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Vegetation obscures critical rock‐mass features on steep slopes, degrading the 
reliability of structural surface interpretation from point clouds. We propose 
a fast vegetation‐filtering approach tailored to high‐steep, vegetated rock 
slopes. The method aims to suppress vegetation noise while preserving 
terrain points essential for structural analysis. We first perform dual-channel 
dimensionality reduction by combining Principal Component Analysis (PCA) 
on spatial coordinates with the Red–Green Difference Index (RGDI) from RGB 
values, then apply K-means clustering for segmentation. A hierarchical grid plus 
local plane fitting is used to select vegetation seed points; distances to the fitted 
plane guide seed assignment and subsequent cluster-level filtering. To prevent 
over-filtering, a preservation mechanism based on the 3σ rule retains 5%–32% 
of points near the seed-point distance threshold. The method was evaluated 
on a rugged, vegetation-covered slope at Tiantai Mountain (Zhejiang, China) 
acquired with a Topcon GLS-2000 (384,663 points). The effectiveness of the 
filtering results is evaluated using class error, Ie, IIe and total error Ae. Comparing 
with other algorithms, it is found that the class error, Ie is 7.79%, the class error
IIe is 4.34%, and the total result is limited to 6.53%. By jointly leveraging spatial 
and spectral cues with grid-wise plane fitting and a preservation guarantee, the 
approach effectively suppresses vegetation noise while retaining terrain detail 
needed for downstream tasks (e.g., structural plane interpretation). The results 
indicate improved filtering accuracy and robustness for high-steep terrains 
relative to traditional methods.
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K-means clustering, three-dimensional point clouds, vegetation removal, filtering 
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 1 Introduction

Rocky high steep slopes are among the most dangerous disaster-causing geological 
bodies in large-scale engineering projects, like water conservancy and hydropower projects, 
railway tunnels, and metal mines, and so on. The internal stability of some of these 
slopes is poor and poses safety hazard, such as landslides and mudslides (Zheng et al., 
2021; Zheng et al., 2024), posing threats not only to the lives of local residents and 
construction workers but also impeding geological investigation (Zhao et al., 2023) and
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surveying efforts (Jia et al., 2018). The stability of the rock mass is 
governed by its characteristics, making it crucial to acquire detailed 
information about the surface structure of the rocks in order to 
accurately understand the stability of high steep slopes.

In particular, the selected study area features complex geological 
conditions, steep terrain, and dense vegetation coverage, which 
pose significant challenges to traditional field-based structural 
interpretation. These characteristics make it a representative case for 
testing automated filtering and structural plane (Zhou et al., 2024) 
recognition methods in real-world slope environments.

However, the traditional approaches of obtaining information 
typically rely on field measurements by geological survey personnel, 
requiring pre-formulated survey routes. This approach has several 
drawbacks, including the difficulty of predicting on-site risks, 
significant manpower and time consumption. The integration of 
three-dimensional laser scanning and Unmanned Aerial Vehicle 
(UAV) technology offers a flexible solution for rapidly and accurately 
acquiring crucial surface data of geological structures. However, 
the presence of extensive vegetation cover (Tingting et al., 2023) 
on the rock surface often obscures ground points, resulting 
in their omission from the actual results. Effectively separating 
vegetation noise points while preserving fundamental rock structure 
characteristics, and simultaneously ensuring the retention of ground 
points, represents a pressing challenge in current research.

Point cloud filtering is typically the first step in point cloud 
processing, aimed at addressing irregularities in point cloud 
density, noise effects, and the presence of discrete points that 
require processing due to occlusion. Currently, there are various 
methods available for filtering point cloud data. These methods can 
be broadly categorized as follows: the digital morphology-based 
filtering algorithm, the terrain slope-based filtering algorithm, 
the surface fitting-based filtering algorithm, interpolation-based 
filtering algorithms, as well as certain segmentation and clustering 
algorithms tailored for three-dimensional point cloud data 
processing. The digital morphology-based filtering algorithm was 
first introduced in 1993. It belongs to a class of nonlinear filtering 
methods (Giuseppe, 2023; Nie et al., 2017) developed based on 
digital morphology principles. Its morphological transformations 
mainly involve corrosion, expansion, open operation, and closed 
operation, which facilitate the discrimination between ground 
and non-ground points. While this algorithm is relatively 
straightforward and user-friendly, allowing for better preservation of 
intricate details in the original image, it faces challenges in handling 
undulating terrains or sudden, drastic changes. Additionally, it is 
susceptible to the influence of window size. The terrain slope-based 
filtering algorithm (Wan et al., 2018; Susaki, 2012) assesses the 
height difference between two points by comparing it to a specific 
threshold value derived from a priori knowledge estimation or 
manual training. This process enables the algorithm to make trade-
offs and determine the characteristics of the points. However, 
the accuracy of this algorithm’s assessment decreases in areas 
with significant terrain slope undulations or fracture conditions. 
The surface fitting-based filtering algorithm (Xing et al., 2017; 
Li et al., 2016; Mongus et al., 2012) utilizes data fitting models 
to create a local surface element that approximates actual terrain 
features. By comparing the distances between neighboring points 
and the surface against predefined value, it iteratively refines and 
reorganizes until the optimal solution is achieved. This algorithm 

has broader applications and operates at higher speeds, but selecting 
an appropriate window size poses challenge. Interpolation-based 
filtering algorithms primarily include the algorithm based on 
irregular triangular mesh (Błaszczak-Bąk et al., 2011; Zhang and Lin, 
2013a) and the linear prediction method (Mikita et al., 2013). The 
operation process of these algorithms is relatively straightforward, 
with a clear and simple core concept. However, the iterative 
cascading process can potentially accumulate errors in the outcome.

