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Vegetation obscures critical rock-mass features on steep slopes, degrading the
reliability of structural surface interpretation from point clouds. We propose
a fast vegetation-filtering approach tailored to high-steep, vegetated rock
slopes. The method aims to suppress vegetation noise while preserving
terrain points essential for structural analysis. We first perform dual-channel
dimensionality reduction by combining Principal Component Analysis (PCA)
on spatial coordinates with the Red—Green Difference Index (RGDI) from RGB
values, then apply K-means clustering for segmentation. A hierarchical grid plus
local plane fitting is used to select vegetation seed points; distances to the fitted
plane guide seed assignment and subsequent cluster-level filtering. To prevent
over-filtering, a preservation mechanism based on the 3o rule retains 5%—-32%
of points near the seed-point distance threshold. The method was evaluated
on a rugged, vegetation-covered slope at Tiantai Mountain (Zhejiang, China)
acquired with a Topcon GLS-2000 (384,663 points). The effectiveness of the
filtering results is evaluated using class error, I, Il, and total error A,. Comparing
with other algorithms, it is found that the class error, I, is 7.79%, the class error
I, is 4.34%, and the total result is limited to 6.53%. By jointly leveraging spatial
and spectral cues with grid-wise plane fitting and a preservation guarantee, the
approach effectively suppresses vegetation noise while retaining terrain detail
needed for downstream tasks (e.g., structural plane interpretation). The results
indicate improved filtering accuracy and robustness for high-steep terrains
relative to traditional methods.

KEYWORDS

K-means clustering, three-dimensional point clouds, vegetation removal, filtering
algorithm, principal component analysis

1 Introduction

Rocky high steep slopes are among the most dangerous disaster-causing geological
bodies in large-scale engineering projects, like water conservancy and hydropower projects,
railway tunnels, and metal mines, and so on. The internal stability of some of these
slopes is poor and poses safety hazard, such as landslides and mudslides (Zheng et al.,
2021; Zheng et al., 2024), posing threats not only to the lives of local residents and
construction workers but also impeding geological investigation (Zhao et al., 2023) and
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surveying efforts (Jia et al., 2018). The stability of the rock mass is
governed by its characteristics, making it crucial to acquire detailed
information about the surface structure of the rocks in order to
accurately understand the stability of high steep slopes.

In particular, the selected study area features complex geological
conditions, steep terrain, and dense vegetation coverage, which
pose significant challenges to traditional field-based structural
interpretation. These characteristics make it a representative case for
testing automated filtering and structural plane (Zhou et al., 2024)
recognition methods in real-world slope environments.

However, the traditional approaches of obtaining information
typically rely on field measurements by geological survey personnel,
requiring pre-formulated survey routes. This approach has several
drawbacks, including the difficulty of predicting on-site risks,
significant manpower and time consumption. The integration of
three-dimensional laser scanning and Unmanned Aerial Vehicle
(UAV) technology offers a flexible solution for rapidly and accurately
acquiring crucial surface data of geological structures. However,
the presence of extensive vegetation cover (Tingting et al., 2023)
on the rock surface often obscures ground points, resulting
in their omission from the actual results. Effectively separating
vegetation noise points while preserving fundamental rock structure
characteristics, and simultaneously ensuring the retention of ground
points, represents a pressing challenge in current research.

Point cloud filtering is typically the first step in point cloud
processing, aimed at addressing irregularities in point cloud
density, noise effects, and the presence of discrete points that
require processing due to occlusion. Currently, there are various
methods available for filtering point cloud data. These methods can
be broadly categorized as follows: the digital morphology-based
filtering algorithm, the terrain slope-based filtering algorithm,
the surface fitting-based filtering algorithm, interpolation-based
filtering algorithms, as well as certain segmentation and clustering
algorithms tailored for three-dimensional point cloud data
processing. The digital morphology-based filtering algorithm was
first introduced in 1993. It belongs to a class of nonlinear filtering
methods (Giuseppe, 2023; Nie et al.,, 2017) developed based on
digital morphology principles. Its morphological transformations
mainly involve corrosion, expansion, open operation, and closed
operation, which facilitate the discrimination between ground
and non-ground points. While this algorithm is relatively
straightforward and user-friendly, allowing for better preservation of
intricate details in the original image, it faces challenges in handling
undulating terrains or sudden, drastic changes. Additionally, it is
susceptible to the influence of window size. The terrain slope-based
filtering algorithm (Wan et al., 2018; Susaki, 2012) assesses the
height difference between two points by comparing it to a specific
threshold value derived from a priori knowledge estimation or
manual training. This process enables the algorithm to make trade-
offs and determine the characteristics of the points. However,
the accuracy of this algorithm’s assessment decreases in areas
with significant terrain slope undulations or fracture conditions.
The surface fitting-based filtering algorithm (Xing et al., 2017;
Li et al, 2016; Mongus et al.,, 2012) utilizes data fitting models
to create a local surface element that approximates actual terrain
features. By comparing the distances between neighboring points
and the surface against predefined value, it iteratively refines and
reorganizes until the optimal solution is achieved. This algorithm
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has broader applications and operates at higher speeds, but selecting
an appropriate window size poses challenge. Interpolation-based
filtering algorithms primarily include the algorithm based on
irregular triangular mesh (Blaszczak-Baketal., 2011; Zhangand Lin,
2013a) and the linear prediction method (Mikita et al., 2013). The
operation process of these algorithms is relatively straightforward,
with a clear and simple core concept. However, the iterative
cascading process can potentially accumulate errors in the outcome.

