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Introduction: Alluvial fans are crucial geomorphic features in arid regions,
playing key roles in geomorphic evolution, hydrological modeling, and land-use
planning. However, their irreqular morphology and multi-scale characteristics
make accurate boundary delineation challenging for conventional remote
sensing methods.

Methods: To overcome these limitations, this study proposes a multi-module
enhanced Mask R-CNN framework that integrates topographic and spectral
information for precise alluvial fan recognition. The model consists of a
Topographic—Spectral Fusion (TSF) module, a Scale-Adaptive Module (SAM),
and a Mask—-Boundary Refinement (MBR) module, jointly designed to improve
recognition accuracy and structural detail preservation.

Results: Experiments based on multi-source remote sensing imagery and terrain
data show that the proposed model achieves an accuracy of 91.7%, precision
of 89.8%, recall of 88.5%, and F1-score of 89.1% in full-region classification. For
segmentation, the model attains a mean intersection over union (mloU) of 81.5%
and a boundary Fl-score of 80.4%. Ablation experiments confirm that the TSF
module enhances spatial—structural modeling, while the MBR module improves
boundary fitting.

Discussion: The results demonstrate that the proposed framework provides
robust and transferable performance across different fan size categories,
achieving a minimum false negative rate of 3.9%. The method offers both
theoretical value and practical applicability for accurate alluvial fan recognition
in arid regions.

computer vision, alluvial fans segmentation, multi-scale feature extraction, boundary-
aware mask refinement, high-resolutionimage analysis

1 Introduction

Alluvial fans are fan-shaped depositional systems formed by rapid sedimentation
at mountain outlets due to abrupt decreases in hydrodynamic energy. These fans are
widely distributed in arid and semi-arid regions and hold significant implications in
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sedimentology, geomorphology, and resource geology (Ghahraman,
2024). In fields such as petroleum exploration, groundwater
development, debris flow monitoring, and the study of modern
depositional environments, the accurate identification and
delineation of alluvial fans—representing major coarse-grained
depositional units—play a crucial role in reservoir prediction,
watershed modeling, and disaster prevention planning (Shoshta
and Marh, 2023). Therefore, precise and efficient recognition of
the spatial distribution and boundary features of alluvial fans is of
both theoretical and practical importance for enhancing resource
detection and geomorphological understanding. Traditional
methods for identifying alluvial fans have predominantly relied on
field geological surveys, manual interpretation of remote sensing
imagery, and spectral index techniques. Although feasible for
small-scale investigations, these approaches suffer from substantial
limitations, including insufficient spatial coverage, heavy reliance
on expert experience, high subjectivity, and poor automation
and batch-processing capabilities (Ghahraman and Nagy, 2023).
Particularly in large-scale complex geomorphic regions, such
methods fail to meet the demands for efficient, objective, and fine-
grained recognition, thereby hindering the broader application and
scalability of alluvial fan studies.

In recent years, deep learning techniques have been widely
applied in remote sensing image analysis, with architectures such
as convolutional neural networks (CNNs), U-Net, and MASK R-
CNN achieving notable success in urban boundary extraction
and disaster detection tasks (Lin et al., 2022). However, several
technical bottlenecks remain when these models are applied to
the identification of alluvial fans (Lv et al., 2023). On one hand,
most existing models rely solely on optical imagery, limiting their
ability to capture three-dimensional geomorphic structures and
neglecting critical topographic features such as slope and aspect.
On the other hand, current network architectures are typically
designed for general object detection tasks and lack structural
adaptation and boundary refinement mechanisms tailored to
sedimentary fans. As a result, their accuracy and generalizability
are constrained when dealing with alluvial fans of varying stages
and source materials. To address the challenges of low automation,
weak spatial structural representation, and inadequate utilization
of topographic information in current alluvial fan recognition
methods, an intelligent recognition framework integrating spectral
and topographic information is proposed in this study. Specifically,
a six-channel remote sensing input is constructed by combining
RGB bands with terrain bands, including digital elevation model
(DEM), slope, and aspect, to comprehensively encode both
spectral and spatial geometric features of geomorphology. On this
basis, the MASK R-CNN deep neural network architecture is
modified to enhance the precision and robustness of boundary
detection and morphological characterization for sedimentary
bodies. The proposed method enables automatic extraction of
alluvial fan regions while balancing recognition accuracy and spatial
consistency, thereby significantly improving the intelligence level of
remote sensing interpretation. The main contributions of this study
are summarized as follows:

1. A six-channel remote sensing input mechanism that fuses
spectral and topographic information is proposed. For the
first time, DEM, slope, and aspect are jointly modeled with
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RGB bands to enhance the spatial perception of alluvial fan
geomorphology;

. The MASK R-CNN architecture is modified to accommodate
six-channel input, including reconstruction of the initial
convolution layer, introduction of a slope-guided dynamic
anchor configuration mechanism, and development of
a boundary-aware mask optimization strategy, thereby
improving adaptability to scale variation and boundary
complexity;

. A high-quality labeled remote sensing dataset is constructed,
and empirical studies are conducted in representative alluvial
fan areas located in the Junggar Basin and the southern margin
of the Qilian Mountains, demonstrating the effectiveness and
stability of the method under diverse geomorphic conditions.