Furthermore, in the field of rock engineering, several intelligent 
algorithms are widely utilized for processing three-dimensional 
point cloud data. These algorithms encompass clustering algorithms, 
region growth methods, and the Hough transform method. In this 
context, clustering algorithms play a pivotal role in the intelligent 
processing of point cloud data, particularly in the identification 
of structural surface within rock formations. Among these, the 
clustering method based on normal vectors is widely employed. 
Notable examples include the C-means (Havens et al., 2012) and 
K-means clustering algorithms (Shi et al., 2024; Pugazhenthi and 
Kumar, 2020; Turkes, 2017; Xu, 2014; Chong, 2021; Tang et al., 2023; 
Mu et al., 2024). In this clustering algorithm, normal vectors serve as 
the fundamental data source for clustering, enabling the conversion 
of three-dimensional location information into two-dimensional 
location information that can measure normal vectors. Nevertheless, 
this approach may also lead to erroneous removal. The region 
growing method (Sihong et al., 2021; Jothiaruna et al., 2020; Yang 
and Zhai, 2019) initiates by manually or randomly selecting 
seed points. It then identifies points with similar attributes to 
the seed points in their vicinity and merges them into the 
region or set containing the seed points. This process continues 
iteratively until no remaining similar points are found, indicating the 
completion of region or set growth. However, this approach involves 
multiple neighborhood searches and iterations, which reduces 
the efficiency and poses challenges for swift three-dimensional 
target extraction. The Hough transform method is a fundamental 
technique for detecting geometric shapes in images. It achieves this 
by transforming the coordinate equations of points in point cloud 
data into polar coordinate space. Subsequently, a set corresponding 
to the particular shape is obtained through the Hough transform 
using techniques such as voting statistics and peak detection 
in polar coordinate space. Nonetheless, it is characterized by 
high computational complexity in both time and space, making 
it unsuitable for scenarios involving curved surface or irregular 
concave and convex surface.

As mentioned above, the traditional algorithm is characterized 
by a simple foundational theory but a complex frame structure. 
Consequently, this leads to excessively intricate logic cycles, thereby 
making the clustering algorithm within the three-dimensional 
intelligent algorithm more suitable for filtering vegetation point 
clouds. This method has the advantages of fast speed, good 
segmentation effect and strong adaptability. Additionally, the 
reduction of location information dimensionality plays a crucial role 
as it effectively alleviates the complexity level of the algorithm.

Although previous studies have proposed various filtering and 
classification techniques, many of these approaches are designed 
for urban environments or moderately sloped terrain. Their 
applicability to steep, vegetation-covered rock slopes remains 
limited, especially in preserving critical geological features while 
removing surface vegetation noise. This study addresses this gap 
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by introducing a dual-channel dimensionality reduction technique 
and an unsupervised clustering strategy tailored specifically for 
high-steep terrain, aiming to improve both filtering accuracy and 
structural feature retention.

This paper conducts a comparative study of existing algorithm 
and identifies areas for improvement in the proposed method. 
The new algorithm primarily utilizes Principal Component 
Analysis (PCA) to reduce the dimensionality of pre-processed 
original point cloud data. Subsequently, it applies the K-means 
clustering algorithm to analyze the point cloud data and address 
the aforementioned issues. This combined approach not only 
outperforms traditional methods in handling specific issues such 
as noise, but also addresses the limitations of existing methods in 
certain application scenarios, demonstrating strong adaptability and 
effectiveness.

The study is structured as follows: Firstly, it outlines the 
overall algorithmic process, providing detailed elaboration. Next, 
it describes the data selection for experiments and the methods 
employed for error evaluation. The results are analyzed both in a 
general sense and concerning discrete-value sensitivity. Finally, the 
effectiveness of the new algorithm in this paper is assessed through 
a comparison with other algorithms.

In light of the above, this study proposes an improved vegetation 
filtering method specifically designed for high-steep, vegetated rock 
slopes. By integrating Principal Component Analysis (PCA) and the 
Red-Green Difference Index (RGDI) for dual-channel dimensionality 
reduction, and applying K-means clustering to segment feature 
points, the method aims to enhance filtering accuracy and structural 
information preservation. The effectiveness of the proposed approach 
is evaluated through comparative experiments on a 3D-printed model 
derived from real geological data. 

2 Materials and methods

The algorithm presented in this paper is based on the utilization 
of Principal Component Analysis (PCA) and the Red-Green 
Difference Index (RGDI) to reduce the dimensionality of the original 
point cloud data. Subsequently, the K-means clustering technique is 
applied to cluster the data. Following that, vegetation seed points are 
identified by analyzing the differences in point cloud morphology 
distribution between rocks and vegetation. These identified seed 
points are then integrated with the clustering outcomes and the 
selection of vegetation noise points. In this section, we will describe 
six key aspects of the algorithm: the overall procedure, principal 
component analysis, K-means clustering algorithm and vegetation 
noise points filtering, point cloud data gridding, seed point and noise 
point selection, and preservation guarantee settings. 

2.1 Overall procedure

The algorithm is executed in the following steps: Firstly, a regular 
grid is established. Secondly, Principal Component Analysis (PCA) 
is applied to reduce the dimensionality of the positional information 
(x,y,z) in the original point cloud data. The first column of data 
after dimensionality reduction was selected to be combined with 
the red-green difference index at each point, a two-dimensional 

FIGURE 1
Flowchart of a vegetation filtering algorithm using K-means clustering.

dataset is created, encompassing both positional and RGB color 
information for each point. Subsequently, the K-means algorithm 
is employed on this two-dimensional point cloud data. Then, 
leveraging slope information from the SPF algorithm (Yan et al., 
2021) and incorporating the concept of plane fitting, each grid is 
divided into a two-tiered grid to select the lowest points. The four 
lowest points are fitted to a plane using the least squares method. 
The distance from each point in the grid to the fitting plane is 
calculated, and the point with the largest distance is selected. It is 
then determined whether the point belongs to the ground. If it is 
classified as a non-ground point, it is chosen as a vegetation seed 
point. Based on the cluster number of the vegetation seed point 
obtained from the cluster analysis, all points belonging to the same 
cluster within the grid are identified as non-ground points. These 
steps are repeated until the data in the grid meet the required criteria. 
The flowchart of the algorithm is illustrated in Figure 1.

The integration of spatial information and color information 
for dual-factor filtering aims to address the limitation of relying 
solely on the red-green difference index, which provides a single 
basis for judgment. This approach is designed to preserve as much 
vegetation-related point cloud data as possible that reflects the 
surface morphology of the rock mass. By doing so, subsequent 
point cloud processing tasks—such as the generation of digital 
surface models (DSM) and the intelligent identification of structural 
planes—can better reflect real-world geological conditions. 

2.2 Principal component analysis

PCA is a statistical method widely used in dimensional 
reduction in mathematics and has extensive practical applications. 
It is employed in various disciplines, including demography, 
quantitative geography, molecular dynamics simulation, 
mathematical modeling, and mathematical analysis. It is a frequently 
utilized tool for multivariate analysis (Lin and Du, 2013).
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In the context of processing point cloud data in rock 
engineering, the PCA method can be applied to transform linearly 
uncorrelated location information (x,y,z). Then, based on the fact 
that the first principal component reflects the largest difference in 
the group of data, the algorithm in this chapter selects the first 
principal component as one of the data sources for the subsequent 
calculations.