Furthermore, in the field of rock engineering, several intelligent
algorithms are widely utilized for processing three-dimensional
point cloud data. These algorithms encompass clustering algorithms,
region growth methods, and the Hough transform method. In this
context, clustering algorithms play a pivotal role in the intelligent
processing of point cloud data, particularly in the identification
of structural surface within rock formations. Among these, the
clustering method based on normal vectors is widely employed.
Notable examples include the C-means (Havens et al., 2012) and
K-means clustering algorithms (Shi et al., 2024; Pugazhenthi and
Kumar, 2020; Turkes, 2017; Xu, 2014; Chong, 2021; Tang et al., 2023;
Mu et al., 2024). In this clustering algorithm, normal vectors serve as
the fundamental data source for clustering, enabling the conversion
of three-dimensional location information into two-dimensional
location information that can measure normal vectors. Nevertheless,
this approach may also lead to erroneous removal. The region
growing method (Sihong et al., 2021; Jothiaruna et al.,, 2020; Yang
and Zhai, 2019) initiates by manually or randomly selecting
seed points. It then identifies points with similar attributes to
the seed points in their vicinity and merges them into the
region or set containing the seed points. This process continues
iteratively until no remaining similar points are found, indicating the
completion of region or set growth. However, this approach involves
multiple neighborhood searches and iterations, which reduces
the efficiency and poses challenges for swift three-dimensional
target extraction. The Hough transform method is a fundamental
technique for detecting geometric shapes in images. It achieves this
by transforming the coordinate equations of points in point cloud
data into polar coordinate space. Subsequently, a set corresponding
to the particular shape is obtained through the Hough transform
using techniques such as voting statistics and peak detection
in polar coordinate space. Nonetheless, it is characterized by
high computational complexity in both time and space, making
it unsuitable for scenarios involving curved surface or irregular
concave and convex surface.

As mentioned above, the traditional algorithm is characterized
by a simple foundational theory but a complex frame structure.
Consequently, this leads to excessively intricate logic cycles, thereby
making the clustering algorithm within the three-dimensional
intelligent algorithm more suitable for filtering vegetation point
clouds. This method has the advantages of fast speed, good
segmentation effect and strong adaptability. Additionally, the
reduction of location information dimensionality plays a crucial role
as it effectively alleviates the complexity level of the algorithm.

Although previous studies have proposed various filtering and
classification techniques, many of these approaches are designed
for urban environments or moderately sloped terrain. Their
applicability to steep, vegetation-covered rock slopes remains
limited, especially in preserving critical geological features while
removing surface vegetation noise. This study addresses this gap
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by introducing a dual-channel dimensionality reduction technique
and an unsupervised clustering strategy tailored specifically for
high-steep terrain, aiming to improve both filtering accuracy and
structural feature retention.

This paper conducts a comparative study of existing algorithm
and identifies areas for improvement in the proposed method.
The new algorithm primarily utilizes Principal Component
Analysis (PCA) to reduce the dimensionality of pre-processed
original point cloud data. Subsequently, it applies the K-means
clustering algorithm to analyze the point cloud data and address
the aforementioned issues. This combined approach not only
outperforms traditional methods in handling specific issues such
as noise, but also addresses the limitations of existing methods in
certain application scenarios, demonstrating strong adaptability and
effectiveness.

The study is structured as follows: Firstly, it outlines the
overall algorithmic process, providing detailed elaboration. Next,
it describes the data selection for experiments and the methods
employed for error evaluation. The results are analyzed both in a
general sense and concerning discrete-value sensitivity. Finally, the
effectiveness of the new algorithm in this paper is assessed through
a comparison with other algorithms.

In light of the above, this study proposes an improved vegetation
filtering method specifically designed for high-steep, vegetated rock
slopes. By integrating Principal Component Analysis (PCA) and the
Red-Green Difference Index (RGDI) for dual-channel dimensionality
reduction, and applying K-means clustering to segment feature
points, the method aims to enhance filtering accuracy and structural
information preservation. The effectiveness of the proposed approach
is evaluated through comparative experiments on a 3D-printed model
derived from real geological data.

2 Materials and methods

The algorithm presented in this paper is based on the utilization
of Principal Component Analysis (PCA) and the Red-Green
Difference Index (RGDI) to reduce the dimensionality of the original
point cloud data. Subsequently, the K-means clustering technique is
applied to cluster the data. Following that, vegetation seed points are
identified by analyzing the differences in point cloud morphology
distribution between rocks and vegetation. These identified seed
points are then integrated with the clustering outcomes and the
selection of vegetation noise points. In this section, we will describe
six key aspects of the algorithm: the overall procedure, principal
component analysis, K-means clustering algorithm and vegetation
noise points filtering, point cloud data gridding, seed point and noise
point selection, and preservation guarantee settings.

2.1 Overall procedure

The algorithm is executed in the following steps: Firstly, a regular
grid is established. Secondly, Principal Component Analysis (PCA)
is applied to reduce the dimensionality of the positional information
(x,»,2) in the original point cloud data. The first column of data
after dimensionality reduction was selected to be combined with
the red-green difference index at each point, a two-dimensional
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FIGURE 1
Flowchart of a vegetation filtering algorithm using K-means clustering.

dataset is created, encompassing both positional and RGB color
information for each point. Subsequently, the K-means algorithm
is employed on this two-dimensional point cloud data. Then,
leveraging slope information from the SPF algorithm (Yan et al.,
2021) and incorporating the concept of plane fitting, each grid is
divided into a two-tiered grid to select the lowest points. The four
lowest points are fitted to a plane using the least squares method.
The distance from each point in the grid to the fitting plane is
calculated, and the point with the largest distance is selected. It is
then determined whether the point belongs to the ground. If it is
classified as a non-ground point, it is chosen as a vegetation seed
point. Based on the cluster number of the vegetation seed point
obtained from the cluster analysis, all points belonging to the same
cluster within the grid are identified as non-ground points. These
steps are repeated until the data in the grid meet the required criteria.
The flowchart of the algorithm is illustrated in Figure 1.

The integration of spatial information and color information
for dual-factor filtering aims to address the limitation of relying
solely on the red-green difference index, which provides a single
basis for judgment. This approach is designed to preserve as much
vegetation-related point cloud data as possible that reflects the
surface morphology of the rock mass. By doing so, subsequent
point cloud processing tasks—such as the generation of digital
surface models (DSM) and the intelligent identification of structural
planes—can better reflect real-world geological conditions.

2.2 Principal component analysis

PCA is a statistical method widely used in dimensional
reduction in mathematics and has extensive practical applications.
It is employed in various disciplines, including demography,
geography,
mathematical modeling, and mathematical analysis. It is a frequently
utilized tool for multivariate analysis (Lin and Du, 2013).

quantitative molecular  dynamics  simulation,
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In the context of processing point cloud data in rock
engineering, the PCA method can be applied to transform linearly
uncorrelated location information (x,y,z). Then, based on the fact
that the first principal component reflects the largest difference in
the group of data, the algorithm in this chapter selects the first
principal component as one of the data sources for the subsequent
calculations.