2 Related work

2.1 Remote sensing-based identification of
alluvial fans

Alluvial and debris flow fans, as typical coarse-grained
depositional systems developed at the piedmont zones, are widely
distributed in arid, semi-arid, and mountainous regions, holding
significant implications for geomorphic evolution and resource-
environmental applications. With the advancement of remote
sensing technologies, increasing efforts have been devoted to
the identification and extraction of alluvial fans using multi-
source satellite data, leading to the formation of a preliminary
technical framework (Zhou et al., 2022). Existing studies have
primarily focused on three aspects: delineation of fan boundaries,
extraction of morphological parameters, and spatial analysis of
depositional evolution stages. The mainstream methodologies can
be categorized into three types: visual interpretation, spectral index-
based approaches, and morphological parameter analysis. Visual
interpretation relies on color, texture, shape, and topographic
context within satellite imagery for manual delineation, and has
been widely applied in early studies (Miliaresis and Argialas,
2000). However, this method suffers from low efficiency, strong
dependence on expert experience, and limited scalability. Spectral
index methods utilize the differences in spectral signatures of
vegetation, water, and soil to assist in boundary extraction. Gao
et al. proposed and validated the use of the normalized difference
water index (NDWI), computed from near-infrared and shortwave-
infrared bands, to detect surface water and vegetation moisture,
providing foundational support for alluvial fan delineation in arid
zones (Gao, 1996). Thannoun employed principal component
analysis (PCA), band ratioing, and false-color composites based
on Landsat-7 ETM + imagery to extract fan boundaries in
northern Iraq (Thannoun et al, 2016). These methods offer
simplicity and are suitable for preliminary large-area delineation,
yet are highly sensitive to imaging conditions and surface cover, and
are limited in capturing inherent geomorphic structures.

Morphological parameter analysis utilizes remote sensing
imagery or DEMs to extract geometric attributes such as slope,
curvature, and spatial extent (Zhang et al., 2022). Thresholding
or clustering algorithms are then applied to identify fan
morphologies. Babi¢ etal. developed an automated framework
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using DEMs to evaluate key parameters representing complex
geomorphic characteristics, such as relative positioning within
the surrounding terrain, and employed five machine learning
algorithms to detect Slovenian torrential fans (Babi¢ et al., 2021).
Nevertheless, due to the morphological heterogeneity of alluvial
fans formed under diverse provenance and climatic settings,
conventional morphological models often lack generalization and
robustness. To address these gaps, a deep learning-based method
is proposed that integrates spectral and topographic features and
supports end-to-end automatic recognition. This approach aims to
overcome the shortcomings of traditional techniques by enhancing
the modeling of spatial geometric information and enabling
intelligent interpretation of complex sedimentary fans, thereby
facilitating the paradigm shift from rule-based to data-driven
geomorphological mapping.

2.2 Deep learning in remote sensing-based
geomorphological recognition

With recent advancements in the spatial resolution and revisit
frequency of satellite imagery, deep learning has emerged as a
powerful tool for the extraction and intelligent recognition of
geomorphic features. CNNs known for their strong capability
in spatial feature modeling, have been widely adopted for
classification, detection, and segmentation tasks in remote sensing
(Mei et al, 2024; Li et al, 2024). Among them, encoder-
decoder architectures such as U-Net (Wang and Li, 2024) and
the DeepLab series (Wang et al, 2024) have achieved notable
performance in semantic segmentation, enabling pixel-level
delineation of geomorphic units. U-Net employs skip connections
to fuse multi-scale contextual information, making it suitable
for detecting fans with clear boundaries and high connectivity.
DeepLabv3+ enhances the perception of complex textures
and scale variations through atrous convolution and spatial
pyramid pooling.

These models have been successfully applied in geological
hazard monitoring, land-use classification, and ecological zoning.
Compared to semantic segmentation models, Mask R-CNN
(Jiang et al, 2024) offers the combined capabilities of object
detection and instance segmentation, with superior boundary
localization and structural expression. Its applications span urban
boundary extraction (Hou and Li, 2024; Ismael and Sadeq, 2025),
landslide detection, and debris flow mapping (Wan et al., 2024).
Studies have demonstrated that Mask R-CNN’s region proposal
network (RPN) and mask branch are effective in capturing
spatially complex and structurally ambiguous geomorphic entities,
making it particularly suitable for targets with prominent spatial
boundaries but diverse morphological characteristics. Therefore, a
remote sensing recognition framework that integrates multi-source
data, demonstrates structural sensitivity, and supports regional
generalization is urgently needed. By incorporating topographic
parameters and constructing feature extraction mechanisms specific
to fan identification, and by combining instance segmentation with
boundary refinement strategies, model capabilities in delineating
complex sedimentary fans can be significantly enhanced. This
study introduces a modified Mask R-CNN model tailored for
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alluvial fan recognition, aiming to achieve high-accuracy and robust
performance in geomorphic identification tasks.

