred from the disaster situation in the landslide area, the 

vertical drop can be roughly inferred from the landform structure 
of the landslides, and the landslide volume and slope gradient are 
highly uncertain. Based on the above considerations, this paper 
adopts the Monte Carlo simulation combined with the SVR model 
to develop a landslide horizontal runout distance prediction model 
that accounts for parameter uncertainty, thereby better meeting the 
practical needs of engineering.

First, the corresponding distribution form and parameters are 
determined by analyzing the statistical characteristics of the slope 
gradient and landslide volume in the landslide database. The slope 
gradient is normally distributed, and the landslide volumes of small, 
medium, large, and giant landslides are log-normally distributed. 
The specific distribution parameters are shown in Table 3.
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FIGURE 10
Distribution of landslide data in the chart (small, earthquake, and 
rock quality).

Next, according to the determined distribution form and 
corresponding parameters, a sequence of 10,000 length is randomly 
generated using a computer, which meets the requirements, 
as shown in Figure 5 (the slope gradient). By inputting the generated 
sequences (slope gradient and landslide volume are distribution 
sequences, while triggers, mass materials, and vertical drop are 
determined values) into the trained SVR model, a prediction 
sequence of landslide horizontal runout distance with a length of 
10,000 can be obtained.

Finally, the probability density function f (x) can be obtained 
according to the prediction sequence of the horizontal runout 
distance of the landslide to determine the value of P{L1 ≤ x ≤ L2} (the 
probability value of the predicted value in the range of L1–L2). The 
above section describes the process of building the MC–SVR model. 

5 Prediction of the horizontal runout 
distance

Four hundred twenty-four landslide data groups were used to 
predict the horizontal runout distance of landslides when the ratios 
of the training set and prediction set were 1/7, 2/6, 3/5, 4/4, 5/3, 6/2, 
and 7/1, and the kernel function types were linear, RBF, and sigmoid. 
In the SVR model, c and g are important parameters that affect the 
model’s performance. This paper uses the currently more common 
grid search method to determine the parameters c and g, with their 
research scope defined as [2–10, 2–9.5, …, 29.5, 210]; the grid search 
steps are Log2c and Log2g = 0.5. Figure 6 shows the coefficient of 
determination (R2) of the prediction results of the prediction set 
when the ratio of the training set to the prediction set is 7/1 and 
the kernel function is RBF with different parameters c and g.

Figure 6 reflects the distribution of the coefficient of 
determination (R2) of the prediction results when the ratio of the 
training set to the prediction set is 7/1 with RBF as the kernel 
function. Since there are seven combination cases when the ratio is 
7/1, the coefficient of determination R2 at each point is the average 
of the calculated results for the seven cases. Figure 6 shows that 
when parameters c and g are (21.5, 2–2, 5), the absolute value of the 
coefficient of determination (R2) reaches its maximum of 0.854. In 

particular, this value is smaller than the coefficient of determination 
R2 for some of the models in Table 1 because of the different objects. 
The coefficient of determination (R2) in Table 1 is the regression 
fitting of all data (equivalent to the training set in this paper), 
and the maximum value of the determination coefficient R2 of the 
training set predicted using the model in this paper is more than 
0.95. In addition, Figure 7 shows that the R2 of the prediction result 
of the prediction set changes with the change in the ratio between 
the training and prediction sets when the linear function, the RBF 
function, and the sigmoid function are selected as kernel functions.

It can be observed from Figure 7 that the coefficient of 
determination (R2) surpasses 0.825 in all cases. Notably, the ratio of 
the training set to the prediction set, along with the kernel function 
type, exerts substantial influence on the predictive outcomes. In 
particular, with an increase in the proportion of the training set, R2

of the same kernel function model also increases. When the training-
to-prediction set ratios are 1/7 and 2/6, the R2 values of the results 
of the three kernel function models are close. Subsequently, with the 
continuous increase in the training set proportion, the RBF kernel 
function performs better than the linear kernel function and the 
sigmoid kernel function. In general, the linear and sigmoid kernel 
models yield similar results, but the sigmoid kernel model performs 
slightly better.

Having validated the commendable predictive prowess of the 
SVR model, we proceed to incorporate the Monte Carlo simulation 
for the purpose of forecasting the horizontal runout distance of 
landslides using the MC–SVR framework. Taking 424 cases of 
landslide data as the training set, the horizontal runout distance 
of the Weiba landslide is predicted (the Weiba landslide is a large-
scale soil landslide triggered by an earthquake in Pingwu County, 
with a horizontal runout distance of 550 m and a vertical drop 
of 345 m) (Guo et al., 2014). For this case, the RBF function is 
selected as the kernel function, and slope gradient and landslide 
volume are randomly generated following the distribution forms and 
parameters outlined in Table 3. The probability density distribution 
of the predicted results is shown in Figure 8 (this paper studies the 
range of 95% and 80% probabilities, with similar analyses applicable 
to other probability thresholds).