The process of conducting principal component analysis on
the location information (x,y,z) of point cloud data involves the
following steps:

First, the three-dimensional raw position information data X =
%9,z = (x,%,,%; ), which consists of ‘n" point cloud data, is subjected
to normalization. Equation 1 used for this purpose is as follows:
i—%;

N
Zij— 7

J

i=1,2,.,m5=1,2,3 (1)

YKy

n —\2
— 2 Yl )
L= n et S e VA
x] n and S] n-1
normalization matrix Z from the above equation.

Among them, , and obtain the

Then, a matrix of correlation coefficients needs to be obtained.
The following Equation 2 is used:

7'z
R= [rij]pxp =

)

n-1
Z”:lxtixt' .. .
Among them, r;; = ﬁ(u,] =1,2,3), and find the correlation
coeflicient matrix R according to the above equation.
the A the

eigenvectors b; of the correlation coefficient matrix R are

Finally, eigenvalues and corresponding
solved using the characteristic equation |R - MP' =0. And the
standardized indicator variables were transformed into principal
components using Equation 3:
_ T
Uj=2zb; (3)
Where z; is the ith row of the normalization matrix. The resulting
principal component matrices U = (U, U,,Us), U, are denoted as
the first principal component, U, as the second principal component
and U; as the third principal component. In general, U;, the
largest of all linear combinations, is selected instead of the location
information (x, y, z) as the basis for subsequent calculations. In other
words, U, is obtained by dimensionality reduction of the location
information using principal component analysis.

2.3 K-means clustering algorithm and
vegetation noise points filtering

2.3.1 Theoretical background of K-means
clustering in rock engineering

Clustering is an unsupervised learning technique that organizes
data points into groups based on their similarity. Among various
clustering algorithms, K-means clustering is widely adopted due
to its simplicity and computational efficiency. The basic principle
involves partitioning a dataset into K clusters by minimizing the
intra-cluster variance. The algorithm begins by randomly selecting
K initial centroids, assigning each data point to the nearest centroid
based on a chosen distance metric, and iteratively updating the
centroids until convergence. The termination criteria may include
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minimal changes in cluster membership, minimal shifts in centroids,
or minimization of the total intra-cluster distance (Sud et al., 2020).

In rock engineering, geological structural planes—formed
through processes such as sedimentation, tectonic activity, and
weathering—introduce spatial discontinuities, inhomogeneities,
and anisotropies within the rock mass. These discontinuities
significantly affect the mechanical behavior and failure mechanisms
of rock slopes. Therefore, accurate extraction of structural planes
from point cloud data is of critical importance. K-means clustering,
due to its robust partitioning capabilities, provides a practical
and effective approach for classifying spatial features in rock-
mass datasets.

2.3.2 Implementation of K-means clustering for
vegetation noise filtering

In this study, K-means clustering is employed to filter
vegetation noise points from the point cloud data. The raw data,
consisting of six-dimensional vectors (x,y,z,7,¢,b) is transformed
into a two-dimensional feature space (X;,X,) through a dual-
channel approach. Specifically, Principal Component Analysis
(PCA) is applied to spatial coordinates to derive X, capturing
major orientation trends, while the Red-Green Difference Index
(RGDI) is computed from RGB values to form X,, enhancing
vegetation color contrast. The K-means clustering is implemented
as shown in Equation 4:

lidx, C,sumd, D] = kmeans(X, K) (4)

In this study, the number of clusters K for the K-means
algorithm was empirically set to 6, which aligns with the expected
classification of surface features into categories such as low
vegetation, high vegetation, bare rock, and noise. The choice of
K = 6was guided by preliminary tests and prior studies, which
demonstrated that clustering with 5 < K < 8typically yields stable
results in vegetation filtering tasks involving spatial and spectral
features of point clouds. Xu etal. (Simoniello et al, 2022) and
Zhang et al. (Chen et al,, 2024) both employed similar clustering
scales in their segmentation of vegetated terrain, and their results
support the efficacy of this cluster number in balancing classification
granularity and computational efficiency.

In this context, K represents the number of classes into which
the original data set is divided and must be an integer; X = (X;,X,),
X, represents the location information reduced to one-dimensional
data by PCA; X, denotes the RGDI of RGB color information; i dx
is a vector that stores the cluster labels of the point clusters to which
each point cloud data belongs after clustering analysis of the original
data set. C is a matrix that stores the cluster center coordinates of
the K’ point clusters, in this algorithm a matrix of K rows and
two columns; sumd is a vector that stores the sum of the distances
of all points within a point cluster to the cluster center of the
corresponding point cluster; D is the matrix that stores the distance
of each point to the cluster center of all point clusters respectively.

2.4 Point cloud data gridding

The original point cloud data lacks topological connectivity
relationships and associated structural information, which makes
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Point cloud data gridding. (a) First-level gridding: The original point cloud is partitioned into coarse grid cells based on the spatial extent. Each red dot
represents a point within the 3D point cloud. (b) Second-level gridding: Each first-level cell is further subdivided into finer sub-grids to enhance local
plane fitting accuracy. Blue dots indicate points selected for local surface fitting in each sub-grid.

it disorganized and difficult to process. Therefore, after obtaining
the point cloud data information using a three-dimensional laser
scanner, the initial step is to generate a regular grid to mesh the raw
point cloud data to homogenize the point cloud data.

Gridding is a commonly used method for processing point cloud
data. In simple terms, it involves placing the point cloud data into
a pre-divided regular grid. This allows for later processing, where
the grid is treated as a unit for tasks such as chunking or semantic
segmentation. Gridding is typically performed in either two or
three dimensions. In this algorithm, a square grid is employed to
create a two-dimensional grid surface. The grid is divided without
considering other information except (x,y). In order to avoid
excessive computation, the grid spacing is determined according
to the density of the point cloud, and the point cloud data is now
divided into first level of grid. Figure 2a illustrates the results of the
first-level gridding of a set of point cloud data.