2.3 Multi-source fusion strategies
for remote sensing data

As a core direction in applied remote sensing, geomorphological
recognition has gradually shifted from reliance on single-source
data to multi-source information integration. Traditional remote
sensing analyses primarily leverage spectral features from visible and
near-infrared bands to infer surface materials and fan structures.
However, for complex geomorphic types such as sedimentary
bodies, fluvial networks, and desert fans, spectral information alone
is insufficient for accurate characterization and robust identification.
To address this, increasing attention has been paid to integrating
topographic variables—such as DEM, slope, and aspect—with
multispectral imagery, enabling more comprehensive modeling of
fan morphology, slope characteristics, and structural evolution
(Li et al., 2020). Current mainstream fusion strategies can be
categorized into three types: multi-source stacked input, multi-
channel encoding, and deep feature fusion. Among them, directly
stacking spectral and topographic variables into multi-channel
input images has become the most widely adopted approach in
deep learning models. This strategy preserves the original spatial
resolution and positional alignment of each data source, simplifies
preprocessing, and provides high-dimensional and complementary
discriminative features to neural networks (Lyu et al., 2021).

Multi-channel
sensitivity to geometric and morphological features, improve

inputs  significantly  enhance = model
discrimination in complex backgrounds, and boost generalization
performance—particularly beneficial in tasks involving blurred
fan boundaries and large scale variations. For instance, six-
band composite inputs have demonstrated advantages in various
geomorphic scenarios. In aeolian desert fan recognition, DEM
and slope information help delineate dune orientations and
morphologies (Udin et al, 2019); in fluvial and alluvial plain
analysis, aspect and elevation gradients are crucial for identifying
floodplain boundaries and channel distributions (Odunuga and
Raji, 2018); and in alluvial fan recognition, slope gradients and
radial dispersion patterns derived from DEM can clearly distinguish
fan structures. Studies have shown that such spectral-topographic
joint input strategies significantly improve sensitivity to critical
features, such as spatial boundaries, fan-edge gullies, and slope
discontinuities, thereby enhancing segmentation accuracy and
boundary delineation.

To overcome these challenges, a fusion modeling framework
based on six-channel remote sensing inputs is proposed. RGB
spectral bands and three topographic variables—DEM, slope,
and aspect—are systematically integrated. The network input
layer is reconstructed to accommodate the high-dimensional
input. The theoretical foundation of this strategy lies in
the complementarity between spectral and spatial geometric
information. By enabling both data-level and structure-level fusion,
the model’s representation of complex depositional boundaries
and morphologies is enhanced, providing a structured solution
for intelligent recognition of alluvial and other sedimentary fans.
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TABLE 1 Statistics of remote sensing data and annotated samples.

10.3389/feart.2025.1685685

Data type Junggar basin Southern qilian ’ Total
LANDSAT-7 RGB imagery (2018-2022) 24 scenes 18 scenes 42 scenes
GDEMV?2 DEM and derived layers (2018-2022) 24 tiles 18 tiles 42 tiles
Six-channel image tiles (Training set) 1120 733 1853
Six-channel image tiles (Validation set) 122 84 206
Six-channel image tiles (Test set) 115 85 200

3 Materials and methods
3.1 Data collection

The remote sensing data employed in this study were primarily
derived from LANDSAT-7 ETM + optical imagery and GDEMV2
topographic datasets, covering two typical arid-region alluvial fan
development zones located in the northwestern margin of the
Junggar Basin and the southern margin of the Qilian Mountains,
as shown in Table 1. The optical imagery was acquired from the
United States Geological Survey (USGS) Earth Explorer platform,
with acquisition dates ranging from 2018 to 2022. Priority was
given to scenes captured between June and October with cloud
coverage less than 5%, thereby ensuring clear surface observations
free from cloud contamination. The selected LANDSAT-7 ETM +
images included red (R), green (G), and blue (B) bands with a
spatial resolution of 30 m, offering robust fan representation and
consistent large-scale image coverage. After downloading, all scenes
underwent radiometric calibration, atmospheric correction, and
geometric registration to ensure spectral consistency and spatial
alignment across different years and regions. The topographic data
were collected over a similar time span and were uniformly sourced
from the GDEMV2 dataset released by the Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of
Sciences. This dataset also provides a spatial resolution of 30 m and
was constructed through the fusion of ASTER GDEM, SRTM, and
domestic photogrammetric survey data, ensuring high elevation
accuracy and regional consistency. In this study, the original DEM
layers were used as the base, from which slope and aspect layers
were derived using raster-based differential algorithms. These layers
collectively formed the topographic channels. To enhance the
representation of three-dimensional geomorphological features, all
topographic data were resampled and aligned at the pixel level, and
reprojected to the WGS 84 UTM coordinate system. Furthermore,
the elevation and its derivatives were normalized to the [0, 1] interval
using z-score normalization to prevent gradient imbalance during
network training due to extreme terrain variation.

During the data fusion stage, the RGB optical bands and
the topographic channels (DEM, slope, aspect) were concatenated
along the channel dimension to construct a six-channel remote
sensing input. The resulting composite imagery preserved original
spectral and textural information while introducing structural
priors, thereby enhancing the model’s capacity to perceive alluvial
fan morphologies and boundary features. To build a high-quality
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labeled dataset, a manual annotation process was conducted using
the ArcGIS platform, based on LANDSAT imagery and DEM data
collected between 2019 and 2021. Through expert interpretation
of visual spectral features and topographic cross-sections, the
boundaries of alluvial fans were accurately delineated. The labeled
regions spanned multiple representative fans characterized by
different sediment sources, depositional phases, and distinct
geomorphic configurations of fan structures. The composite images
and their corresponding vector labels were then segmented into
multiple image tiles at various scales, with resolutions ranging from
512x 512 to 2048 x 2048 pixels. This approach enabled the deep
learning model to simultaneously capture local detail and global
structure. The final dataset comprised 1853 six-channel tiles for
training, 206 for validation, and 200 for testing, effectively covering
diverse geomorphic patterns, background noise, and depositional
scenarios, and providing a solid foundation for model training and
generalization.

