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With the increasing demand for unconventional resources, accurate
characterization of tight sandstone gas reservoirs has become crucial. This
study introduces an innovative multi-wave seismic sedimentology approach
integrating P-wave, converted S-wave (PS-wave), and pseudo-S-wave attributes
to enhance lithological prediction and reservoir heterogeneity analysis in the
Jurassic Shaximiao Formation, Sichuan Basin. By combining 90° phase rotation,
high-frequency stratal slicing, and differential PP- and PS-wave amplitude
and phase analysis, the workflow effectively resolves vertically stacked sand
bodies and identifies high-porosity “sweet spots.” Results demonstrate that PS-
wave data provide stable polarity responses for lithology discrimination, while
pseudo-S-wave attributes improve vertical resolution for multi-phase channel
identification. Field validations confirm >90% accuracy in sand body geometry
predictions, with horizontal drilling achieving 87% reservoir encounter rates.
The methodology overcomes limitations of conventional P-wave methods
in low-impedance-contrast reservoirs and offers a cost-effective solution
for early-phase exploration with limited well data. This integrated approach
advances tight gas exploration by enabling robust characterization of complex
geological anomalies and heterogeneous systems.

multi-wave seismic sedimentology, tight sandstone gas, pseudo-S-wave attribute,
seismic lithology prediction, Sichuan Basin

1 Introduction

With the increasing scarcity of conventional natural gas resources, tight sandstone gas,
as a crucial unconventional resource, has garnered significant attention in exploration and
development. China possesses abundant tight sandstone gas reserves, widely distributed
across major gas-bearing basins, particularly in the Sichuan Basin, Ordos Basin, and Tarim
Basin. In recent years, substantial progress has been achieved in the exploration of tight
sandstone gas reservoirs in China, with continuously increasing proven geological reserves
and annual production growth, positioning it as a pivotal domain for natural gas reserve
enhancement and production growth (Zhang et al., 2024; Dong et al., 2017).
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FIGURE 1

The location of research area (Sichuan Basin in western China). Light blue area: 3D seismic coverage; white dashed lines: structural boundary lines,
dividing the Sichuan Basin into eastern, central, and western Sichuan; red area: the study area.

The Sichuan Basin, one of China’s most important gas-bearing
basins, exhibits immense potential for tight sandstone gas resources,
particularly in the Jurassic Shaximiao Formation (Dong et al., 2017).
The Shaximiao Formation is characterized by shallow-water delta-
lacustrine deposits, with deltaic channel sand bodies serving as
the primary exploration targets. The study area, located in the
central low-relief structural zone of the Sichuan Basin, serves
as a key region for Shaximiao tight gas exploration (Figure 1)
(Dong et al., 2017). In this area, the sand bodies of the Shaximiao
Formation exhibit vertically stacked multi-phase development, with
generally low porosity (5%-9%) and strong reservoir heterogeneity
(Li et al,, 2021), posing challenges for sand body characterization
and reservoir prediction. Traditional P-wave-based methods are
limited by complex wave group relationships (Li et al., 2024),
hindering accurate identification of sand body distribution and
physical property variations. Consequently, there is an urgent need
to develop novel technical approaches to enhance the precision of
sand body identification and the reliability of reservoir prediction
in the study area, thereby supporting efficient exploration and
development of tight gas resources.

Multi-wave seismic sedimentology, which integrates P-wave
and converted S-wave data (Ran et al., 2024; Zhang et al., 2024;
Lietal, 2024; Zhang and Margrave, 2003), provides comprehensive
insights into lithology and physical properties of subsurface
geological targets. This approach offers unique advantages for
sand body identification and reservoir prediction, particularly
in low-porosity heterogeneous systems (Guo, 2023; Zeng et al.,
2021; Yutan et al, 2024; Chen et al,, 2024). This study focuses
on the application of seismic sedimentology in multicomponent
seismic joint interpretation, emphasizing the advantages of utilizing
shear wave data and seismic sedimentology approaches for
lithology prediction and characterization. We propose a workflow
to efficiently derive attribute volumes characterizing lithological
distribution patterns through rapid processing of conventional
P-wave 3D seismic data. This methodology proves particularly
valuable for early exploration phases with limited well data, enabling
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swift identification of prospective areas through large-scale 3D
seismic interpretation.

The innovative pseudo-shear wave seismic methodology
integrated with seismic sedimentology analysis demonstrates
capability in comprehensive characterization of complex impedance
sand bodies. Furthermore, reservoir petrophysical properties can
be efficiently classified through differential analysis of P-wave and
S-wave seismic responses. Industrial applications and subsequent
drilling verification confirm the high consistency of this technical
system, suggesting significant potential for broader implementation
in exploration geology.