After partitioning the first-level grid, the second-level grid is
subdivision to achieve the highest accuracy in fitting the ground
plane. The procedure begins by dividing the first-level grid into four
blocks, resulting in the creation of a new second-level grid. The
lowest point within each second-level grid is then identified as the
seed point for the ground by z-coordinate, as shown by the blue dots
in Figure 2b. The grid division lines are defined by Equations 5, 6:

Xmax! T Xmin'

X, = 5

i 2 ©)
Ynax' TV min'

Y, max . min (6)

The grid resolution in the first-level gridding was set to 0.1 m,
which corresponds to approximately twice the average point spacing
of the input dataset. This choice ensures sufficient granularity for
local surface fitting while maintaining computational efficiency.
Similar grid resolutions have been applied in terrain filtering tasks
for airborne and terrestrial LIDAR data. A coarser grid size would
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risk missing finer structural details, while overly fine grids increase
the risk of overfitting and computational burden.

In this context, X, represents the x-coordinate of the vertical
dividing line, while Y, denotes the y-coordinate of the horizontal
dividing line. Additionally, x,,,,."s ¥,.ux > Xmin' and y,,,," refer to the
maximum and minimum values of (x, y) within the point cloud data
of the corresponding level grid. Figure 2b illustrates the outcomes
obtained from the second-level gridding process applied to a set of

point cloud data.

2.5 Seed point and noise point selecting

2.5.1 Theoretical background: seed point
selection and plane fitting

In point cloud processing, identifying and eliminating
vegetation noise is crucial for the accurate extraction of terrain
features. A common approach involves selecting seed points based
on the geometric deviation of points from a locally fitted plane.
The plane is typically computed using a least squares regression of
selected sample points.

The local fitting plane is expressed by Equation 7:

Z=aX+bY+c (7)

The parameters a, b and ¢ are calculated using the least squares
method. Subsequently, the formula for determining the distance
between each point in the primary grid and the corresponding fitting
plane is given Equation 8:

lax; + by, — z; + ¢|
;= ——
Va2 +b*+1

The distance from each point in the traversal level grid to the

(8)

fitting plane is denoted as s;. The three-dimensional coordinates of
each point in the grid are represented by (x;,y,,z;). The parameters
a, b and c are determined using the least squares method.
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Subsequently, the discretization of the distance can be obtained
using the following Equation 9:

STD =

Points that deviate significantly from the fitted plane may
indicate the presence of vegetation or other outliers. Identifying such
points allows for the designation of vegetation seed points, which
can guide subsequent noise filtering.

2.5.2 Implementation of SPF-Based vegetation
noise filtering in this study

In this study, a hierarchical grid-based method is employed
for vegetation noise identification. The Surface Projection Fitting
(SPF) algorithm is a local adaptive filtering technique that identifies
vegetation by measuring point-wise deviations from a fitted terrain
surface. It is particularly effective for steep, rugged slopes where
elevation-based global filters may fail.

After establishing a second-level grid over the point cloud,
the first step is to assess whether vegetation noise exists in
the corresponding first-level grid. To aid in manual validation,
CloudCompare software is used to visualize and remove obviously
noise-free areas.

Following the Surface Projection Fitting (SPF) algorithm (Yang
and Zhai, 2019), the four lowest points in each second-level grid are
selected to construct a local plane using the least squares method.
This approach has been experimentally proven to be effective in
filtering low vegetation while preserving steep terrain, making it
highly suitable for applications involving complex topography.

If vegetation noise is detected in a first-level grid, seed points
are identified by selecting the point with the maximum vertical
deviation from the fitted plane. This point is assigned as a vegetation
seed point. Subsequent vegetation points are then identified and
clustered based on their proximity to the seed point and shared
cluster label in the earlier K-means segmentation stage.

This process ensures a focused removal of vegetation points
while minimizing the risk of over-filtering terrain features essential
for structural surface extraction.

2.6 Preservation guarantee settings

In this study, the preservation guarantee mechanism is inspired
by the normal distribution. The introduced vegetation filtering
algorithm utilizes PCA and K-means clustering algorithm. The
retention threshold p, ranging from 5% to 32%, was selected
based on the empirical 30 rule from Gaussian distribution
statistics, ensuring that the majority of terrain points (up to
95%) are preserved while excluding extreme outliers commonly
representing vegetation. Similar percentile-based approaches have
been adopted by Meng et al. (2010) in ground filtering algorithms.
The specific interval was further validated by comparing the
filtered outputs with manually labeled reference datasets to ensure
optimal balance between terrain preservation and vegetation noise
suppression.

Once the vegetation seed points are determined, the selection
of vegetation noise points is based on the number of clusters to
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which the points belong after clustering and segmentation. After
identifying the cluster containing the vegetation seed point, we
apply the fundamental concept of the “68-95-99.7 rule” of normal
distribution, commonly known as the “rule of thumb”. If a set of
data conforms to this rule, 68% of the values falls within the first
standard deviation, 95% within the second standard deviation, and
99.7% within the third standard deviation.

To prevent excessive filtering and considering the random
distribution of the point cloud data, we introduce a parameter 's;. We
establish a criterion: if the 's;' value of a noise point, selected based
on the cluster of points containing the vegetation seed points, is less
than 5%-32% of the 's;' value of the corresponding vegetation seed
point, it is considered part of the rock mass point cloud data. These
points are retained and included in the subsequent calculation cycle.

Due to the complexity of the rock mass engineering and the
varying surface conditions of the rock masses to be collected, the
point cloud data in the first-level grid tends to be more scattered
compared to other grids. Therefore, it is crucial to implement a
specific judgment mechanism to prevent excessive filtering. Since
this paper focuses on low and medium-density vegetation areas,
the point cloud data related to rock masses constitute a significant
portion. Removing too many noise points at once can result in
excessive filtering. Hence, it is essential to establish a percentage to
prevent this scenario.