3.2 Data preprocessing and augmentation
strategy

To construct a high-quality training dataset suitable for
multi-source remote sensing inputs, systematic preprocessing and
augmentation procedures were applied to both the raw optical
and topographic data prior to model training. To enrich the input
beyond traditional RGB imagery, two spatial derivatives—slope
and aspect—were extracted from the DEM to supplement the
missing geometric information. Slope quantifies the steepness of
elevation changes and was computed using the central difference
method as follows:

> 2
Slope(x,)’):tanl< (g_,zc) +<?)_;> >,
0z

where = and g—; represent elevation gradients along the horizontal
and vertical directions, approximated using a 3 x 3 Sobel operator.
Aspect describes the main orientation of the slope and was

calculated as:
Aspect (x,y) = tan”!

To avoid discontinuities caused by the circular nature of
directional angles within the 360° domain, the aspect was projected
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onto the unit circle and normalized as:

Aspect 2i - (Aspect mod 27).
s

norm

This transformation ensures consistency in scale and periodic
stability across all input channels, facilitating the networK’s ability
to learn directional patterns of surface slopes. To eliminate inter-
band scale discrepancies, each of the six input channels was
normalized individually. For the RGB optical bands, standard score
normalization was applied:

where py and o denote the mean and standard deviation of
the respective channel. For topographic bands, a terrain-guided
normalization strategy was adopted to suppress extreme values in
high-relief regions. Slope values exceeding a threshold 7 (e.g., 30°)
were penalized using a suppression term:

A

1+a-max(0,x—1)

where a is a scaling factor introduced to mitigate gradient instability
caused by abrupt slope variations. To improve model generalization
to the morphological diversity of alluvial fans, a series of data
augmentation strategies were designed and applied dynamically
during training. Let I(x, y) denote the original image and I"(x, y) the
augmented version. First, to simulate directional variability of fans
within terrain, affine rotation was performed:

I (6,9) = I(Rg- [x17),  0~U(-3030°),

where Ry is the 22 rotation matrix and 6 is sampled from a
uniform distribution over [-30° 30°]. Next, scale transformation was
introduced to account for spatial size variation of fans:

I'(xy)=1(s-x,5-y), s~U(0.75,1.25),

where s is a scaling factor sampled from /(0.75,1.25), and
interpolation was used to maintain the original image size. To
model illumination variability in remote sensing imagery, brightness
perturbation was applied:

I (6,y)=1(x,y)-(1+98), &~U(-0.15,0.15),

where § is a perturbation factor controlling global brightness
variation. Additionally, random image flipping was used to augment
directional symmetry:

I'(xy) =1(W-x,y)
for horizontal flipping, and
I'(xy)=1(x,H-y)

For vertical flipping, where W and H denote the image
width and height, respectively. All augmentation strategies were
applied with randomized combinations during each training epoch,
effectively expanding the training distribution and improving model
robustness and recognition accuracy under complex geomorphic
conditions. After applying these augmentation strategies, the
number of training samples was increased from 1,853 original six-
channel image tiles to approximately 5,559 augmented samples,
providing a threefold expansion of the dataset and ensuring greater
diversity for model learning.
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3.3 Proposed method

3.3.1 Overall

A multi-module recognition framework integrating spectral
information and topographic structure was constructed in this
study, aiming to achieve automatic recognition and fine boundary
segmentation of alluvial fans. As shown in Figure I, the model
receives as input a six-channel composite image consisting of
conventional RGB optical bands and three terrain-derived channels
(elevation, slope, and aspect) from DEM data. The input is first
passed to the topographic-spectral fusion input module, where
the six-channel image is encoded through a modified ResNet101
backbone, enabling unified extraction of low-level features. This
stage is critical for simultaneously capturing surface texture and
spatial geometric features, allowing the model to perceive the
gradient patterns and radial dispersal structure characteristic of
alluvial fans. The extracted features are then fed into the scale-
adaptive optimization module, which contains a terrain-gradient-
driven anchor generation mechanism that adaptively proposes
candidate regions according to local slope variations. Additionally,
the FPN structure and geomorphic feature enhancement links are
introduced to improve the model’s response to fan boundaries and
small-scale lobes. The proposed candidate regions are subsequently
forwarded to the mask prediction branch, entering the mask
refinement and boundary-aware segmentation module. At this
stage, boundary attention mechanisms are introduced for explicit
modeling of fan boundaries, the output mask resolution is increased,
and edge-guided loss terms are incorporated to refine boundary
fitting and enhance the model’s ability to reconstruct complex
fan morphologies. The entire workflow forms a structural loop
of “feature encoding-scale localization-boundary optimization,”
where each module collaborates via shared spatial features and
gradient feedback. Compared to the traditional three-channel
MASK R-CNN, the proposed method significantly improves the
model’s capacity to model spatial structures of alluvial fans and
enhances its accuracy and boundary interpretability under multi-
scale and irregular conditions.