2 Geological setting

The Sichuan Basin, located in southwestern China, is a large
composite sedimentary basin formed through multi-stage tectonic
evolution (Xiao et al., 2020; Liu et al., 2018). The study area is
situated in the northwestern part of the Sichuan Basin, within the
tectonic framework of the southwestern Sichuan Northern Paleo-
Mesozoic Depression Low-Gentle Belt (as shown in Figure 1). This
structural belt is bounded by the Dabashan Fault Belt to the north,
the Longmenshan Fault Belt to the west, the Western Sichuan
Neozoic Depression Low-Steep Belt and the Central Sichuan Paleo-
Uplift Gentle Slope Belt to the south, and the Eastern Sichuan
Paleo-Slope Central Uplift High-Steep Fault Belt to the east. The
overall structural configuration of the study area is characterized
by an asymmetric syncline. The strata near the Longmenshan front
exhibit relatively steep dips of 15°-25°, while the eastern limb of the
syncline shows low-amplitude uplift, with locally developed faults
(Cheng et al., 2023; Wan et al., 2023).

From top to bottom, the stratigraphic sequence in study
area includes the Upper Jurassic Penglaizhen Formation, Suining
Formation, Middle Jurassic Shaximiao Formation, Lower Jurassic
Lianggaoshan Formation, and Ziliujing Formation (Cheng et al.,
2023; Wan et al,, 2023; Cheng et al., 2023). The Shaximiao Formation
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exhibits complex lithology, primarily comprising purplish-red
mudstone interbedded with gray-green and gray siltstone and
sandstone (Zhang et al., 2023; Yu et al., 2025).

A distinctive gray-green or gray-black “laminated shale” layer
serves as a marker for subdividing the formation into the Shaximiao-
1 Member (J,s') and Shaximiao-2 Member (J,s?) (Cheng et al,
2023; Yang et al, 2024). The target interval, the Shaximiao-1
Member, has a thickness ranging from 150 m to 270 m, thinning
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from northeast to southwest (Xiao et al., 2020; Liu et al., 2018).
Based on lithological and electrical characteristics, the Shaximiao-
1 Member is further divided into three sub-members bounded by
two maximum flooding surfaces: the Shaximiao-1-1 Sub-member
(]2311) with a thickness of 45-110 m, the Shaxiimao-1-2 Sub-
member (J,s'%) at 65-135 m, and the Shaximiao-1-3 Sub-member
(]2513) at 30-70 m (refer to Figure 3). All sub-members exhibit
consistent thinning trends from northeast to southwest. Vertically,

frontiersin.org


https://doi.org/10.3389/feart.2025.1675581
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Dai et al.

10.3389/feart.2025.1675581

PP seismic PP Synthetic PS seismic PS Synthetic Gamma-ray P-wave S-wave Density
well-side trace  seismogram  well-side trace seismogram (API) acoustic(us/m) acoustic(us/m)  (g/cm?)
0 API 200 (350 us/m 150(600 us'm 250 [2  g/em3 3Time‘D§§2ﬂ6
! 40
13108,
13203 500
13302 2300
13402 9300
1 2340
136032360
1370-32380
: 400
420
13905 200
14005 2460
141032480
14
1 20
144
1
I
147 26“;;
1
14
1
-
1520% 2740
(f 15302760
15402780

FIGURE 4
ZT2 Well-to-Seismic Tie/Calibration. Black in seismic trace denotes positive peaks and white denotes negative troughs.

the Shaximiao-1 Member is subdivided into five sand groups
(Jiang et al., 2022; Zeng, 2025).

The Shaximiao Formation in the study area is characterized
by shallow-water delta-lacustrine deposition (Zhang et al., 2023;
Yang et al.,, 2024). During the Sha-1 Member depositional period,
delta-front subfacies dominated, with well-developed subaqueous
distributary channel sand bodies and local occurrences of mouth
bars and graded bedding (Zhang et al., 2023; Jiang et al., 2022). The
subaqueous distributary channels within the delta front represent
favorable depositional microfacies, providing the foundation for
sand body and reservoir-scale development (Jiang et al., 2022). The
Sha-1 Member channels in the study area display lateral migration
and vertical stacking of multi-phase sand bodies (Li et al., 2023).
The cumulative sand thickness ranges from 70 m to 120 m, with 3-7
vertically superimposed sand layers. Individual sand bodies exhibit
rapid thickness variations, ranging from 5 m to 42 m.