The process of conducting principal component analysis on 
the location information (x,y,z) of point cloud data involves the 
following steps:

First, the three-dimensional raw position information data X =
x,y,z = (x1,x2,x3), which consists of ‘n' point cloud data, is subjected 
to normalization. Equation 1 used for this purpose is as follows:

Zij =
xij − xj

√sj
, i = 1,2,…,n; j = 1,2,3 (1)

Among them, xj =
∑n

i=1xij

n
 and s2

j =
∑n

i=1(xij−xj)
2

n−1
, and obtain the 

normalization matrix Z from the above equation.
Then, a matrix of correlation coefficients needs to be obtained. 

The following Equation 2 is used:

R = [rij]pxp =
ZTZ
n− 1

(2)

Among them, rij =
∑n

t=1xtixtj

n−1
(ⅈ, j = 1,2,3), and find the correlation 

coefficient matrix R according to the above equation.
Finally, the eigenvalues λj and the corresponding 

eigenvectors bj of the correlation coefficient matrix R are 
solved using the characteristic equation |R− λIp| = 0. And the 
standardized indicator variables were transformed into principal 
components using Equation 3:

Uij = zT
i bj (3)

Where zi is the ith row of the normalization matrix. The resulting 
principal component matrices U = (U1,U2,U3), U1 are denoted as 
the first principal component, U2 as the second principal component 
and U3 as the third principal component. In general, U1, the 
largest of all linear combinations, is selected instead of the location 
information (x,y,z) as the basis for subsequent calculations. In other 
words, U1 is obtained by dimensionality reduction of the location 
information using principal component analysis. 

2.3 K-means clustering algorithm and 
vegetation noise points filtering

2.3.1 Theoretical background of K-means 
clustering in rock engineering

Clustering is an unsupervised learning technique that organizes 
data points into groups based on their similarity. Among various 
clustering algorithms, K-means clustering is widely adopted due 
to its simplicity and computational efficiency. The basic principle 
involves partitioning a dataset into K clusters by minimizing the 
intra-cluster variance. The algorithm begins by randomly selecting 
K initial centroids, assigning each data point to the nearest centroid 
based on a chosen distance metric, and iteratively updating the 
centroids until convergence. The termination criteria may include 

minimal changes in cluster membership, minimal shifts in centroids, 
or minimization of the total intra-cluster distance (Sud et al., 2020).

In rock engineering, geological structural planes—formed 
through processes such as sedimentation, tectonic activity, and 
weathering—introduce spatial discontinuities, inhomogeneities, 
and anisotropies within the rock mass. These discontinuities 
significantly affect the mechanical behavior and failure mechanisms 
of rock slopes. Therefore, accurate extraction of structural planes 
from point cloud data is of critical importance. K-means clustering, 
due to its robust partitioning capabilities, provides a practical 
and effective approach for classifying spatial features in rock-
mass datasets. 

2.3.2 Implementation of K-means clustering for 
vegetation noise filtering

In this study, K-means clustering is employed to filter 
vegetation noise points from the point cloud data. The raw data, 
consisting of six-dimensional vectors (x,y,z, r,g,b) is transformed 
into a two-dimensional feature space (X1,X2) through a dual-
channel approach. Specifically, Principal Component Analysis 
(PCA) is applied to spatial coordinates to derive X1, capturing 
major orientation trends, while the Red-Green Difference Index 
(RGDI) is computed from RGB values to form X2, enhancing 
vegetation color contrast. The K-means clustering is implemented 
as shown in Equation 4:

[idx,C, sumd,D] = kmⅇans(X,K) (4)

In this study, the number of clusters K for the K-means 
algorithm was empirically set to 6, which aligns with the expected 
classification of surface features into categories such as low 
vegetation, high vegetation, bare rock, and noise. The choice of 
K = 6was guided by preliminary tests and prior studies, which 
demonstrated that clustering with 5 ≤ K ≤ 8typically yields stable 
results in vegetation filtering tasks involving spatial and spectral 
features of point clouds. Xu et al. (Simoniello et al., 2022) and 
Zhang et al. (Chen et al., 2024) both employed similar clustering 
scales in their segmentation of vegetated terrain, and their results 
support the efficacy of this cluster number in balancing classification 
granularity and computational efficiency.

In this context, K represents the number of classes into which 
the original data set is divided and must be an integer; X = (X1,X2), 
X1 represents the location information reduced to one-dimensional 
data by PCA; X2 denotes the RGDI of RGB color information; i dx
is a vector that stores the cluster labels of the point clusters to which 
each point cloud data belongs after clustering analysis of the original 
data set. C is a matrix that stores the cluster center coordinates of 
the ‘K’ point clusters, in this algorithm a matrix of K rows and 
two columns; sumd is a vector that stores the sum of the distances 
of all points within a point cluster to the cluster center of the 
corresponding point cluster; D is the matrix that stores the distance 
of each point to the cluster center of all point clusters respectively. 

2.4 Point cloud data gridding

The original point cloud data lacks topological connectivity 
relationships and associated structural information, which makes 

Frontiers in Earth Science 04 frontiersin.org

https://doi.org/10.3389/feart.2025.1680510
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guan et al. 10.3389/feart.2025.1680510

FIGURE 2
Point cloud data gridding. (a) First-level gridding: The original point cloud is partitioned into coarse grid cells based on the spatial extent. Each red dot 
represents a point within the 3D point cloud. (b) Second-level gridding: Each first-level cell is further subdivided into finer sub-grids to enhance local 
plane fitting accuracy. Blue dots indicate points selected for local surface fitting in each sub-grid.

it disorganized and difficult to process. Therefore, after obtaining 
the point cloud data information using a three-dimensional laser 
scanner, the initial step is to generate a regular grid to mesh the raw 
point cloud data to homogenize the point cloud data.

Gridding is a commonly used method for processing point cloud 
data. In simple terms, it involves placing the point cloud data into 
a pre-divided regular grid. This allows for later processing, where 
the grid is treated as a unit for tasks such as chunking or semantic 
segmentation. Gridding is typically performed in either two or 
three dimensions. In this algorithm, a square grid is employed to 
create a two-dimensional grid surface. The grid is divided without 
considering other information except (x,y). In order to avoid 
excessive computation, the grid spacing is determined according 
to the density of the point cloud, and the point cloud data is now 
divided into first level of grid. Figure 2a illustrates the results of the 
first-level gridding of a set of point cloud data.