Figure 8 shows the prediction of the horizontal runout distance 
of the Weiba landslide using the MC–SVR model, the true value 
of which is L = 550 m. According to the results of the model, 
the model’s forecast not only falls within the 95% confidence 
interval (431 m–951 m) but also comfortably resides within the 
narrower 80% probability range (487 m–818 m), indicating a 
significant safety margin. It proves that the prediction model of the 
landslide horizontal runout distance based on MC–SVR has good 
performance.

Considering that the number and variety of landslides in actual 
projects are substantial, to obtain a more applicable landslide 
horizontal runout distance prediction chart, the MC–SVR model 
was used to calculate the distribution range of the horizontal runout 
distance of rock and soil landslides (a total of four categories) caused 
by rainfall or earthquake, varying with the vertical drop, as shown 
in Figure 9. It shows the prediction chart of the horizontal runout 
distance of the landslide. A suitable prediction chart can be selected 
according to the type of landslide (volume, triggers, and materials). 
The corresponding range of the horizontal runout distance can be 
determined using the vertical drop. To test the accuracy of the 
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TABLE 4  Statistics of the model performance.

Type Range Small Medium Large Giant

Rainfall-rock
80% 1/4 = 25% 10/30 = 33% 9/28 = 32% 8/16 = 59%

95% 2/4 = 50% 13/30 = 43% 13/28 = 46% 12/16 = 75%

Rainfall-soil
80% 12/32 = 38% 10/22 = 45% 4/24 = 17% 11/17 = 65%

95% 24/32 = 75% 15/22 = 68% 10/24 = 42% 14/17 = 82%

Earthquake-rock
80% 77/94 = 82% 23/43 = 53% 24/46 = 52% 16/33 = 48%

95% 87/94 = 93% 32/43 = 74% 34/46 = 74% 27/33 = 82%

Earthquake-soil
80% 1/3 = 33% 6/9 = 67% 10/16 = 63% 7/7 = 100%

95% 3/3 = 100% 9/9 = 100% 13/16 = 81% 7/7 = 100%

Due to the limited data, the model (rainfall-induced small rock) predictive performance may be less reliable and should be interpreted with caution.

FIGURE 11
Distribution of small-scale landslide data in the chart.

prediction chart, the distribution of landslide data in the chart was 
calculated, among which the distribution of earthquake-induced 
small rock landslides is shown in Figure 10.

Among the 424 landslide cases, 94 small rock landslides were 
triggered by earthquakes. As illustrated in Figure 10, 87 of these 
landslides (93%) fall within the 95% probability range of horizontal 
runout distance predicted using the MC–SVR model, while 77 
cases (82%) were within the 80% probability range. In addition, the 
statistical distribution of other landslides in the prediction chart 
is shown in Table 4.

Table 4 presents the statistical distribution of landslide data 
within the predictive chart, demonstrating that the accuracy of 
the horizontal runout distance prediction chart based on the 
MC–SVR model is significantly influenced by the training data 
samples. Overall, the prediction chart for landslide horizontal 
runout distance exhibits good accuracy and ease of use, allowing 
for the determination of horizontal runout distance based on the 
vertical drop of the landslide. This is of great significance for early 
warning and disaster prevention of landslides. However, due to 

insufficient cases of certain types of landslides in the database 
(e.g., small-scale rainfall-induced rock landslides and medium-scale 
rainfall-induced rock landslides), the accuracy of the distribution of 
some landslides within the corresponding chart is relatively poor.

Furthermore, considering the unknown triggers and complex 
material compositions (mix of rock and soil) of non-moving 
landslides in real engineering scenarios, to enhance the applicability 
of the horizontal runout distance prediction chart in practical 
projects, the prediction chart (Figure 9) should be processed. 
Assuming that an area is subject to both earthquake hazards and 
heavy rainfall, and the landslide material comprises both soil and 
rock in non-negligible proportions, the range of the horizontal 
runout distance with a given probability p can be denoted as Lmin
to Lmax, as shown in Equation 8:

P{L下 ≤ L ≤ L上} = p, (8)

where Lmin represents the minimum value of all L lower limits 
corresponding to rock or soil landslides triggered by rainfall or 
earthquakes, with a probability p, and Lmax represents the maximum 
value of all L upper limits under the same conditions. Taking 
small-scale landslides as an example, the processed horizontal 
runout distance prediction chart (derived from Figures 9a–d) is 
presented in Figure 11.