The
predominantly lithic arkose and feldspathic litharenite, with

sandstone reservoirs feature diverse lithologies,
minor occurrences of arkose and litharenite (see Figures 2,
3). Grain sizes are mainly medium to fine, with sporadic
coarse grains. The reservoir physical properties vary rapidly,
characterized by low porosity (7.1%-10.2%, median 8.44%)
and ultra-low permeability (0.03-5.22 mD, median 0.48 mD)

(Morad et al., 2010; Sima et al., 2017).
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3 Data and methods

This section provides an overview on data, e.g., geophysical, rock
physics and methods, e.g., pseudo-S wave construction and seismic
sedimentology that used in this paper.

3.1 Data

In this study, the newly collected 1,626.04km?* three-
dimensional three-component transverse wave (PS wave) seismic
data are used, combined with conventional pre-stack and post-stack
longitudinal wave (PP wave) seismic data. This multi-component
seismic survey was acquired using a P-wave explosive source
and DSU3 digital three-component receivers to simultaneously
record reflected wavefield information in XYZ directions. Wavefield
separation techniques were applied to obtain PP-wave and PS-wave
seismic profiles. The acquisition geometry was configured with 20 x
20 m receiver spacing, 6 s record length, and 2 m sampling interval.

Six wells (ZT1-ZT6) within the study area provide both P-
wave and S-wave acoustic logging data for multi-component
seismic-well-tie. Figure 4 demonstrates the synthetic seismic records
generated through convolution of ZT2 well log data with 35 Hz
and 25 Hz Ricker wavelets, respectively. The results exhibit strong
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TABLE 1 This is Physical and Mechanical Parameter Table of
Sandy Mudstone.

Lithology Porosity P- S- Den5|3y
velocity  velocity  (g/cm?)
(m/s) (m/s)
Mudstone - 4,215 2,291 2.65
4% 5,131 3,006 2.60
5% 5,038 2,964 2.59
6% 4,946 2,924 2.58
7% 4,853 2,885 257
8% 4,761 2,846 2.55
Sandstone 9% 4,669 2,808 2.54
10% 4,576 2,772 2.51
11% 4,484 2,736 249
12% 4,299 2,666 2.44
13% 4,207 2,633 2.40
14% 4,180 2,550 241

correlations (>0.85) with adjacent PP-wave and PS-wave seismic
traces, establishing a robust foundation for subsequent analysis of
sandbody seismic response characteristics through integrated well-
seismic interpretation.

Integrated well logging and rock physics ultrasonic experimental
results are compiled in Table 1, presenting elastic parameters of
sands with varying petrophysical properties and typical surrounding
mudstones within the study area. These data provide a critical
foundation for subsequent PP- and PS-wave seismic forward
modeling based on geological frameworks. Analysis reveals that
PP-wave velocities exhibit greater sensitivity to lithological and
petrophysical variations compared to PS-wave velocities. As porosity
increases from low to high values, P-wave velocities relative to
surrounding mudstones exhibit a sequential transition from high to
medium and then low velocities. Notably, no petrophysical variation
reduces sandstone S-wave velocities below those of mudstones.

3.2 Methods

The core of PS wave seismic data processing lies in post-
stack amplitude preservation. Key technical steps include static
correction, low-frequency noise suppression, anisotropic pre-stack
time migration, and absorption compensation. High-precision
amplitude recovery and consistency processing ensure that
amplitudes accurately reflect reflection coeflicients and lithological
variations.

For P-wave data, pre-stack AVO-compliant processing focuses
on high-fidelity amplitude recovery and correction. Critical
steps comprise surface-consistent amplitude compensation, signal
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enhancement via beamforming and Radon transform, high-
resolution velocity analysis, anisotropic pre-stack time migration,
time-variant spectral constraint deconvolution, and pre-stack
gather regularization. These procedures preserve offset-dependent
amplitude relationships and provide high-quality gather data for
subsequent pre-stack attribute analysis and seismic response pattern
recognition.

All processing workflows were implemented within the GeoEast
software platform.

Processed results demonstrate dominant frequencies of 35 Hz
for PP-waves and 25 Hz for PS-waves.

3.2.1 Pseudo-S-wave

Pre-stack PP AVO (Amplitude Versus Offset) technology is
grounded in elastic wave reflection theory, analyzing the variation
of seismic reflection amplitudes with incident angles (or offsets) to
infer lithological and fluid properties (Zhi et al., 2016; Pan et al.,
2016; Swan et al., 1993; Zhou et al., 2017; Gholami et al., 2018;
Liu et al,, 2025). Its theoretical foundation originates from the
Zoeppritz equations, which describe the nonlinear relationship
between reflection coeflicients and the P-wave velocity (V}), S-wave
velocity (V), and density (p) contrasts across geological interfaces.
To enhance practical utility, several approximations of the Zoeppritz
equations have been developed (Shuey, 1985; Wang, 1999; Zhang
and Li, 2013; Foster et al., 2010; Fatti et al., 1994; Castagna et al.,
1998). Among these, Shuey’s two-term approximation remains the
most widely adopted form due to its simplicity and applicability
(Shuey, 1985). It expresses the PP reflection coeflicient as Equation 1,
which remains valid for small-angle incidence (typically <30°).