2.7 Data selection

This study focuses on point cloud data collected from a rugged
and steep slope located within Tiantai Mountain, situated in the
east-central area of Zhejiang Province, China (refer to Figure 3).
The region is characterized by a multitude of peaks, ranging in
elevation from 380 to 504 m. The terrain predominantly exhibits a
steep cliff-like topography, characterized by sharp inclines and well-
developed unloading joints. The exposed strata demonstrate relative
homogeneity, with faults dominating the geological structure. The
rock joints, primarily tectonic in nature, are highly developed and
densely distributed. Vegetation of various types, including trees,
grasses, and a small amount of moss, can be found on the slope.

The selected slope showcases a significant variation along the
X, y and z axes, with measurements under the relative coordinate
system indicating a difference of 16.72 m, 12.96 m, and 24.15 m,
respectively. Moreover, the maximum slope angle exceeds 80°. For
this paper, the TopconGLS-2000 three-dimensional laser scanner
was employed to capture the point cloud data, resulting in a total
of 384,663 points.

2.8 Methods for error evaluation

At present, in the field of three-dimensional point cloud, the
research in the direction of vegetation filtering is still in progress, and
manual filtering of vegetation point cloud is still recognized as the
most accurate and widely used method. Therefore, new algorithms
are proposed to verify the feasibility of the algorithms based on the
results of manually filtering the vegetation point cloud. The accuracy
of manually filtering the vegetation point cloud is limited by the skill
of the operator, and the workload is relatively large, and the time
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FIGURE 3
(a) Map of study area (b) General view of slope.

spent is very large, so the algorithm in this paper has a large amount
of workload to test.

For the qualitative evaluation of the algorithm’s performance,
the results obtained by the proposed method are compared with
those derived from manual vegetation point cloud filtering. This
comparison assesses the effectiveness of noise removal as well as the
preservation of rock mass structural features.

In this study, the effectiveness of the filtering results is assessed
quantitatively through the utilization of three error evaluation
metrics: class error I,, class error II, and total error A,. These metrics
are calculated using the following formulas (Ding et al., 2019):

I,= %XIOO%
GP

e
IFP

II,= — x100% (10)
OP

e

_ OFP+ IFP

e e 100%
¢~ "GP+ OP ’

In this context, GP represents the count of ground points, OP
represents the count of non-ground points, OFP represents the count
of points filtered as ground points, and IFP represents the count of
points misclassified as ground points. It is evident that class error I,
primarily indicates the occurrence of mistakenly removing ground
points. On the other hand, class error II, highlights the presence of
residual vegetation points. Therefore, the combination of class error
I, and class error II, reflects the algorithm’s applicability. The total
error A, assesses the overall error in the filtering results, thereby
indicating the feasibility of the algorithm (Ding et al., 2019).

3 Results
3.1 Experimental results

The value of K is set to 20, the discrete limiting value is set
to 0.85, and the discrete value for determining the vegetation seed
points using a small window is set to 50% of the overall discrete
limiting value. Figures 4a,b showcase the target slope maps obtained
through the TopconGLS-2000 three-dimensional laser scanner. To
separate the vegetation and rock point clouds, the CloudCompare
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software was employed manually. The results of this separation are
represented by red and blue colors, as depicted in Figures 4c,d.

Upon applying the proposed filtering algorithm, which
integrates K-means clustering, the visualizations of the extracted
vegetation and point clouds after vegetation removal are presented
in Figures 5a,b. Additionally, Figures5c,d display the manually
marked points.

By employing Equation 10, the class error I,, class error II, and
total error A, are calculated. The analysis of the filtering results yields
the following values: I, = 7.72%, II, = 6.86% and A, = 7.40%.

In the above figure, the blue color represents the vegetation
point cloud and the red color represents the rock body point cloud,
the more blue points are filtered out, the better the result. From
Figures 4, 5, the following points can be concluded:

First, the point cloud data model constructed from the
original point cloud data Figures 4a,b cannot show the structural
surface characteristics, there is vegetation masking, so filtering
processing is needed.

Secondly, Figures 4c,d show the data models constructed from
the point cloud data obtained by manual filtering. It can be seen
that although most of the vegetation noise is removed, the method
is limited by the fact that it is difficult to remove the vegetation point
cloud in some special terrains due to manual editing.

Finally, the model generated by the proposed algorithm
is shown in Figure 5. Most of the vegetation point clouds have been
successfully removed, while the rock point cloud data that accurately
represent the surface characteristics of the slope are well preserved.
Only a small number of scattered vegetation points with minimal
impact remain, indicating that the filtering performance is effective
and reliable.

3.2 Interpretation results of the rock
surface structure

The original point cloud and the K-means algorithm filtered

point cloud were substituted into the rock structural surface
identification program developed by Wu Faquan’s team (Kong et al.,
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FIGURE 4

side view respectively.

©

The experimental results prior to filtering. In (a), the rocky and highly steep slopes of Tiantai Mountain are captured from a front view. Similarly, (b)
presents the same slopes but from a side view. The manual separation of the red and blue marker maps can be observed in (c,d), providing a front and

@

®)

FIGURE 5

The experimental results obtained after applying the filtering process. The front view of the algorithmically filtered effect map is shown in (a), while (b)
presents the side view of the same map. Additionally, (c) exhibits the front view of the algorithmically filtered red and blue marker maps, while (d)
showcases the side view of the red and blue marker map after undergoing algorithmic filtering.

@

2020), and the same parameters were selected to decipher the two
structural surface classification information, as shown in Figure 6.

After applying the vegetation filtering algorithm, which is based
on K-means clustering (with K set to 15), to the point cloud data of
the rock mass, the corresponding structural surface information of
the rock mass can be obtained. This is illustrated in Figure 6b. The
total discrete limit value for this filtering choice is set to 0.84.

The interpretation show that,
unfiltered point cloud, 34 structural surface categories were

results in the original

identified. However, the gray-red point clouds—which account

for approximately 97% of the total points—were not effectively
classified, indicating significant overlap and noise. After applying

Frontiers in Earth Science

the filtering algorithm, the point clouds exhibit markedly improved
classification, with more distinct structural surface groupings and a
substantial reduction in the number of small, scattered categories.
This demonstrates the enhanced clarity and reliability of structural
surface identification after vegetation noise removal.