After partitioning the first-level grid, the second-level grid is 
subdivision to achieve the highest accuracy in fitting the ground 
plane. The procedure begins by dividing the first-level grid into four 
blocks, resulting in the creation of a new second-level grid. The 
lowest point within each second-level grid is then identified as the 
seed point for the ground by z-coordinate, as shown by the blue dots 
in Figure 2b. The grid division lines are defined by Equations 5, 6:

Xz =
xmax′ + xmin′

2
(5)

Yz =
ymax′ + ymin′

2
(6)

The grid resolution in the first-level gridding was set to 0.1 m, 
which corresponds to approximately twice the average point spacing 
of the input dataset. This choice ensures sufficient granularity for 
local surface fitting while maintaining computational efficiency. 
Similar grid resolutions have been applied in terrain filtering tasks 
for airborne and terrestrial LiDAR data. A coarser grid size would 

risk missing finer structural details, while overly fine grids increase 
the risk of overfitting and computational burden.

In this context, Xz represents the x-coordinate of the vertical 
dividing line, while Yz denotes the y-coordinate of the horizontal 
dividing line. Additionally, xmax

′, ymax
′, xmin

′ and ymin
′ refer to the 

maximum and minimum values of (x,y) within the point cloud data 
of the corresponding level grid. Figure 2b illustrates the outcomes 
obtained from the second-level gridding process applied to a set of 
point cloud data. 

2.5 Seed point and noise point selecting

2.5.1 Theoretical background: seed point 
selection and plane fitting

In point cloud processing, identifying and eliminating 
vegetation noise is crucial for the accurate extraction of terrain 
features. A common approach involves selecting seed points based 
on the geometric deviation of points from a locally fitted plane. 
The plane is typically computed using a least squares regression of 
selected sample points.

The local fitting plane is expressed by Equation 7:

Z = aX+ bY+ c (7)

The parameters a, b and c are calculated using the least squares 
method. Subsequently, the formula for determining the distance 
between each point in the primary grid and the corresponding fitting 
plane is given Equation 8:

si =
|axi + byi − zi + c|

√a2 + b2 + 1
(8)

The distance from each point in the traversal level grid to the 
fitting plane is denoted as si. The three-dimensional coordinates of 
each point in the grid are represented by (xi,yi,zi). The parameters 
a, b and c are determined using the least squares method.

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1680510
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Guan et al. 10.3389/feart.2025.1680510

Subsequently, the discretization of the distance can be obtained 
using the following Equation 9:

STD = √
∑n

i=1
(xi − x)2

n− 1
(9)

Points that deviate significantly from the fitted plane may 
indicate the presence of vegetation or other outliers. Identifying such 
points allows for the designation of vegetation seed points, which 
can guide subsequent noise filtering. 

2.5.2 Implementation of SPF-Based vegetation 
noise filtering in this study

In this study, a hierarchical grid-based method is employed 
for vegetation noise identification. The Surface Projection Fitting 
(SPF) algorithm is a local adaptive filtering technique that identifies 
vegetation by measuring point-wise deviations from a fitted terrain 
surface. It is particularly effective for steep, rugged slopes where 
elevation-based global filters may fail.

After establishing a second-level grid over the point cloud, 
the first step is to assess whether vegetation noise exists in 
the corresponding first-level grid. To aid in manual validation, 
CloudCompare software is used to visualize and remove obviously 
noise-free areas.

Following the Surface Projection Fitting (SPF) algorithm (Yang 
and Zhai, 2019), the four lowest points in each second-level grid are 
selected to construct a local plane using the least squares method. 
This approach has been experimentally proven to be effective in 
filtering low vegetation while preserving steep terrain, making it 
highly suitable for applications involving complex topography.

If vegetation noise is detected in a first-level grid, seed points 
are identified by selecting the point with the maximum vertical 
deviation from the fitted plane. This point is assigned as a vegetation 
seed point. Subsequent vegetation points are then identified and 
clustered based on their proximity to the seed point and shared 
cluster label in the earlier K-means segmentation stage.

This process ensures a focused removal of vegetation points 
while minimizing the risk of over-filtering terrain features essential 
for structural surface extraction. 

2.6 Preservation guarantee settings

In this study, the preservation guarantee mechanism is inspired 
by the normal distribution. The introduced vegetation filtering 
algorithm utilizes PCA and K-means clustering algorithm. The 
retention threshold ρ, ranging from 5% to 32%, was selected 
based on the empirical 3σ rule from Gaussian distribution 
statistics, ensuring that the majority of terrain points (up to 
95%) are preserved while excluding extreme outliers commonly 
representing vegetation. Similar percentile-based approaches have 
been adopted by Meng et al. (2010) in ground filtering algorithms. 
The specific interval was further validated by comparing the 
filtered outputs with manually labeled reference datasets to ensure 
optimal balance between terrain preservation and vegetation noise 
suppression.

Once the vegetation seed points are determined, the selection 
of vegetation noise points is based on the number of clusters to 

which the points belong after clustering and segmentation. After 
identifying the cluster containing the vegetation seed point, we 
apply the fundamental concept of the “68–95-99.7 rule” of normal 
distribution, commonly known as the “rule of thumb”. If a set of 
data conforms to this rule, 68% of the values falls within the first 
standard deviation, 95% within the second standard deviation, and 
99.7% within the third standard deviation.

To prevent excessive filtering and considering the random 
distribution of the point cloud data, we introduce a parameter 'si'. We 
establish a criterion: if the 'si' value of a noise point, selected based 
on the cluster of points containing the vegetation seed points, is less 
than 5%–32% of the 'si' value of the corresponding vegetation seed 
point, it is considered part of the rock mass point cloud data. These 
points are retained and included in the subsequent calculation cycle.

Due to the complexity of the rock mass engineering and the 
varying surface conditions of the rock masses to be collected, the 
point cloud data in the first-level grid tends to be more scattered 
compared to other grids. Therefore, it is crucial to implement a 
specific judgment mechanism to prevent excessive filtering. Since 
this paper focuses on low and medium-density vegetation areas, 
the point cloud data related to rock masses constitute a significant 
portion. Removing too many noise points at once can result in 
excessive filtering. Hence, it is essential to establish a percentage to 
prevent this scenario. 