RPP(G):R0 AgR, + AU) ]sm 6=P+Gsin’0 (1)
1
P=R, = E( ) )
Ay V(A Av
_ P _ s P
G= 21/ 41/2( VS ) 3)

Foster et al., 2010 [33] further demonstrated that when the
P-wave to S-wave velocity ratio (V,/V) approximates 2—a value
commonly observed in sand-shale sequences and mathematically
justified—Equation 3 can be simplified to Equation 4

)

The intercept P (Equation 2) represents the reflection coefficient

Ay, 1A% A
vo o 2\ v

P

G=- (4)

at vertical incidence, directly related to P-wave impedance contrasts
(AZP/ZP), and the gradient G (Equation 3) quantifies the amplitude
variation with angle, closely linked to Poisson’s ratio contrasts (Ao)
and S-wave velocity variations (AV /\_/S).

Combined attributes derived from intercept and gradient,
such as P-G, P-G cross-plots, and Poisson’s ratio contrasts,
enhance fluid sensitivity by integrating complementary information
(Swan et al, 1993). The subtraction of intercept and gradient
attributes (Equation 5) eliminates the P-wave velocity term (V)
in the formulation, leaving residual terms dominated by S-wave
velocity (V) and density (p) that characterize the variation
rate of S-wave impedance contrasts (AZS/ZS) between adjacent
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FIGURE 5
Comparison between AVO pattern derived from original angle gather and super-angle-gather. (a) Original angle gather; (b) Super-angle-gather; (c)
The cross plot between angle of incidence and amplitude. Blue line denotes the AVO pattern of original angle gather at 1402 m. Orange line denotes
the AVO pattern of super-angle-gather at 1402 m. Black in seismic trace denotes positive peaks and white denotes negative troughs.

geological layers. This method enables rapid derivation of attribute
volumes reflecting subsurface S-wave impedance variations through
prestack AVO analysis, serving as a cost-effective solution for
studying V heterogeneity in regions constrained to conventional PP
seismic datasets.

Ap

+ = (5)
p

Avg
S=P-G=—°
VS

The S in Equation 5 represents pseudo-S attribute, intercept-
minus-gradient attribute (P-G).

The discrepancy in two-way travel time between PS and PP
seismic events enables pseudo-s wave seismic attribute to serve
as an interpretative bridge through its waveform similarity with
PS waves and common moveout characteristics shared with PP
reflections. This dual-domain correlation mechanism enhances
multi-component seismic data integration by leveraging both
kinematic (travel time) and dynamic (waveform) matching criteria.

Equation 1 demonstrates that pre-stack seismic amplitude
exhibits an approximately linear relationship with the square of the
sine of the incidence angle (sin0). This relationship enables efficient
derivation of intercept and gradient attribute profiles by analyzing
amplitude variation with incidence angle in crossplots.

To mitigate noise and outlier effects while enhancing
computational efficiency for large-scale pre-stack seismic gathers,
this study employs a super-gather stacking-based AVO attribute
extraction method. Super-gathers are generated by stacking adjacent
reflection angle traces within pre-stack angle gathers prior to
amplitude-versus-offset (AVO) fitting. This approach significantly
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reduces data volume (typically orders of magnitude larger than
post-stack data) while preserving computational accuracy.

For practical implementation, angle gathers within 30° incidence
are stacked at 3° intervals, producing 10 super-gathers for AVO
attribute calculation (Figure 5). This method reduces computation
time by a factor of 5 compared to conventional processing.
Comparative analysis reveals less than 5% deviation in AVO fitting
curves between original gathers and super-gathers. Moreover, the
resulting intercept and gradient profiles show consistent spatial
trends and value ranges, with super-gather-derived attributes
exhibiting higher signal-to-noise ratio due to noise suppression and
improved linear fitting stability (Figure 6).

3.2.2 Seismic sedimentology

Seismic sedimentology, as an interdisciplinary field bridging
geophysics and sedimentology, utilizes seismic data to reconstruct
depositional systems, lithofacies distributions, and stratigraphic
architectures. Its theoretical foundation lies in the reinterpretation
of seismic reflections as non-chronostratigraphic markers,
emphasizing lateral lithofacies variations over strict isochronicity
(Zeng, 2017; Zeng et al., 2001; Liu et al., 2021; Zeng et al., 2022).