3.3.2 Topographic-spectral fusion input module
As shown in Figure2, the proposed topographic-spectral
fusion input module was developed to address the limitations of
conventional remote sensing methods that rely solely on RGB
imagery, which lack the ability to capture geometric structures.
By incorporating multi-source terrain information, this module
enables accurate modeling of the complex spatial features of alluvial
fans. Structurally, optical imagery and terrain data are integrated
at the channel level, resulting in a six-channel input composed of
red, green, and blue optical bands, as well as DEM, slope, and
aspect channels. To accommodate this high-dimensional input,
the initial convolutional layer of the ResNetl0l backbone was
modified, expanding the original kernel from 7x7x3 to 7x7x
6, thereby increasing the input channels from 3 to 6. The output
feature map size remains 112 x 112, with batch normalization and
ReLU activation preserved, and residual connections maintained to
ensure training stability. In data processing, the terrain channels
are normalized. Slope is computed using the central difference
method, while aspect is derived via gradient ratio and mapped
to the unit circle to maintain continuity and differentiability

frontiersin.org


https://doi.org/10.3389/feart.2025.1685685
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Zhou et al.

10.3389/feart.2025.1685685

Topographic-Spectral Mask Refinement and
Fusion Input Module Backbone Boundary-Aware Segmentation
A AR .
AR A 1 "1'1 y
8 g
' e g w g »
1 E}p [¢] S [¢] 8
1
Pl 2 5 ¥ 3
V=8 o g =
! g il
' = o :
! =i B
1

—— Sprectral Stream

———> Spatial Stream

1 1
1 1
1 1
1 1
1 1
| ———— Identity Stream ,
: i
1 1
1 1

UONBIOUAD)
uorsoy

Scale-Adaptive Optimization Module

FIGURE 1

The illustrated overall architecture presents a remote sensing information processing framework.

in periodic angular features. Mathematically, for each pixel
9z\2 , (0z))?
27+ (3))
9z
Bl .
g>, with
ox

%1 - (Aspect mod 27). These

(x,y), the slope is defined as Slope(x,y) = tan™! ( (

and the aspect is defined as Aspect(x,y) = tan_1<

normalization applied as Aspect, . =
encoded features enable the input image to retain both spectral
texture and 3D structural information, significantly enhancing the
model’s initial geomorphic perception capabilities. Furthermore,
a dual-branch feature extraction structure is employed after the
backbone, consisting of a spectral stream and a spatial stream. The
spectral stream employs a lightweight convolutional encoder and
multi-head self-attention to capture inter-band relationships, while
the spatial stream adopts Mamba blocks to implement non-local
spatial modeling for terrain features. These features are subsequently
fused in the cross-dimensional feature enhancement module, where
bidirectional attention mechanisms (spectral-to-spatial and spatial-
to-spectral) reweight the features. Through the construction of
selected spatial queries, terrain priors are used to filter spatial regions
highly correlated with fan morphology, which are then utilized to
guide the downstream mask prediction process.

From a mathematical perspective, the topographic-spectral
fusion module not only extends the input dimensionality but
also enables cooperative feature modeling in the latent space.
The spectral and topographic channels exhibit complementarity
across multiple scales. The terrain-guided attention mechanism
can be interpreted as spatial modulation of attention weights A,
and the optimization objective can be considered as minimizing
reconstruction error under spatial-spectral discrepancy. This
design significantly improves the model’s ability to express critical
structural features such as slope inflection, fan dispersion direction,
and edge discontinuities, making it particularly suitable for
identifying alluvial fan fans with strong geometric organization.
Experimental results demonstrate that this module, as the front-
end of the feature extraction pipeline, offers superior accuracy
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and boundary completeness compared to traditional RGB-only
input models.

3.3.3 Scale-adaptive optimization module

As shown in Figure 3, the proposed scale-adaptive optimization
module was designed to enhance the model’s perception of multi-
scale morphology and complex boundary structures of alluvial
fans. The core idea involves dynamic anchor generation, feature
pyramid construction, and channel-wise recalibration guided
by local geometric structures, enabling accurate localization of
geomorphic units across varying spatial scales, particularly in fan
bodies characterized by multi-phase stacking (Zhang et al., 2021).
Structurally, the module extends the RPN by incorporating terrain
gradient information to reconstruct anchors and employs a multi-
scale grouped convolution pathway for scale-adaptive modeling.
The input consists of multi-scale feature maps from the third,
fourth, and fifth layers of the ResNetl01 backbone, denoted as
C, € REXIZXIZ ¢ REIZ6HGE 414 €, € RIS respectively.
Based on these, a feature pyramid network (FPN) is constructed,
with each layer aligned to a unified channel dimension C =256
using 1x 1 convolution. Each level of the pyramid is then passed
to a geomorphic scale-adaptive sub-module, whose structure is
illustrated in the figure. This sub-module contains three parallel
branches (Group1, Group2, Group3), each employing combinations
of convolution kernels with different receptive fields (e.g., 3 x 3 and
1 x 1), where each branch comprises L = 2 convolutional layers with
output channels set to C; = 64. Outputs are aggregated via average
pooling to form scalar guidance coeflicients. The core scale selection
strategy is governed by the following dynamic reconstruction
(Equation 1): given the local gradient G(x, y) in a feature map region,