2.7 Data selection

This study focuses on point cloud data collected from a rugged 
and steep slope located within Tiantai Mountain, situated in the 
east-central area of Zhejiang Province, China (refer to Figure 3). 
The region is characterized by a multitude of peaks, ranging in 
elevation from 380 to 504 m. The terrain predominantly exhibits a 
steep cliff-like topography, characterized by sharp inclines and well-
developed unloading joints. The exposed strata demonstrate relative 
homogeneity, with faults dominating the geological structure. The 
rock joints, primarily tectonic in nature, are highly developed and 
densely distributed. Vegetation of various types, including trees, 
grasses, and a small amount of moss, can be found on the slope.

The selected slope showcases a significant variation along the 
x, y and z axes, with measurements under the relative coordinate 
system indicating a difference of 16.72 m, 12.96 m, and 24.15 m, 
respectively. Moreover, the maximum slope angle exceeds 80°. For 
this paper, the TopconGLS-2000 three-dimensional laser scanner 
was employed to capture the point cloud data, resulting in a total 
of 384,663 points. 

2.8 Methods for error evaluation

At present, in the field of three-dimensional point cloud, the 
research in the direction of vegetation filtering is still in progress, and 
manual filtering of vegetation point cloud is still recognized as the 
most accurate and widely used method. Therefore, new algorithms 
are proposed to verify the feasibility of the algorithms based on the 
results of manually filtering the vegetation point cloud. The accuracy 
of manually filtering the vegetation point cloud is limited by the skill 
of the operator, and the workload is relatively large, and the time 
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FIGURE 3
(a) Map of study area (b) General view of slope.

spent is very large, so the algorithm in this paper has a large amount 
of workload to test.

For the qualitative evaluation of the algorithm’s performance, 
the results obtained by the proposed method are compared with 
those derived from manual vegetation point cloud filtering. This 
comparison assesses the effectiveness of noise removal as well as the 
preservation of rock mass structural features.

In this study, the effectiveness of the filtering results is assessed 
quantitatively through the utilization of three error evaluation 
metrics: class error Ie, class error IIe and total error Ae. These metrics 
are calculated using the following formulas (Ding et al., 2019):

{{{{{{
{{{{{{
{

Ie =
OFP
GP
× 100%

IIe =
IFP
OP
× 100%

Ae =
OFP+ IFP
GP+OP

× 100%

(10)

In this context, GP represents the count of ground points, OP
represents the count of non-ground points, OFP represents the count 
of points filtered as ground points, and IFP represents the count of 
points misclassified as ground points. It is evident that class error Ie
primarily indicates the occurrence of mistakenly removing ground 
points. On the other hand, class error IIe highlights the presence of 
residual vegetation points. Therefore, the combination of class error 
Ie and class error IIe reflects the algorithm’s applicability. The total 
error Ae assesses the overall error in the filtering results, thereby 
indicating the feasibility of the algorithm (Ding et al., 2019). 

3 Results

3.1 Experimental results

The value of K is set to 20, the discrete limiting value is set 
to 0.85, and the discrete value for determining the vegetation seed 
points using a small window is set to 50% of the overall discrete 
limiting value. Figures 4a,b showcase the target slope maps obtained 
through the TopconGLS-2000 three-dimensional laser scanner. To 
separate the vegetation and rock point clouds, the CloudCompare 

software was employed manually. The results of this separation are 
represented by red and blue colors, as depicted in Figures 4c,d.

Upon applying the proposed filtering algorithm, which 
integrates K-means clustering, the visualizations of the extracted 
vegetation and point clouds after vegetation removal are presented 
in Figures 5a,b. Additionally, Figures 5c,d display the manually 
marked points.

By employing Equation 10, the class error Ie, class error IIe and 
total error Ae are calculated. The analysis of the filtering results yields 
the following values: Ie = 7.72%, IIe = 6.86% and Ae = 7.40%.

In the above figure, the blue color represents the vegetation 
point cloud and the red color represents the rock body point cloud, 
the more blue points are filtered out, the better the result. From 
Figures 4, 5, the following points can be concluded:

First, the point cloud data model constructed from the 
original point cloud data Figures 4a,b cannot show the structural 
surface characteristics, there is vegetation masking, so filtering 
processing is needed.

Secondly, Figures 4c,d show the data models constructed from 
the point cloud data obtained by manual filtering. It can be seen 
that although most of the vegetation noise is removed, the method 
is limited by the fact that it is difficult to remove the vegetation point 
cloud in some special terrains due to manual editing.

Finally, the model generated by the proposed algorithm 
is shown in Figure 5. Most of the vegetation point clouds have been 
successfully removed, while the rock point cloud data that accurately 
represent the surface characteristics of the slope are well preserved. 
Only a small number of scattered vegetation points with minimal 
impact remain, indicating that the filtering performance is effective 
and reliable. 

3.2 Interpretation results of the rock 
surface structure

The original point cloud and the K-means algorithm filtered 
point cloud were substituted into the rock structural surface 
identification program developed by Wu Faquan’s team (Kong et al., 
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FIGURE 4
The experimental results prior to filtering. In (a), the rocky and highly steep slopes of Tiantai Mountain are captured from a front view. Similarly, (b)
presents the same slopes but from a side view. The manual separation of the red and blue marker maps can be observed in (c,d), providing a front and 
side view respectively.

FIGURE 5
The experimental results obtained after applying the filtering process. The front view of the algorithmically filtered effect map is shown in (a), while (b)
presents the side view of the same map. Additionally, (c) exhibits the front view of the algorithmically filtered red and blue marker maps, while (d)
showcases the side view of the red and blue marker map after undergoing algorithmic filtering.

2020), and the same parameters were selected to decipher the two 
structural surface classification information, as shown in Figure 6.

After applying the vegetation filtering algorithm, which is based 
on K-means clustering (with K set to 15), to the point cloud data of 
the rock mass, the corresponding structural surface information of 
the rock mass can be obtained. This is illustrated in Figure 6b. The 
total discrete limit value for this filtering choice is set to 0.84.

The interpretation results show that, in the original 
unfiltered point cloud, 34 structural surface categories were 
identified. However, the gray-red point clouds—which account 
for approximately 97% of the total points—were not effectively 
classified, indicating significant overlap and noise. After applying 

the filtering algorithm, the point clouds exhibit markedly improved 
classification, with more distinct structural surface groupings and a 
substantial reduction in the number of small, scattered categories. 
This demonstrates the enhanced clarity and reliability of structural 
surface identification after vegetation noise removal.