Among its core technologies, 90° phase rotation stands
out for enhancing thin-bed identification by aligning seismic
waveforms with lithological interfaces. Traditional zero-phase
seismic data often fail to resolve thin layers (<A/4, where X is the
dominant wavelength) due to waveform interference between
top and base reflections. By rotating the seismic phase by 90°,
the waveform symmetry shifts to the lithology center rather

than stratigraphic boundaries, effectively decoupling amplitude
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Comparison between intercept and gradient attribute profiles derived from original angle gather and super-angle-gather. (a) Intercept attribute profile

derived from original angle gather; (b) Intercept attribute profile derived from super-angle-gather; (c) Gradient attribute profile derived from original
angle gather; (d) Gradient attribute profile derived from super-angle-gather. Black in seismic trace denotes positive peaks and white denotes

negative troughs.

responses from bed thickness variations. Meanwhile, high-
frequency stratal slicing interpolates proportional surfaces between
chronostratigraphic markers to generate quasi-isochronous slices,
preserving depositional system geometries and resolving lateral
facies variations (Zeng, 2010; Zeng and Backus, 2005a; Zeng and
Backus, 2005b; Zeng et al., 2007).

3.2.3 Overall research framework

To effectively integrate PP-wave, PS-wave, and pre-stack pseudo-
S-wave attributes, this study establishes a hybrid workflow for joint
P- and S-wave seismic characterization of sand bodies, as outlined
below and in Figure 7.
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» Rock Physics-Driven Seismic Response Analysis. The workflow

initiates with rock physics modeling to quantify the distinct
seismic response characteristics of sand bodies under P- and S-
wave regimes. This step leverages the differential sensitivity of
PP- and PS-wavefields to lithology and reservoir quality.

e 90° Phase Rotation and Chronostratigraphic Framework

Construction. 90° phase rotation is applied to the PP-, PS-,
and pseudo-S-wave datasets, transforming seismic reflections
from impedance-boundary-centric (e.g., sand/mud interfaces)
to lithology-centric signals. This critical adjustment aligns
seismic troughs/peaks with sand body centers, mitigating
tuning effects in thin beds. Leveraging the phase-corrected
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Overall research framework.

pseudo-S-wave attribute volume as an interpretative bridge, a
high-resolution chronostratigraphic framework is established
through integration of regional stratigraphic divisions and well-
constrained seismic-to-well ties. The pseudo-S-wave dataset
compensates for PP-PS travel time discrepancies in anisotropic
media, enabling precise alignment of isochronous surfaces
across multi-component datasets.

High-Frequency Stratal Slicing for Sand Body Mapping.
High-frequency stratal slices (1-5ms sampling interval)
are extracted from the phase-rotated PP- and PS-wave
volumes to delineate lateral distributions of multi-phase
fluvial/deltaic This
depositional geometries by proportionally interpolating

sand  bodies. technique preserves
surfaces between chronostratigraphic markers, effectively
resolving lateral facies variations with <10 m vertical resolution.
Comparative analysis of PP- and PS-derived slices enhances
interpretation reliability, particularly in complex reservoirs
with overlapping channel systems.

Multi-Attribute Porous Sand Bodies Discrimination. Based on

precise sand body identification and horizon interpretation,
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porous and gas-bearing sand bodies are further identified
through systematic comparison of amplitude and phase
characteristics between PP- and PS-wave datasets.

4 Analysis of results

Figure 8a illustrates the dual-layer geological model established
in this study, where the overlying grey region represents surrounding
mudstone, and the underlying colored blocks denote channel sand
bodies with porosity ranging from 4% to 13%. The elastic parameters
of sands with varying porosity are assigned according to Table I,
with sand body thickness and width set at 20 m and 60 m,
respectively. The synthetic seismic profiles are generated by first
calculating PP- and PS-wave reflection coefficients at the interface
using the Zoeppritz equations, followed by convolution with Ricker
wavelets of 35 Hz (PP) and 25 Hz (PS) dominant frequencies.

Forward modeling results in Figure 8b reveal distinct seismic
response characteristics of sands with different petrophysical
properties on PP-wave profiles. As porosity increases, the seismic
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FIGURE 8
A simplified 3-layered model of P-wave and S-wave synthetics varies with sandstone porosity from 4% to 14%. (a) 3-layered model; (b) PP-wave
synthetics; (c) PP-wave synthetics. Black in seismic trace denotes positive peaks and white denotes negative troughs.

polarity at the sand top boundary transitions from a “peak-trough”
to a “trough-peak” configuration. This polarity reversal introduces
ambiguity in delineating sand top/base boundaries using PP-wave
data alone. Notably, sands with intermediate porosity (8%-9%)
exhibit minimal acoustic impedance contrast with surrounding
mudstones, resulting in attenuated reflections (amplitude <5% of
background) on PP-wave sections. These low-impedance-contrast
sand bodies demonstrate “dark spot” characteristics, challenging
conventional PP-wave interpretation.