Figure 11 shows that 119 cases of landslides (89%) fall 
within the 95% probability range and 110 cases (83%) within 
the 80% probability range in the processed horizontal runout 
distance prediction chart for landslides. This processed chart 
exhibits good reliability and enhanced applicability compared to 
that shown in Figure 9, making it suitable for small-scale rock or soil 
landslides triggered by rainfall or earthquakes.

The above discussion focuses on small-scale landslides with 
unknown triggers and mixed rock–soil compositions. For other 
landslide scenarios, Figure 9 and Equation 7 can be flexibly applied, 
but further elaboration is omitted here. For example, it applies 
to small-scale soil landslides triggered by rainfall or earthquakes 
(from Figures 9b,d) and medium-scale mixed soil–rock landslides 
triggered by earthquakes (from Figures 9g,h). 
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FIGURE 12
Landslide area and section map: (a) landslide area; (b) landslide profile.

FIGURE 13
Three-dimensional geologic model map of Mibei village. A 3D 
topographic model of a hilly, forested area with three regions outlined 
in red. The foreground shows a scattered settlement with houses and 
roads at the base of the hills.

TABLE 5  Comparison of predicted and true horizontal runout distances 
of the landslide.

Type L1 L2 L3 L4

Vertical drop 90 m 65 m 75 m 60 m

Real horizontal runout 158 120 120 110

80% 42–143 37–109 39–123 34–100

95% 30–160 27–124 30–135 27–116

6 Engineering application

6.1 Large landslide cases

To validate the applicability and reliability of the MC–SVR-
based horizontal runout distance prediction chart in practical 
engineering and illustrate its usage, the Zhonghaicun landslide is 

used as a case study to demonstrate early warning and disaster 
prevention measures (Ye et al., 2021).

On 21 August 2020, a rainfall-induced landslide occurred in 
Zhonghaicun, Fuquan Town, Hanyuan County, Sichuan Province, 
with a maximum horizontal runout distance of approximately 
600 m, as shown in Figure 12. Located at 102°41′40″E, 29°20′30″N 
in China, Zhonghaicun features abundant rainfall and active seismic 
activity. The Zhonghaicun landslide primarily consists of silty 
clay, breccia, and block stones. Based on geological structures, 
its vertical drop is estimated at approximately 210 m, classifying 
it as a large-scale landslide. Considering the potential triggers of 
rainfall and earthquakes and the mixed rock–soil composition, the 
horizontal runout distance prediction chart for large-scale landslides 
derived from Figures 9i–l indicates a 95% probability range of 
439 m–893 m and an 80% probability range of 491 m–721 m, which 
are set as the early warning ranges for this landslide disaster.

Figure 12a illustrates the extensive impact area and significant 
hazard of the Zhonghaicun landslide. Figure 12b presents the 
cross-sectional view of the landslide, where the actual horizontal 
runout distance falls within both the 95% and 80% probability 
prediction ranges, with additional safety margins. It could have 
significantly reduced casualties and losses if early warning and 
disaster prevention measures had been implemented based on the 
80% or 95% probability prediction ranges. Based on the above 
analysis, the horizontal runout distance probability range chart 
presented in this study demonstrates simplicity, high accuracy, and 
strong applicability, providing valuable support for early warning 
and disaster prevention of landslide hazards. 

6.2 Small landslide cases

In June 2019, Longchuan County in Guangdong Province 
experienced sustained heavy rainfall, affecting 352 villages across 
24 towns. Mibei Village was one of the hardest-hit areas, suffering 
extensive landslides that damaged houses, roads, bridges, and 
utilities. The landslides in Mibei Village had a large distribution 
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FIGURE 14
Comparison of satellite images before and after the landslide in Mibei village. (a) Before landslides; (b) After landslides. Two satellite images depicting 
landslide risk zones in a hilly area. In image (a), areas L1, L2, L3, and L4 are marked with dashed lines, highlighting 80% (orange) and 95% (red) risk levels. 
In image (b), similar risk indicators highlight the same geographic location from a slightly different angle. Surrounding the marked zones are vegetation, 
a road, and clustered buildings.

range, affecting multiple landslide bodies and posing significant 
threats to many people. The landslides occurred in a hilly terrain 
characterized by steep, conical peaks and numerous “V”-shaped 
valleys. The terrain is highly dissected, with elevation differences of 
100–200 m and slopes of 40°–45°. The slope area primarily consists 
of residual slope deposits of silty clay, sandy clay, and fully weathered 
granite, which are moderately weakly permeable with poor water 
retention.