By comparing the decoding results before and after 
implementing the vegetation filtering algorithm, it becomes 
evident that the presence of vegetation point cloud information 
significantly impedes the decoding of the rock mass. However, 
by utilizing the vegetation filtering algorithm proposed in 
this paper, there is a notable improvement in deciphering the 
structural surface information from the rock mass. Therefore, the 
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FIGURE 6
Results of rock structure surface interpretation. (a) Before vegetation filtering; (b) After vegetation filtering (C#1 represents the category index, with the 
number in parentheses indicating the quantity of point clouds).

vegetation filtering algorithm proposed in this paper has excellent
application results. 

3.3 Qualitative analysis

Firstly, manual filtering, K-means clustering, and PCA 
processing are performed. Subsequently, the processed data is 
screened and visualized using the CloudCompare software, thereby 
enhancing the clarity and intuitiveness of the final outcomes for 
improved evaluation.

Several crucial points need to be taken into consideration. 
Firstly, the model incorporates vegetation occlusion and data 
gaps, which can influence subsequent analysis results. Secondly, 
although the majority of vegetation noise points are successfully 
removed from the surface point cloud data, the complexity 
of the terrain presents challenges for the complete elimination 
of all vegetation points. As a result, some small protruding 
vegetation fragments remain in the filtered model. Moreover, 
vegetation point clouds in close proximity to rock formations 
may exhibit surface features such as small grass and moss. 
Therefore, retaining certain near-ground vegetation point cloud 
data during the filtering process can yield a more realistic 
representation, enhancing comprehensiveness. Lastly, by utilizing 
appropriate point cloud processing software to examine the 
vegetation-filtered point cloud data based on RGB color information 
and location information, coupled with K-means clustering, 
effective removal of scattered vegetation points is achieved. It 
is evident that the majority of scattered vegetation point clouds 
are successfully eliminated, while retaining the rock point cloud 
data that better captures the surface characteristics of rocky 
slopes, along with a portion of the vegetation point cloud data 
near the rocks. 

3.4 Sensitivity analysis and selection of 
discrete values

3.4.1 Sensitivity analysis of K-value
The effectiveness of this algorithm in filtering and the 

determination of the number of clusters through the K-value are 
influenced by the magnitude of the designated discrete value used 
to distinguish the presence or absence of vegetation. Therefore, as 
an initial step in the sensitivity analysis, the size of the discrete value 
was established based on the SRF algorithm, with a selected value 
of 0.85, as shown in Figure 7a and Table 1. The SRF algorithm is a 
vegetation filtering method proposed by our team that integrates 
spatial position and color information of point clouds. The core idea 
of the method is to identify vegetation seed points based on the 
spatial differences between rock surfaces and vegetation in the point 
cloud data. Subsequently, RGB color information is integrated to 
assist in the removal of vegetation noise and to enhance the overall 
filtering accuracy. This enabled a sensitivity analysis of the K-value 
setting. By applying various K-values for filtering and conducting 
error analysis on the multiple results (please note that the error 
analysis results are small, hence grid evaluation of the surface feature 
retention rate was not performed), the outcomes are presented in 
Table 2. The trend of changes in error analysis results caused by 
adjustments in threshold settings is illustrated in Figure 7b.

3.4.2 Overall sensitivity analysis of discrete limit 
values

Based on the aforementioned K-value analysis results, a value 
of K = 15 is selected to conduct a sensitivity analysis on the set 
discrete value. Recognizing that different overall discrete threshold 
settings can affect the filtering outcomes, a range of discrete 
values is employed for the filtering process. Subsequently, an error 
analysis is performed on the multiple outcomes obtained. The results 
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FIGURE 7
Trend plots of error analysis changes. (a) SRF algorithm; (b) New algorithm based on K-value. (b) demonstrates that with the gradual increase in the 
number of clusters (K-value), there is no identifiable pattern of change in the errors (Ie, IIe and Ae) in vegetation point cloud filtering. However, it can be 
observed that a higher or lower K-value does not necessarily result in improved outcomes. 

of this analysis are presented in Table 3. Additionally, Figure 8 
illustrates the trend of the error analysis results as the threshold 
setting is varied.

Figure 8 illustrates that increasing the overall discrete limit 
setting gradually reduces the proportion of incorrectly deleted 
ground points. This can be attributed to the preservation of ground-
hugging vegetation point clouds. At the same time, a higher overall 
discrete limit setting leads to a more pronounced presence of 
residual vegetation point clouds. Therefore, the overall discrete limit 
setting plays a crucial role in selecting vegetation points in the 

algorithm proposed in this paper. Before setting the overall discrete 
limit value at 0.84, the total error Ae decreases gradually as the overall 
discrete limit value setting. During this phase, the growth rate of 
residual vegetation points in the manually selected vegetation points 
is slower than the rate of reduction in misclassified ground points. 
However, when the overall discrete limit value setting exceeds 0.84, 
the overall misclassification ratio starts to increase. Additionally, the 
ratio of vegetation points in the manually selected vegetation points 
also increases. Notably, the growth rate of this ratio surpasses the 
rate of reduction in erroneously deleted ground points. 
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TABLE 1  SRF algorithm to analyze the results of filtering with different degrees of dispersion.

Overall discrete limits OFP (piece) IFP (piece) GP (piece) OP (piece) Ie (%) IIe (%) Ae (%) TZ (%)

0.75 187,337 1122 244,048 140,615 76.76 0.80 48.99 78.46

0.80 146,749 1862 244,048 140,615 60.13 1.32 38.63 86.15

0.81 137,876 1984 244,048 140,615 56.50 1.41 36.36 87.69

0.82 126,353 2191 244,048 140,615 51.77 1.56 33.42 90.77

0.83 110,233 2434 244,048 140,615 45.17 1.73 29.29 93.75

0.84 84,277 2756 244,048 140,615 34.53 1.96 22.63 95.24

0.85 36,106 5263 244,048 140,615 14.79 3.74 10.75 100

0.86 30,836 9497 244,048 140,615 12.64 6.75 10.49 100

0.87 25,293 14,185 244,048 140,615 10.36 10.09 10.26 100

0.88 20,805 19,861 244,048 140,615 8.52 14.12 10.57 100

0.89 15,960 26,284 244,048 140,615 6.54 18.69 10.98 100

0.90 11,558 31,084 244,048 140,615 4.74 22.11 11.09 100

0.95 4564 44,535 244,048 140,615 1.87 31.67 12.76 100

TABLE 2  Comparison of filtering results for different values of K.