In contrast, PS-wave modeling in Figure 8c demonstrates
stable seismic signatures regardless of porosity variations. Even
at porosities exceeding 12%, the PS-wave reflections maintain a
consistent “peak-trough” configuration at the sand top boundary
without polarity reversal. This stability arises from the S-wave
velocity contrast between sand and mudstone being less sensitive
to porosity changes compared to P-wave velocity. Statistical analysis
confirms that PS-wave peak amplitude variations remain below 50%
across the entire porosity range (4%-14%), enabling unambiguous
identification of sand boundaries.

Figure 9 presents a crossplot analysis of P-wave (Vp) and
S-wave (Vs.) logging velocities versus gamma ray (GR) values
for the Shaximiao Formation in wells ZT1 to ZT6. Blue data
points represent mudstone intervals, while red points denote
sandstone intervals. The analysis reveals significant overlap in
P-wave velocities between sandstone and mudstone, explaining
the highly variable post-stack seismic response at sandstone
top boundaries. In contrast, S-wave velocities exhibit a distinct
separation: sandstone velocities consistently exceed 2,400 m/s,
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whereas mudstone velocities remain below this threshold. This
robust Vs. differentiation provides a stable petrophysical basis for
the consistent peak reflections observed at sandstone tops in forward
seismic modeling.

Figure 10 displays the PP- and PS-wave seismic profiles
at the same location. The PS-wave data exhibit a superior
correlation with low-gamma sandstone intervals identified in
well logs, demonstrating a significant improvement in sandstone
identification accuracy compared to PP-wave data. Specifically,
the stratal slice shown in Figure 11 at the position of Sand
Body #7 reveals distinct fluvial channel geometries characterized
by PS-wave amplitude anomalies (e.g., peak amplitudes >15%
above background), whereas the PP-wave profile fails to resolve
clear morphological features due to tuning effects and impedance
ambiguities.

Figure 12 displays PS-wave, and pseudo-S-wave seismic profiles
at the same location. A high degree of waveform similarity is
observed between the PS-wave and pseudo-S-wave reflections.
Notably, the pseudo-S-wave attribute achieves higher vertical
resolution (35 Hz dominant frequency, equivalent to PP-wave
data) relative to PS-wave data (25Hz dominant frequency),
enabling differentiation of vertically stacked channel sands.
As shown in Figure 13, two different phases of sand bodies
are resolved as distinct seismic events on the pseudo-S-wave
attribute profile, whereas they remain indistinguishable on the
PS-wave profile.

However, the PS-wave data exhibit more amplitude focusing and
clearer lateral boundaries of sand bodies (“bright spots”) compared
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Thus, while pseudo-S-wave attributes enhance vertical Figure 14 compares the S-wave seismic profile and the 90°
resolution for multi-phase sand identification, their application  phase-rotated trace adjacent to Well ZT3 after calibration. The

Frontiers in Earth Science 10 frontiersin.org


https://doi.org/10.3389/feart.2025.1675581
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Dai et al.

10.3389/feart.2025.1675581

RMS Amplitude
350

2%
3000
7%
2500
2%
2000

I -
s
s
"

North

RMS Amplitude
3500

FIGURE 11

PP-wave (left) and PS-wave (right) amplitude slice. The slice is located in the red square shown in Figure 1. The red high-amplitude seismic anomalies
are interpreted as deltaic subaqueous distributary channels, based on an integrated well-seismic analysis.
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well penetrated three box-shaped fluvial sand bodies (Sand Bodies
#1, #2, and #3), each approximately 20 m thick. Notably, the
proximity of Sand Bodies #2 and #3 (vertical spacing: 13 m)
causes the top reflection of Sand Body #2 to merge with
the tuning response of Sand Body #3, resulting in interpretive
ambiguity in the original zero-phase dataset. The 90° phase rotation
aligns seismic reflection with lithologic bodies, enabling precise
vertical partitioning and interpretation. Post-rotation analysis
reveals distinct seismic reflections corresponding to individual sand
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bodies, with Sand Body #2 exhibiting a phase-reversed trough at its
top boundary (amplitude: —15% relative to background) and Sand
Body #3 displaying a coherent peak reflection (amplitude: +23%).
Following seismic-well calibration, framework horizon
interpretation was conducted under geological stratigraphic
constraints. High-resolution stratal slicing with a 1 m sampling
interval was applied to scan the 3D seismic volume, revealing
distinct amplitude anomalies corresponding to vertically stacked

fluvial channels of varying depositional phases. Notably,
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FIGURE 13

Comparative seismic profile for superimposed river channel identification. (a) PS-wave seismic profile; (b) pseudo-S-wave seismic profile. The red
rectangular area in the figure highlights superimposed channel sand bodies that are seismically unresolved on the PS-wave section due to limited
vertical resolution. In contrast, the pseudo-shear wave attribute profile clearly discriminates two distinct channel responses, revealing their sequential
depositional chronology. Black in seismic trace denotes positive peaks and white denotes negative troughs.