)

where s, denotes the base anchor scale, § is a sensitivity factor,
9Gey) represents the rate of local variation along the gradient

the anchor scale s is defined as
G (x,)
on

s(x,y)=50-<1+[3- (1)

and »
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The figure illustrates the architecture of the topographic-spectral fusion input module. Spatial and spectral features are extracted via parallel spatial and
spectral streams, respectively, with terrain attributes (e.g., elevation, slope) and remote sensing spectral bands (e.g., texture, reflectance). These features
are integrated using the cross-dimensional feature enhancement module and fed into a spatial-spectral decoder equipped with self-attention and

deformable attention mechanisms.

direction. This formulation theoretically ensures a monotonic
response between anchor scale and terrain gradient, generating
denser anchors in areas of slope discontinuity while suppressing
redundant candidates in flat regions. Furthermore, a channel-wise
recalibration (Equation 2) is introduced via a geomorphology-
aware weighting map M € R“!, used to enhance feature channels
through the Hadamard product, defined as

F=Foo(ReLU (W, - AvgPool (W, - F))), ()
where F denotes the original feature map, W, and W, are
learnable parameters, and ¢ is the sigmoid function. This non-linear
channel mapping allows feature-level emphasis and region-level
scale redistribution, enabling selective amplification of geomorphic
responses. Combined with the topographic-spectral fusion module,
this component constitutes a complete spatial structure modeling
path. The former provides rich geometric priors, while the latter
adaptively adjusts the perceptual scale at the regional level
Theoretically, this can be interpreted as implicit modeling of a
cross-scale attention (Equation 3), with an equivalent objective
function defined as

. 2
r?]gl]E(x,y)»-ﬂl}-fusion(x’y;M) _]:anchor(x’y;s) 2 (3)
where Fgo, denotes the fused spatial-channel attention features,

].'

“nchor denotes the anchor-based region response, and Q represents

the training sample set. In the task of alluvial fan recognition, this
multi-scale modeling mechanism accommodates morphological
differences in fan width, length, and dispersion direction
across provenance types, improving robustness and boundary
fitting precision. Experimental results also demonstrated strong
adaptability and stability across different study areas, with higher
recall and accuracy observed in complex fan geometries.

3.3.4 Mask refinement and boundary-aware
segmentation

The mask refinement and boundary-aware segmentation
module was designed to address limitations in traditional
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MASK R-CNN architectures, particularly the issues of boundary
blurring, mask aliasing, and inadequate segmentation precision
in geomorphic recognition tasks. Structural enhancements were
introduced to accommodate the highly variable outlines and
complex edge curvatures of alluvial fans. This module is built
upon the original mask branch of MASK R-CNN and embeds a
learnable boundary attention channel along with a hierarchical mask
refinement mechanism. Additionally, a support-query consistency
matching mechanism was introduced to achieve high-fidelity
reconstruction of fan boundary structures.

As shown in Figure 4, the module receives high-resolution,
multi-scale feature maps from the scale-adaptive optimization
module, denoted as F € RH*W, wwhere C=256 and H= W = 28.
To enhance mask expressiveness, the feature maps are upsampled
to 56 x 56 via a pixel decoder structure comprising two branches:
a primary path for mask prediction and an auxiliary path for
boundary-aware guidance. These are fused via residual connections.
In the primary path, two standard transformer blocks—each
with C=128 channels and 8 attention heads—are employed to
reconstruct mask features using multi-head self-attention and feed-
forward networks. Positional encoding consistency is maintained
to enhance contextual awareness in the mask representation. In the
boundary-guided path, a pseudo-boundary map E(x, y) is generated
via gradient operators to serve as supervision for constructing

a boundary-guided loss £ A boundary attention map B(x,y)

edge*
is fused with the mask feagtures through a Hadamard product
operation. To further improve the model’s understanding of true fan
contours, a boundary structure alignment method was introduced
based on support-query consistency matching. Given support
features X, and query features X,, alignment is performed via

Equation 4 as

Xq Wq ' (Xs Wk)T

&

where W,, W, and W, are learnable parameters, and d; is

Xq=SoftMax X W,

S v

)

the scaling factor. This operation ensures localized consistency
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FIGURE 3

Illustration of the scale-adaptive optimization module. The module leverages grouped convolutions and channel-wise attention to dynamically adjust
feature extraction at different scales. Adaptive weighting is achieved via a combination of average pooling, grouped convolution layers, and
element-wise operations, allowing the model to enhance multi-scale perception for alluvial fan structures.

®©  Signmoid

Self Attention

Backbone & MLP

Self Attention

Backbone & MLP

£
2’

o oo

Q

T MaMul

SoftMax MatMul
*Segmentation Head

FIGURE 4

boundary-aware prediction.