By comparing the decoding results before and after
implementing the vegetation filtering algorithm, it becomes
evident that the presence of vegetation point cloud information
significantly impedes the decoding of the rock mass. However,
by utilizing the vegetation filtering algorithm proposed in
this paper, there is a notable improvement in deciphering the

structural surface information from the rock mass. Therefore, the
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Results of rock structure surface interpretation. (a) Before vegetation filtering; (b) After vegetation filtering (C#1 represents the category index, with the

vegetation filtering algorithm proposed in this paper has excellent
application results.

3.3 Qualitative analysis

Firstly, manual filtering, K-means clustering, and PCA
processing are performed. Subsequently, the processed data is
screened and visualized using the CloudCompare software, thereby
enhancing the clarity and intuitiveness of the final outcomes for
improved evaluation.

Several crucial points need to be taken into consideration.
Firstly, the model incorporates vegetation occlusion and data
gaps, which can influence subsequent analysis results. Secondly,
although the majority of vegetation noise points are successfully
removed from the surface point cloud data, the complexity
of the terrain presents challenges for the complete elimination
of all vegetation points. As a result, some small protruding
vegetation fragments remain in the filtered model. Moreover,
vegetation point clouds in close proximity to rock formations
may exhibit surface features such as small grass and moss.
Therefore, retaining certain near-ground vegetation point cloud
data during the filtering process can yield a more realistic
representation, enhancing comprehensiveness. Lastly, by utilizing
appropriate point cloud processing software to examine the
vegetation-filtered point cloud data based on RGB color information
and location information, coupled with K-means clustering,
effective removal of scattered vegetation points is achieved. It
is evident that the majority of scattered vegetation point clouds
are successfully eliminated, while retaining the rock point cloud
data that better captures the surface characteristics of rocky
slopes, along with a portion of the vegetation point cloud data
near the rocks.

Frontiers in Earth Science

3.4 Sensitivity analysis and selection of
discrete values

3.4.1 Sensitivity analysis of K-value

The effectiveness of this algorithm in filtering and the
determination of the number of clusters through the K-value are
influenced by the magnitude of the designated discrete value used
to distinguish the presence or absence of vegetation. Therefore, as
an initial step in the sensitivity analysis, the size of the discrete value
was established based on the SRF algorithm, with a selected value
of 0.85, as shown in Figure 7a and Table 1. The SRF algorithm is a
vegetation filtering method proposed by our team that integrates
spatial position and color information of point clouds. The core idea
of the method is to identify vegetation seed points based on the
spatial differences between rock surfaces and vegetation in the point
cloud data. Subsequently, RGB color information is integrated to
assist in the removal of vegetation noise and to enhance the overall
filtering accuracy. This enabled a sensitivity analysis of the K-value
setting. By applying various K-values for filtering and conducting
error analysis on the multiple results (please note that the error
analysis results are small, hence grid evaluation of the surface feature
retention rate was not performed), the outcomes are presented in
Table 2. The trend of changes in error analysis results caused by
adjustments in threshold settings is illustrated in Figure 7b.

3.4.2 Overall sensitivity analysis of discrete limit
values

Based on the aforementioned K-value analysis results, a value
of K = 15 is selected to conduct a sensitivity analysis on the set
discrete value. Recognizing that different overall discrete threshold
settings can affect the filtering outcomes, a range of discrete
values is employed for the filtering process. Subsequently, an error
analysis is performed on the multiple outcomes obtained. The results
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of this analysis are presented in Table 3. Additionally, Figure 8
illustrates the trend of the error analysis results as the threshold
setting is varied.

Figure 8 illustrates that increasing the overall discrete limit
setting gradually reduces the proportion of incorrectly deleted
ground points. This can be attributed to the preservation of ground-
hugging vegetation point clouds. At the same time, a higher overall
discrete limit setting leads to a more pronounced presence of
residual vegetation point clouds. Therefore, the overall discrete limit
setting plays a crucial role in selecting vegetation points in the
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algorithm proposed in this paper. Before setting the overall discrete
limit value at 0.84, the total error A, decreases gradually as the overall
discrete limit value setting. During this phase, the growth rate of
residual vegetation points in the manually selected vegetation points
is slower than the rate of reduction in misclassified ground points.
However, when the overall discrete limit value setting exceeds 0.84,
the overall misclassification ratio starts to increase. Additionally, the
ratio of vegetation points in the manually selected vegetation points
also increases. Notably, the growth rate of this ratio surpasses the
rate of reduction in erroneously deleted ground points.
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TABLE 1 SRF algorithm to analyze the results of filtering with different degrees of dispersion.

Overall discrete limits ~ OFP (piece)  IFP (piece) GP (piece) OP (piece) I, (%) ‘ I, (%) ’ A (%)  TZ (%)

0.75 187,337 1122 244,048 140,615 76.76 0.80 48.99 78.46
0.80 146,749 1862 244,048 140,615 60.13 1.32 38.63 86.15
0.81 137,876 1984 244,048 140,615 56.50 1.41 36.36 87.69
0.82 126,353 2191 244,048 140,615 51.77 1.56 33.42 90.77
0.83 110,233 2434 244,048 140,615 45.17 1.73 29.29 93.75
0.84 84,277 2756 244,048 140,615 34.53 1.96 22.63 95.24
0.85 36,106 5263 244,048 140,615 14.79 3.74 10.75 100
0.86 30,836 9497 244,048 140,615 12.64 6.75 10.49 100
0.87 25,293 14,185 244,048 140,615 10.36 10.09 10.26 100
0.88 20,805 19,861 244,048 140,615 8.52 14.12 10.57 100
0.89 15,960 26,284 244,048 140,615 6.54 18.69 10.98 100
0.90 11,558 31,084 244,048 140,615 4.74 22.11 11.09 100
0.95 4564 44,535 244,048 140,615 1.87 31.67 12.76 100

TABLE 2 Comparison of filtering results for different values of K.