Figure 13 shows the 3D geological model of Mibei Village, 
with red markers indicating the landslide locations. Based on the 
estimated volume, most of the slope failures in this area are small-
scale. The internal slopes here are small landslides triggered by 
rainfall, composed of a mix of soil and rock materials. The vertical 
drop of the slopes obtained from the 3D model is used in Figure 11 to 

generate the results shown in Table 5. In the table, the actual sliding 
distances for L1, L2, and L4 exceed the 80% confidence interval for 
landslide distances but are within the 95% confidence interval.

Figure 14 shows a comparison of satellite images before and 
after the landslide. Figure 14a shows the satellite image before the 
landslide, while Figure 14b shows the image after the landslide. By 
combining the data from Table 5 with the pre-landslide satellite 
image, the landslide location and actual length were determined. 
In the image, the yellow dashed line represents the 80% horizontal 
sliding distance and the red dashed line represents the 95% 
horizontal sliding distance. As shown in Figure 14a, some buildings 
in the L4 area fall within the 95% confidence interval, indicating that 
they were affected by the landslide. Figure 14b shows the satellite 
image of the village after the post-disaster repairs. It is evident that 
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some landslides have been reinforced, and buildings within the 95% 
landslide probability area have been relocated. This demonstrates 
that the method proposed in this study can quickly determine 
the horizontal runout distance of potential landslides, estimate the 
potential threat, and facilitate the selection of building sites in 
hazardous areas. 

7 Discussion and challenges

This study presents a method for predicting the horizontal 
distance of slope landslides based on SVMs and MC simulation. 
A total of 424 landslide cases of various types were collected 
and analyzed, and predictive charts for the horizontal landslide 
distance under different landslide volume categories were developed 
to facilitate easy reference and use by engineers. However, several 
challenges were encountered during the research process. For 
instance, most existing studies categorize slopes into soil slopes 
and rock slopes, with limited attention given to mixed soil–rock 
slopes. Additionally, the dataset used in this study was imbalanced 
in terms of landslide types—for example, there were only a few 
cases of small-scale rainfall-induced rock landslides—leading to 
insufficient samples under certain conditions during model training. 
This, in turn, negatively affected the prediction performance. 
Therefore, future research should focus on constructing a more 
comprehensive and balanced slope landslide database to avoid 
overfitting or underfitting in specific landslide categories. Despite 
these challenges, this study represents an exploratory effort toward 
developing a simple and efficient landslide reference chart. Future 
work will focus on further expanding the database and developing 
more practical tools based on this foundation. 

8 Conclusion

Based on the parameter analysis of the established landslide data, 
this paper investigates the effects of the training set-to-prediction 
set ratio, kernel function type, and parameter c and g values on the 
predictive performance of the SVR model. Subsequently, a landslide 
horizontal runout distance prediction model based on MC–SVR 
is proposed, and a prediction diagram for landslide horizontal 
runout distance is developed. The accuracy of the model and the 
convenience and applicability of the diagram are validated through 
engineering case studies. The main conclusions are as follows: 

1. The parameter analysis indicates that there is a certain 
correlation between landslide triggers, landslide material, 
landslide volume, landslide slope angle, vertical runout 
distance, and horizontal runout distance.

2. In the SVR model, the ratio of the training set to the prediction 
set, the type of kernel function, and the values of parameters 
c and g have a significant impact on the prediction results. 
In particular, the larger the proportion of the training set, the 
better the prediction results. The RBF kernel function performs 
better than the linear and sigmoid kernel functions; parameters 
c and g are crucial factors influencing model performance.

3. Considering parameter uncertainty, it is found through the 
established landslide database that the slope angle conforms 
relatively well to a normal distribution, and the landslide 
volumes of small, medium, large, and giant landslides generally 
follow a log-normal distribution.

4. The MC–SVR model can provide the probability density 
distribution of the landslide horizontal runout distance. 
Validation demonstrates that the prediction results are highly 
accurate and reliable.

5. The developed prediction diagram for the landslide horizontal 
runout distance can quickly determine the probability 
range of the horizontal runout distance for landslides 
triggered by earthquakes or rainfall in rock or soil. Case 
studies demonstrate that the prediction diagram can provide 
strong support for landslide early warning and disaster
prevention.
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