K-value setting OFP (piece) IFP (piece) GP (piece) OP (piece) Ie (%) IIe (%) Ae (%)

5 13,833 12,028 244,048 140,615 5.67 8.55 6.72

8 22,959 5370 244,048 140,615 9.41 3.82 7.36

10 17,849 13,814 244,048 140,615 7.31 9.82 8.23

12 21,665 5492 244,048 140,615 8.88 3.91 7.06

15 18,918 6228 244,048 140,615 7.75 4.43 6.54

20 18,835 9642 244,048 140,615 7.72 6.86 7.40

25 19,852 9049 244,048 140,615 8.13 6.44 7.51

30 22,053 13,114 244,048 140,615 9.04 9.33 9.14

40 16,473 12,416 244,048 140,615 6.75 8.83 7.51

50 14,093 11,384 244,048 140,615 5.77 8.10 6.62

100 15,103 17,852 244,048 140,615 6.19 12.70 8.57

200 32,447 12,168 244,048 140,615 13.30 8.65 11.60

500 29,192 10,447 244,048 140,615 11.96 7.43 10.30

3.4.3 Selection of overall discrete limit values
To optimize the filtering process and achieve a balance between 

retaining surface features and minimizing total error Ae, the overall 
discrete limit is set at 0.84. The results of the error analysis show 

Ie = 7.79%, IIe = 4.34% and Ae = 6.53%. From the error analysis, it 
can be observed that the filtering results of the algorithm in this 
paper, the smaller Ie indicates that the ground points are erroneously 
deleted more, and the smaller IIe indicates that there are a small 
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TABLE 3  A comparison of filtering results for K = 15 with different degrees of dispersion.

Overall discrete limit values OFP (piece) IFP (piece) GP (piece) OP (piece) Ie (%) IIe (%) Ae (%)

0.8 70,616 0 244,048 140,615 28.94 0.00 18.36

0.81 53,339 0 244,048 140,615 21.86 0.00 13.87

0.82 36,333 2241 244,048 140,615 14.89 1.59 10.03

0.83 25,942 4396 244,048 140,615 10.63 3.13 7.89

0.84 19,006 6096 244,048 140,615 7.79 4.34 6.53

0.85 18,918 6228 244,048 140,615 7.75 4.43 6.54

0.86 15,193 10,828 244,048 140,615 6.23 7.70 6.76

0.87 10,034 16,100 244,048 140,615 4.11 11.45 6.79

0.88 8355 22,373 244,048 140,615 3.42 15.91 7.99

0.89 8134 29,867 244,048 140,615 3.33 21.24 9.88

0.90 8176 36,174 244,048 140,615 3.35 25.73 11.53

0.95 4896 51,657 244,048 140,615 2.01 36.74 14.70

1.00 2936 62,859 244,048 140,615 1.20 44.70 17.10

FIGURE 8
Trend plots of error analysis changes.

number of vegetation points omitted from the deletion. When 
the overall discrete threshold is set to 0.84, the filtering effect is 
demonstrated in Figures 9a,b. This process effectively removes a 
significant amount of vegetation noise points while incidentally 

eliminating a small number of rock mass point clouds. Despite this, 
the overall outcome of the filtering is considered satisfactory.

As shown in Table 3, when the overall discrete limit value 
is set to 0.81, no residual vegetation point cloud is observed, 
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FIGURE 9
Filtering effect plots for an overall discrete limiting value of 0.84 and K = 15. (a) Front view; (b) Side view.

FIGURE 10
Filtering effect plot for an overall discrete limiting value of 0.81 and K = 15. (a) Front view; (b) Side view.

resulting in error analysis values of Ie = 21.86%, IIe = 0%
and Ae = 13.87%. The error analysis indicates that there are 
currently no remaining vegetation point cloud data after the 
filtering process. However, a larger number of ground points 
have been filtered out, particularly those closely associated 
with the ground surface. This filtering outcome is visually 
represented in Figures 10a,b, demonstrating the successful removal 
of all vegetation-related point clouds while retaining a significant 
amount of ground point clouds. Nevertheless, it should be noted that 
this filtering process leads to a loss of information in the smoother
rock slope area.

After applying the K-means clustering algorithm to eliminate 
vegetation noise points, the original vegetation point cloud 
still contains scattered points, including a small number of 
ground points and residual vegetation noise points resulting 
from laser measurement characteristics. The presence of these 
residual vegetation noise points can be attributed to several factors, 
including measurement errors caused by external disturbances 
(e.g., wind-induced movement of vegetation), the accumulation of 
dust on vegetation surfaces, and the similarity in color features 
between residual vegetation and low-lying ground vegetation, 
which complicates their distinction during filtering. However, it is 
important to note that these residual vegetation noise points are not 
completely empty. To further minimize their presence, hierarchical 
filtering can be employed prior to identifying the structural surface 

information of the rock mass. This additional step has minimal 
impact on the identification of the rock mass’s structural surface and 
the determination of parameters.

As shown in Table 3 and Figure 8, the overall error (Ae) 
decreases significantly as the discrete threshold increases from 0.80 
to 0.84, reaching a minimum of 6.53% at 0.84. This indicates 
optimal retention of rock surface points while effectively removing 
vegetation noise. When the threshold exceeds 0.84, Ae starts to rise 
again, reaching 17.10% at 1.00, primarily due to the preservation 
of low-lying vegetation points. Therefore, 0.84 represents a critical 
turning point in balancing the trade-off between vegetation removal 
and ground point preservation.

Similarly, among all K-values tested (Table 2), K = 15 yields the 
lowest total error (6.54%) and an acceptable balance between class 
I and class II errors, confirming its suitability for this dataset. The 
results show that improper selection of K (e.g., too small like K = 5 or 
too large like K = 200) can lead to elevated total errors and unstable 
filtering performance.

Furthermore, a comparative evaluation between our method 
and manual filtering showed that although manual filtering achieved 
slightly lower class I error (7.72% vs. 7.75%), it failed to remove 
complex terrain vegetation effectively, as shown in Figures 4c,d. 
This demonstrates the advantage of our algorithm in handling 
intricate slope environments, with improved reproducibility
and automation. 
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TABLE 4  Comparison of error analysis of other algorithms.