IFP (piece) GP (piece) OP (piece) I, (%) ‘ I, (%) A (%)

K-value setting OFP (piece)

5 13,833 12,028 244,048 140,615 5.67 855 6.72
8 22,959 5370 244,048 140,615 9.41 3.82 736
10 17,849 13,814 244,048 140,615 731 9.82 823
12 21,665 5492 244,048 140,615 8.88 3.91 7.06
15 18918 6228 244,048 140,615 775 443 6.54
20 18,835 9642 244,048 140,615 7.72 6.86 7.40
25 19,852 9049 244,048 140,615 8.13 6.44 751
30 22,053 13,114 244,048 140,615 9.04 933 9.14
40 16,473 12,416 244,048 140,615 675 8.83 751
50 14,093 11,384 244,048 140,615 577 8.10 6.62
100 15,103 17,852 244,048 140,615 6.19 1270 857
200 32,447 12,168 244,048 140,615 1330 8.65 11.60
500 29,192 10,447 244,048 140,615 11.96 7.43 1030
3.4.3 Selection of overall discrete limit values 1,=7.79%, IT, = 4.34% and A, = 6.53%. From the error analysis, it

To optimize the filtering process and achieve a balance between  can be observed that the filtering results of the algorithm in this
retaining surface features and minimizing total error A, the overall ~ paper, the smaller I, indicates that the ground points are erroneously
discrete limit is set at 0.84. The results of the error analysis show  deleted more, and the smaller II, indicates that there are a small
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TABLE 3 A comparison of filtering results for K = 15 with different degrees of dispersion.

Overall discrete limit values OFP (piece) IFP (piece) GP (piece) OP (piece) I, (%) I, (%) A, (%)

0.8 70,616 0 244,048 140,615 28.94 0.00 18.36
0.81 53,339 0 244,048 140,615 21.86 0.00 13.87
0.82 36,333 2241 244,048 140,615 14.89 1.59 10.03
0.83 25,942 4396 244,048 140,615 10.63 3.13 7.89
0.84 19,006 6096 244,048 140,615 7.79 4.34 6.53
0.85 18,918 6228 244,048 140,615 7.75 4.43 6.54
0.86 15,193 10,828 244,048 140,615 6.23 7.70 6.76
0.87 10,034 16,100 244,048 140,615 4.11 11.45 6.79
0.88 8355 22,373 244,048 140,615 3.42 1591 7.99
0.89 8134 29,867 244,048 140,615 3.33 21.24 9.88
0.90 8176 36,174 244,048 140,615 3.35 25.73 11.53
0.95 4896 51,657 244,048 140,615 2.01 36.74 14.70
1.00 2936 62,859 244,048 140,615 1.20 44.70 17.10

Overall discrete limit values

Percentage (%)
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FIGURE 8
Trend plots of error analysis changes.

number of vegetation points omitted from the deletion. When  eliminating a small number of rock mass point clouds. Despite this,
the overall discrete threshold is set to 0.84, the filtering effect is  the overall outcome of the filtering is considered satisfactory.

demonstrated in Figures 9a,b. This process effectively removes a As shown in Table 3, when the overall discrete limit value
significant amount of vegetation noise points while incidentally  is set to 0.81, no residual vegetation point cloud is observed,
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FIGURE 9

Filtering effect plots for an overall discrete limiting value of 0.84 and K = 15. (a) Front view; (b) Side view.

(b)

FIGURE 10

Filtering effect plot for an overall discrete limiting value of 0.81 and K = 15. (a) Front view; (b) Side view.

resulting in error analysis values of I,=21.86%, II,=0%
and A,=13.87%. The error analysis indicates that there are
currently no remaining vegetation point cloud data after the
filtering process. However, a larger number of ground points
have been filtered out, particularly those closely associated
with the ground surface. This filtering outcome is visually
represented in Figures 10a,b, demonstrating the successful removal
of all vegetation-related point clouds while retaining a significant
amount of ground point clouds. Nevertheless, it should be noted that
this filtering process leads to a loss of information in the smoother
rock slope area.

After applying the K-means clustering algorithm to eliminate
vegetation noise points, the original vegetation point cloud
still contains scattered points, including a small number of
ground points and residual vegetation noise points resulting
from laser measurement characteristics. The presence of these
residual vegetation noise points can be attributed to several factors,
including measurement errors caused by external disturbances
(e.g., wind-induced movement of vegetation), the accumulation of
dust on vegetation surfaces, and the similarity in color features
between residual vegetation and low-lying ground vegetation,
which complicates their distinction during filtering. However, it is
important to note that these residual vegetation noise points are not
completely empty. To further minimize their presence, hierarchical
filtering can be employed prior to identifying the structural surface
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information of the rock mass. This additional step has minimal
impact on the identification of the rock mass’s structural surface and
the determination of parameters.

As shown in Table3 and Figure 8, the overall error (Ae)
decreases significantly as the discrete threshold increases from 0.80
to 0.84, reaching a minimum of 6.53% at 0.84. This indicates
optimal retention of rock surface points while effectively removing
vegetation noise. When the threshold exceeds 0.84, Ae starts to rise
again, reaching 17.10% at 1.00, primarily due to the preservation
of low-lying vegetation points. Therefore, 0.84 represents a critical
turning point in balancing the trade-off between vegetation removal
and ground point preservation.

Similarly, among all K-values tested (Table 2), K = 15 yields the
lowest total error (6.54%) and an acceptable balance between class
I and class II errors, confirming its suitability for this dataset. The
results show that improper selection of K (e.g., too small like K = 5 or
too large like K = 200) can lead to elevated total errors and unstable
filtering performance.

Furthermore, a comparative evaluation between our method
and manual filtering showed that although manual filtering achieved
slightly lower class I error (7.72% vs. 7.75%), it failed to remove
complex terrain vegetation effectively, as shown in Figures 4c,d.
This demonstrates the advantage of our algorithm in handling
intricate slope environments, with improved reproducibility
and automation.

frontiersin.org


https://doi.org/10.3389/feart.2025.1680510
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Guan et al.

TABLE 4 Comparison of error analysis of other algorithms.