Illustration of the mask refinement and boundary-aware segmentation module. The architecture adopts a dual-branch structure, consisting of a
trainable query branch and a frozen support branch. Through consistent matching between query and support features, fine-grained boundary
representations are enhanced using self-attention and mask alignment mechanisms. The output is directed to a segmentation head for

mapping in feature space, improving boundary representation
across varying scales and spatial positions. The loss function
incorporates the original classification loss L, bounding
maslo With  the

Equation 5

cls>
box regression loss Ly, and mask loss L

addition of the boundary-guided loss L

edge*
is defined as
[’total = Al‘ccls + AZ‘Cbbox + /\3[’

oWe (5

=

mas edge>

where each weight A; is optimized on a validation set. This
module substantially improves the model’s ability to reconstruct
fan boundaries while maintaining overall segmentation precision.
Experimental results indicated significant improvements in
mloU and boundary accuracy across multiple test regions,
especially in areas with abrupt slope transitions and overlapping
fans. The module demonstrated enhanced stability, consistent
boundary alignment, and reduced occurrences of mask drift
and edge discontinuities, thereby improving both geomorphic
segmentation accuracy and interpretability.
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4 Experiment and results
4.1 Experimental settings

4.1.1 Experimental configuration

The proposed enhanced MASK R-CNN model was trained
and evaluated for remote sensing-based identification of alluvial
fans under a unified software and hardware environment. The
experimental framework was implemented using TensorFlow 1.15
as the deep learning backend, with all neural network components
and data processing pipelines developed in Python 3.6. Image
preprocessing and augmentation were carried out using standard
image libraries such as OpenCV and NumPy. Model training
employed the Adam optimizer with an initial learning rate set to
0.0001. A step decay strategy was adopted, whereby the learning
rate was halved every 10 epochs to improve training stability and
convergence speed. The entire training process was executed over
100 epochs with a batch size of 4. The high-dimensional six-
channel input was used to balance training efficiency and GPU
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memory consumption. A composite weighted loss function was
adopted, incorporating classification loss, bounding box regression
loss, mask segmentation loss, and boundary structure loss. The
respective weights were optimized using cross-validation. For
dataset partitioning, the annotated alluvial fan samples were
randomly divided into training, validation, and testing subsets
with a ratio of 70%, 15%, and 15%, respectively. The training
set was used to optimize network parameters, the validation
set guided hyperparameter tuning and early stopping, while the
independent test set was reserved for final performance evaluation.
This partition ensured a balanced representation of different
geomorphological conditions across subsets, thereby reducing
overfitting and improving the reliability of performance assessment.
All experiments were conducted on a high-performance server
equipped with an NVIDIA Tesla V100 GPU (32 GB VRAM), an Intel
Xeon Gold 6248 processor (2.50 GHz), and 256 GB of RAM. This
configuration ensured sufficient training and inference efficiency for
handling complex network structures and multi-scale input data.

4.1.2 Evaluation metrics

To comprehensively assess the performance of the proposed
method in terms of both accuracy and boundary delineation, several
quantitative metrics were employed. These included classification-
based metrics such as Equations 6-9, as well as Equation 10 (mIoU)
for evaluating segmentation consistency. In addition, visual analysis
was conducted to qualitatively assess mask contour and boundary
fitting performance. The metric definitions are given as:

Accuracy = __ TP+TN (6)
Y TPrIN+FP+EN’
TP
Precision = N 7
recision TP+ FP (7)
Recall = L, (8)
TP+ FN

F1 — score = 2- Pre.c'ls1on . Recall’ )
Precision + Recall

N
mIoU:lZL, (10)
N & TP, + FP, + FN,
here, TP (true positive) denotes the number of correctly predicted
pixels belonging to the fan region, TN (true negative) refers to
correctly predicted non-fan pixels, FP (false positive) represents
the number of pixels wrongly identified as fans, and FN (false
negative) indicates missed fan pixels. mloU, a widely used
metric in semantic segmentation, computes the mean overlap
between predicted and ground-truth areas across all classes.
In addition to numerical metrics, qualitative comparisons were
performed by overlaying predicted masks on ground-truth
contours to visually assess the alignment of fan boundaries,
particularly focusing on the models performance in edge
detail restoration.

4.1.3 Baseline comparisons

To verify the effectiveness of the proposed method, several
mainstream approaches were selected as baselines, covering
both traditional machine learning and modern deep learning
architectures. These included the original three-channel MASK
R-CNN (He et al, 2017), U-Net (Ronneberger et al, 2015),
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DeepLabv3+ (Peng et al,, 2020), a random forest with spectral
indices method (RF + Spectral Indices) (Boonprong et al., 2018),
and the high-resolution network HRNet (Yu et al., 2021). Among
them, the original MASK R-CNN served as the structural reference
for evaluating the improvements introduced by topographic-
spectral fusion and module enhancements. U-Net, known for
its simplicity and strong edge preservation, is widely used in
small-object segmentation in remote sensing. DeepLabv3+,
utilizing atrous convolutions, enables multi-scale feature extraction
suitable for large-scale geomorphological structures. The RF +
Spectral Indices method, rooted in traditional remote sensing,
relies on spectral and morphological descriptors with strong
interpretability but limited generalization. HRNet, a recent state-
of-the-art
across multiple scales and excels in structural continuity and

model, maintains high-resolution representations
boundary detail preservation. These baselines represent diverse
perspectives in current methodologies and provide a comprehensive
benchmark for evaluating the performance gains achieved by the

proposed framework.

4.2 Overall classification performance
comparison of different models on alluvial
fan recognition

This experiment was designed to evaluate the overall
classification performance of the proposed six-channel enhanced
MASK R-CNN, which integrates topographic and spectral
information, for alluvial fan recognition by comparing it against
several representative remote sensing models. To this end, five
baseline models were selected, including a traditional machine
learning approach (RF + spectral indices), classic semantic
segmentation networks (U-Net, DeepLabv3+), a high-resolution
representation network (HRNet), and the standard three-channel
MASK R-CNN. A comprehensive performance assessment
was conducted across four metrics: accuracy, precision, recall,
and F1-score.