10.3389/feart.2025.1675581

while converted-wave (PS) seismic data coverage is often
limited due to acquisition equipment and cost constraints, the
integration of pseudo-S-wave seismic analysis enables refined
sand body characterization within conventional P-wave 3D
datasets using equivalent shear-wave attribute techniques. As
illustrated in Figure 15, a pseudo-S-wave seismic sedimentology
workflow was implemented across a contiguous P-wave 3D seismic
survey spanning over 10,000 km? in the Sichuan Basin, China.
This approach delineated deltaic channel sands covering more than
1,000 km?, with validation accuracy exceeding 95% based on over
100 drilled wells, thereby significantly supporting the expansion of
exploration and development blocks.

Building upon sand body phase division and lateral boundary
delineation, the integrated interpretation of multi-component
seismic data enables systematic identification of high-porosity
sands through comparative analysis of PP- and PS-wave seismic
responses. In the Shaximiao Formation of the study area, three
distinct seismic response patterns were classified based on porosity
variations (Table 2). High-porosity sands (>9%, Class I reservoirs)
exhibit a diagnostic “S-wave peak/P-wave trough” configuration,
where the top boundary corresponds to moderate-to-strong
peak amplitudes on PS-wave profiles but manifests as strong
trough reflections on PP-wave sections. This polarity reversal
phenomenon—attributed to P-wave velocity reduction in porous
gas-bearing sands—serves as a direct indicator of reservoir quality,
exemplified by Well ZT2, where a 34.3 m-thick Sand Body #1
demonstrates an average porosity of 9.7%. Moderately porous
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sands (7%-9%, Class II reservoirs) display “S-wave strong/P-
wave weak” signatures, characterized by prominent PS-wave peaks
but diminished PP-wave reflectivity, as observed in Well ZT4’s
24.2 m-thick Sand Body #2 with 7.6% porosity. Tight sands (<7%,
Class III units) lack reservoir potential despite showing coherent
peaks on both PP- and PS-wave profiles, reflecting lithologic
presence without effective porosity. The pre-stack P-G attribute
bridges PP/PS datasets by correlating PS-wave peaks with PP-
wave troughs, facilitating high-porosity sand mapping through
amplitude-thresholded geobody extraction.

The application of this technical workflow in the study area
successfully predicted the lateral distribution of channel sands and
high-porosity sweet spots within the Shaximiao formation. Multi-
component seismic joint prediction results demonstrate that #1
channel sands exhibit a NE-SW orientation shown in Figure 15a,
with intersecting distributary pattern shown in Figure 16b. The
prediction result is highly consistent with drilled wells. The efficacy
of this workflow was further validated by the newly drilled Well W1,
where a 1,250 m horizontal section achieved a 99% sand encounter
rate and an 87% reservoir encounter rate. The encountered sands
exhibit an average porosity of 9%, aligning closely with pre-drill
predictions. This high-fidelity match between seismic-derived sand
geometries (spatial accuracy >90%) and well data underscores
the robustness of multi-wave seismic integration in resolving
complex fluvial reservoir architectures, particularly in areas with
heterogeneous impedance contrasts.
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FIGURE 15
Amplitude attribute in a certain area of the Sichuan Basin, China. The slice is located in the lightblue square shown in Figure 1. The red high-amplitude

seismic anomalies are interpreted as deltaic subaqueous distributary channels, based on an integrated well-seismic analysis. (a) PP-wave amplitude
attribute; (b) pseudo-S-wave amplitude attribute.
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(a)the lateral distribution of channel sands

PP Instantaneous Amplitude

|7500m I

(b)the lateral distribution of high-porosity sweet spots

FIGURE 16

the red boundary in (a).