Filtering method Ie (%) IIe (%) Ae (%)

Slope method 4.65 23.89 5.35

Fitting method 5.19 43.09 6.59

RGDI algorithm (-0.0266) 16.96 14.39 16.02

SRF algorithm (0.85) 14.79 3.74 10.75

K-means clustering algorithm (K = 15) 7.79 4.34 6.53

4 Discussion

4.1 Algorithm comparison

In this study, the errors in point cloud data accuracy, actual 
imaging conditions, manual point selection, and other factors are 
denoted as Ie, IIe and Ae. The complexity of the mine slope 
gradient, which varies in reality, is closely examined and analyzed 
in relation to this study. The comparison and analysis are conducted 
comprehensively, taking into consideration the findings of other 
researchers (Ding et al., 2019; Zhang et al., 2013b; Wen et al., 
2023). The results are presented in Table 4 and Figure 11. The RGDI 
algorithm is based on the Red-Green Difference Index proposed by 
our team. It enhances the contrast between the reflectance values of 
the red (R) and green (G) spectral bands using a nonlinear stretching 
method to determine whether a given point belongs to vegetation.

The conventional vegetation filtering algorithm often makes 
incorrect judgments on point clouds, particularly when dealing with 
mine slopes, resulting in significant deletion of ground points. In this 
paper, a vegetation filtering algorithm is proposed, which utilizes 
K-means clustering based on error analysis results. The value of Ie
in this algorithm are comparable to those of the Slope and Fitting 
methods. However, when compared to the RGDI algorithm and 
the SRF algorithm, the class error Ie is significantly reduced. This 
reduction can be attributed to the steep rocky slopes investigated in 
this study, which is reflected in the algorithm’s high retention rate of 
ground points. Moreover, the algorithm demonstrates a small value 
of IIe in comparison to the traditional method in the table, indicating 
its effectiveness in removing noise points caused by green vegetation. 
Consequently, only a minimal number of residual vegetation point 
clouds remain. This advantage becomes particularly apparent when 
compared to the fitting method. Through a comparative analysis 
of the results displayed in point cloud processing software, it is 
evident that the proposed algorithm effectively exposes rock features 
without impeding the subsequent recognition of the structural 
surface of the rock mass. 

4.2 Analysis of advantages and limitations

In contrast to the slope method, the fitting method, and 
the RGDI threshold filtering algorithm, the algorithm proposed 
in this paper eliminates the reliance on a fixed threshold. 
Instead, it dynamically selects thresholds in a swift and flexible 

manner. Furthermore, the incorporation of a preservation guarantee 
mechanism significantly improves the retention rate of ground 
feature points and reduces over-filtering, leading to a remarkable 
enhancement in filtering effectiveness. When compared to the SRF 
algorithm, it demonstrates exceptional performance in removing 
vegetation points while preserving ground points.

The vegetation filtering algorithm presented in this study utilizes 
K-means clustering and undergoes comprehensive analysis to 
evaluate its overall performance and sensitivity to discrete values. It 
showcases outstanding efficacy in processing vegetation point cloud 
data, with its applicability extending to near-vertical steep slopes. 
Moreover, it effectively preserves the undulating characteristics of 
the rock mass’s structural surface, resulting in a superior overall 
filtering effect. 

5 Conclusion

This study focuses on the analysis of three-dimensional laser 
point cloud data obtained from the high and steep slopes of 
Tiantai Mountain. An innovative vegetation filtering algorithm 
utilizing K-means clustering was introduced. The major conclusions 
are as follows: 

1. The proposed algorithm utilizes Principal Component 
Analysis (PCA) to downscale the spatial location information 
and Red-Green Difference Index (RGDI) to downscale the 
RGB color information. This process effectively transforms 
the initially acquired six-dimensional point cloud data into 
two dimensions. Subsequently, the data is segmented using 
K-means clustering.

2. The vegetation filtering algorithm employing K-means 
clustering successfully isolates a significant number of 
vegetation noise points while preserving the essential 
structural attributes of the rock mass. K-means clustering 
groups point clouds based on their similar spatial and RGB 
information. Therefore, the choice of K-value does influence 
the filtering outcome. However, the sensitivity analysis 
conducted in this study reveals that, currently, no discernible 
pattern exists in determining its value.

3. In comparison to traditional algorithms, the vegetation 
filtering algorithm utilizing K-means clustering demonstrates 
substantial advantages in removing vegetation point clouds on 
steep slopes. Conventional methods like the slope method and 
fitting method exhibit suboptimal performance in vegetation 
removal. On the other hand, the proposed algorithm retains 
a considerable number of ground points while effectively 
filtering out a significant portion of the vegetation point clouds. 
This successful outcome further validates the feasibility of 
integrating RGB color information to address the vegetation 
filtering challenge across multiple dimensions on steep slopes.

4. When compared to the other algorithms discussed in this 
paper, the vegetation filtering algorithm utilizing K-means 
clustering excels in effectively removing a higher number of 
vegetation points while preserving a greater number of ground 
points. This addresses the issue faced by other algorithms that 
tend to remove a substantial portion of vegetation points along 
with more ground points.
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FIGURE 11
Comparative visualization of error analysis of other algorithms.

5. The algorithm presented in this study partially mitigates 
the issue of over-filtering in vegetation point cloud filtering. 
Because of the relatively sparse distribution of vegetation, 
during three-dimensional laser scanning, some ground points 
hidden by vegetation are captured. The proposed algorithm 
effectively processes this data, preserving the ground points 
while removing the vegetation point clouds. Additionally, this 
algorithm specifically focuses on point cloud data from areas with 
low to medium vegetation density, which constitutes a significant 
portion of the dataset. Therefore, the choice of treatment becomes 
crucial as the source of point cloud data significantly impacts the 
vegetation filtering approach in this study.

Although the proposed vegetation filtering algorithm based 
on K-means clustering demonstrates satisfactory performance in 
removing vegetation noise and preserving essential rock structural 
features, several limitations remain. First, the effectiveness of the 
algorithm is partly constrained by the spatial resolution and quality 
of the point cloud data. High-density vegetation or low-resolution 
scans may hinder accurate noise identification. Second, the selection 
of algorithmic parameters—such as the K value in clustering, 
the threshold for deviation from the fitted plane, and the grid 
size for seed point generation—introduces a degree of subjectivity 
and may vary depending on terrain characteristics. Third, while 
qualitative and quantitative assessments were performed in this 
study, validation still relies on comparison with manual filtering, 
which itself may contain inherent uncertainties.

Future research should focus on enhancing the automation and 
adaptability of the algorithm, for instance by introducing adaptive 
parameter tuning or integrating machine learning-based vegetation 
classifiers. In addition, testing the method on a wider range of slope 
types and geological settings will help generalize its applicability. 

Incorporating multispectral or hyperspectral data could also further 
improve vegetation-rock discrimination, especially in densely 
vegetated or shaded regions.
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