Filtering method ’ I (%) ’ Il (%) Ag (%)

Slope method 4.65 23.89 5.35

Fitting method 5.19 43.09 6.59

RGDI algorithm (-0.0266) 16.96 14.39 16.02

SRF algorithm (0.85) 14.79 3.74 10.75
K-means clustering algorithm (K = 15) 7.79 4.34 6.53

4 Discussion
4.1 Algorithm comparison

In this study, the errors in point cloud data accuracy, actual
imaging conditions, manual point selection, and other factors are
denoted as I,, II, and A,. The complexity of the mine slope
gradient, which varies in reality, is closely examined and analyzed
in relation to this study. The comparison and analysis are conducted
comprehensively, taking into consideration the findings of other
researchers (Ding et al., 2019; Zhang et al., 2013b; Wen et al,,
2023). The results are presented in Table 4 and Figure 11. The RGDI
algorithm is based on the Red-Green Difference Index proposed by
our team. It enhances the contrast between the reflectance values of
the red (R) and green (G) spectral bands using a nonlinear stretching
method to determine whether a given point belongs to vegetation.

The conventional vegetation filtering algorithm often makes
incorrect judgments on point clouds, particularly when dealing with
mine slopes, resulting in significant deletion of ground points. In this
paper, a vegetation filtering algorithm is proposed, which utilizes
K-means clustering based on error analysis results. The value of I,
in this algorithm are comparable to those of the Slope and Fitting
methods. However, when compared to the RGDI algorithm and
the SRF algorithm, the class error I, is significantly reduced. This
reduction can be attributed to the steep rocky slopes investigated in
this study, which is reflected in the algorithm’s high retention rate of
ground points. Moreover, the algorithm demonstrates a small value
of I, in comparison to the traditional method in the table, indicating
its effectiveness in removing noise points caused by green vegetation.
Consequently, only a minimal number of residual vegetation point
clouds remain. This advantage becomes particularly apparent when
compared to the fitting method. Through a comparative analysis
of the results displayed in point cloud processing software, it is
evident that the proposed algorithm effectively exposes rock features
without impeding the subsequent recognition of the structural
surface of the rock mass.

4.2 Analysis of advantages and limitations

In contrast to the slope method, the fitting method, and
the RGDI threshold filtering algorithm, the algorithm proposed
in this paper eliminates the reliance on a fixed threshold.
Instead, it dynamically selects thresholds in a swift and flexible
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manner. Furthermore, the incorporation of a preservation guarantee
mechanism significantly improves the retention rate of ground
feature points and reduces over-filtering, leading to a remarkable
enhancement in filtering effectiveness. When compared to the SRF
algorithm, it demonstrates exceptional performance in removing
vegetation points while preserving ground points.

The vegetation filtering algorithm presented in this study utilizes
K-means clustering and undergoes comprehensive analysis to
evaluate its overall performance and sensitivity to discrete values. It
showcases outstanding efficacy in processing vegetation point cloud
data, with its applicability extending to near-vertical steep slopes.
Moreover, it effectively preserves the undulating characteristics of
the rock mass’s structural surface, resulting in a superior overall
filtering effect.

5 Conclusion

This study focuses on the analysis of three-dimensional laser
point cloud data obtained from the high and steep slopes of
Tiantai Mountain. An innovative vegetation filtering algorithm
utilizing K-means clustering was introduced. The major conclusions
are as follows:

1. The proposed algorithm utilizes Principal Component
Analysis (PCA) to downscale the spatial location information
and Red-Green Difference Index (RGDI) to downscale the
RGB color information. This process effectively transforms
the initially acquired six-dimensional point cloud data into
two dimensions. Subsequently, the data is segmented using
K-means clustering.

. The vegetation filtering algorithm employing K-means
clustering successfully isolates a significant number of
vegetation noise points while preserving the essential
structural attributes of the rock mass. K-means clustering
groups point clouds based on their similar spatial and RGB
information. Therefore, the choice of K-value does influence
the filtering outcome. However, the sensitivity analysis
conducted in this study reveals that, currently, no discernible
pattern exists in determining its value.

3. In comparison to traditional algorithms, the vegetation
filtering algorithm utilizing K-means clustering demonstrates
substantial advantages in removing vegetation point clouds on
steep slopes. Conventional methods like the slope method and
fitting method exhibit suboptimal performance in vegetation
removal. On the other hand, the proposed algorithm retains
a considerable number of ground points while effectively
filtering out a significant portion of the vegetation point clouds.
This successful outcome further validates the feasibility of
integrating RGB color information to address the vegetation
filtering challenge across multiple dimensions on steep slopes.

. When compared to the other algorithms discussed in this
paper, the vegetation filtering algorithm utilizing K-means
clustering excels in effectively removing a higher number of
vegetation points while preserving a greater number of ground
points. This addresses the issue faced by other algorithms that
tend to remove a substantial portion of vegetation points along
with more ground points.
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5. The algorithm presented in this study partially mitigates
the issue of over-filtering in vegetation point cloud filtering.
Because of the relatively sparse distribution of vegetation,
during three-dimensional laser scanning, some ground points
hidden by vegetation are captured. The proposed algorithm
effectively processes this data, preserving the ground points
while removing the vegetation point clouds. Additionally, this
algorithm specifically focuses on point cloud data from areas with
low to medium vegetation density, which constitutes a significant
portion of the dataset. Therefore, the choice of treatment becomes
crucial as the source of point cloud data significantly impacts the
vegetation filtering approach in this study.

Although the proposed vegetation filtering algorithm based
on K-means clustering demonstrates satisfactory performance in
removing vegetation noise and preserving essential rock structural
features, several limitations remain. First, the effectiveness of the
algorithm is partly constrained by the spatial resolution and quality
of the point cloud data. High-density vegetation or low-resolution
scans may hinder accurate noise identification. Second, the selection
of algorithmic parameters—such as the K value in clustering,
the threshold for deviation from the fitted plane, and the grid
size for seed point generation—introduces a degree of subjectivity
and may vary depending on terrain characteristics. Third, while
qualitative and quantitative assessments were performed in this
study, validation still relies on comparison with manual filtering,
which itself may contain inherent uncertainties.

Future research should focus on enhancing the automation and
adaptability of the algorithm, for instance by introducing adaptive
parameter tuning or integrating machine learning-based vegetation
classifiers. In addition, testing the method on a wider range of slope
types and geological settings will help generalize its applicability.
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Incorporating multispectral or hyperspectral data could also further
improve vegetation-rock discrimination, especially in densely
vegetated or shaded regions.
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