Plan View of River Channel Sand Bodies and High-Porosity Sweet Spots of Sand Body #4 in the Shaximiao Formation, ZT area, shown in
red square in Figure 1. (a) represents the distributary channels as red high-amplitude anomalies, and the outer boundary displayed in (b) is derived from

Conclusion

This study demonstrates that integrated multi-wave seismic
analysis significantly enhances the characterization of deltaic
channel systems by leveraging complementary petrophysical
sensitivities of PP- and PS-wave data. Key outcomes include: the
identification of PP-wave polarity reversal as a direct indicator of
porosity variation in sandstones; the stability of PS-wave responses
for robust lithology discrimination; and the complementary
resolution of pseudo-S-wave attributes in resolving thin-bedded
and stacked sand bodies. These findings collectively establish
a more reliable framework for reservoir prediction and reduce
interpretation uncertainty in complex depositional environments.

5.1 Distinctive multi-wave seismic
responses to sandstone petrophysical
properties

PP-wave and PS-wave seismic data exhibit fundamentally
different behaviors in response to variations in sandstone
petrophysical properties. PP-wave reflections show a pronounced
polarity transition at sandstone top boundaries: high-porosity sands
(>9%) generate strong trough reflections, whereas low-porosity tight
sands (<7%) produce peak reflections.

This contrast enables effective reservoir quality discrimination
and supports the prioritization of high-porosity, prospective zones.
In contrast, PS-wave responses remain polarity-stable across varying
porosity conditions, consistently exhibiting peak reflections at sand
top interfaces.

This
amplitude attributes for lithologic identification and channel sand

invariance underscores the robustness of S-wave

discrimination, independent of fluid or porosity effects.
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5.2 Complementary resolution and
interpretative advantages of derived
pseudo-S-wave attributes

Both PS-wave and pseudo-S-wave attributes exhibit amplitude
responses that correlate systematically with porosity variations. PS-
wave data provide exceptional lateral resolution, enabling precise
delineation of channel margins and geomorphic features.

Meanwhile, pseudo-S-wave attributes, derived from pre-stack
AVO inversion, achieve higher vertical resolution (dominant
frequency ~35 Hz compared to ~25 Hz for PS-wave), making them
particularly effective for identifying thin interbeds and vertically
stacked sand phases.

Furthermore, since pseudo-S-wave attributes are computed
directly from PP-wave gathers, they circumvent the temporal and
phase misalignment challenges typical of conventional PP-PS data
integration, thereby serving as an efficient interpretative bridge
between acoustic and elastic seismic domains.

5.3 Enhanced reservoir characterization via
multi-wave seismic sedimentology

The
significantly improves the characterization of deltaic channel

integration of multi-wave seismic sedimentology
systems, especially in identifying thin-bed reservoirs. Techniques
such as 90° phase rotation and stratal slicing enhance the
alignment between seismic amplitudes and lithologic boundaries,
facilitating more accurate sand-body mapping and depositional
environment interpretation. However, the reliability of pseudo-
S-wave attributes is strongly dependent on the quality of pre-
stack data: only amplitude-preserved gathers with sufficient offset

coverage (>40-fold) and signal-to-noise ratio (>2.0) yield stable
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shear impedance estimates. Suboptimal data conditions—such
as noise contamination, limited offset, or improper amplitude
recovery—amplify uncertainties in AVO interpretation and may
lead to erroneous fluid or lithology predictions.

5.4 Implications for data processing and
future applications

These findings highlight the critical importance of robust pre-
stack data conditioning—including amplitude compensation, noise
suppression, and gather regularization—in mitigating interpretation
risks and maximizing the value of multi-wave seismic analysis.
Future efforts should focus on optimizing angle-dependent
inversion workflows and incorporating rock physics constraints to
further improve the quantification of reservoir properties. When
properly validated, multi-wave seismic sedimentology provides
a powerful framework for reducing interpretation ambiguity
and enhancing predictive accuracy in complex sedimentary
basins.

The comparative analysis reveals that this research introduces
significant academic innovation by integrating 3D multi-
save seismic sedimentology and quantitative morphometrics
to characterize fluvial systems, surpassing the conventional
2D stratigraphy the qualitative geomorphic
approaches (Zeng et al., 2015; Harishidayat et al, 2025). This
methodology enables high-resolution mapping of single-story

seismic and

channel bodies and their scaling relationships, providing novel
insights into sediment transport mechanisms and reservoir
heterogeneity. Application superiority is demonstrated through
enhanced reservoir modeling, optimized well placement based
on meander belt dimensions, directly impacting hydrocarbon
recovery and de-risking exploration in complex siliciclastic
basins.

6 Featured application

This study presents a novel multi-wave seismic sedimentology
workflow for efficient tight sandstone reservoir characterization.
The methodology is particularly valuable for hydrocarbon
exploration in low-porosity, heterogeneous systems with sparse
well control, enabling rapid 3D seismic interpretation to identify
prospective areas.
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