As shown in Table 2; Figures 5-7, the proposed method
outperformed all comparison models across all metrics, particularly
demonstrating superior capability in recall and Fl-score. This
confirms the effectiveness of the six-channel input and multi-
module collaborative architecture in the task. From a theoretical
standpoint, the RF + spectral indices approach relies on handcrafted
features derived from spectral indices and lacks deep semantic
modeling capacity, resulting in lower recall, especially in complex
boundary regions of irregular fan shapes. U-Net and DeepLabv3+
adopt encoder-decoder architectures with reasonable feature
reconstruction capabilities; however, their lack of topographic
priors limits the ability to capture geometric structures of alluvial
fans. HRNet maintains high-resolution representation through
parallel multi-scale branches and exhibits certain advantages in
continuous structure recognition. Nevertheless, it remains confined
to two-dimensional spatial modeling and lacks the incorporation
of three-dimensional features such as elevation and slope, which
restricts its capability to model volumetric forms. The proposed
method incorporates DEM-derived terrain bands at the input
level and encodes six-channel data collaboratively via a ResNet
backbone, while the scale-aware and boundary refinement modules
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TABLE 2 Overall classification performance comparison of different models on alluvial fan recognition.

RF + Spectral Indices 78.6 74.3 69.5 71.8
U-Net 85.2 82.7 80.1 81.4
DeepLabv3+ 86.9 84.5 82.0 832
HRNet 88.3 86.4 84.2 85.3
MASK R-CNN (3ch) 87.1 85.0 823 83.6
Proposed Method (6¢h) 91.7 89.8 88.5 89.1
Bold values indicate the best performance.
RF + Spectral MASK Proposed
Ground Truth In dilcjzes U-Net DeepLabv3+ HRNet R-CNN(3ch) Methg d(6ch)

FIGURE 5
Visualization of segmentation on different methods
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Overall boundary map of the Junggar Basin and the alluvial fan on the southern edge of the Qilian Mountains

jointly enhance the network’s ability to perceive and reconstruct
multi-scale fan boundaries. Mathematically, the terrain-spectral
joint input extends the feature space dimensionality, and the
integration of attention mechanisms and mask optimization boosts
high-frequency detail modeling, ultimately resulting in improved
recognition accuracy and boundary recovery.
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4.3 Ablation study on key modules of the
proposed method

This experiment was conducted to systematically evaluate the

contribution of three core modules in the proposed model—terrain-
spectral fusion (TSF), scale-aware module (SAM), and mask
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boundary refinement (MBR)—through a stepwise ablation study.
Using the three-channel MASK R-CNN as the baseline, each module
was incrementally added, and the performance changes in terms of
mloU and boundary F1-score were recorded to determine the role of
each component in enhancing geomorphological segmentation and
boundary fitting.

As shown in Table 3; Figure8, each module contributed
significantly to performance improvement, with the full model
achieving 81.5% mIoU and 80.4% boundary F1-score, representing
increases of 5.7 and 6.6 percentage points over the baseline,
respectively. The results highlight the advantage of the multi-
module synergy. Theoretically, the TSF module enhances the model’s
ability to perceive geomorphic forms and spectral structures by
introducing joint terrain-spectral feature encoding, effectively
enriching the geometric and spectral priors in the feature space
and improving semantic segmentation accuracy. The SAM
module employs a local gradient-guided dynamic scale-aware
mechanism to refine anchor distributions and feature weighting,
allowing for adaptive modeling of complex fan structures across
scales and improving robustness. The MBR module explicitly
optimizes mask boundaries during decoding, using a support-
query consistency alignment mechanism to enhance boundary
recovery, which significantly boosts the boundary F1-score. From
a mathematical modeling perspective, TSF extends the input
tensor channel dimensionality, SAM introduces location-sensitive
scale adjustment functions, and MBR applies an asymmetric
attention mechanism to recalibrate edge representations in the
mask. These innovations enable the model to better capture
semantic structures and restore spatial details across different
layers and spatial positions, thereby enhancing remote sensing
recognition performance.

Frontiers in Earth Science

4.4 Performance consistency of the
proposed method across fan size
categories

This experiment was designed to validate the robustness and
generalization ability of the proposed model across different scales
of alluvial fans. The test dataset was categorized into three groups
based on area: small (<0.5 km?), medium (0.5-2 km?), and large
(>2 km?). The model’s performance was then evaluated using mloU,
boundary F1-score, and false negative rate to assess its stability under
multi-scale and irregular geomorphic conditions.

As shown in Table 4; Figure 9, the proposed method maintained
consistently high accuracy and boundary recovery across all
categories, with an average mIoU of 81.5%, boundary Fl-score
of 80.4%, and a false negative rate of only 4.8%. Particularly
strong performance was observed in medium and large fan
regions, indicating the model’s adaptability to complex fan
structures. From the perspective of model architecture and
mathematical characteristics, this consistency results from the
synergy of the three core modules. The SAM module introduces
a gradient-guided mechanism during multi-scale feature extraction,
enabling the model to precisely capture primary radial and edge
contours in large-scale fans, thereby enhancing mIoU. The MBR
module strengthens boundary detail representation for small
fans through boundary-aware optimization, mitigating issues
of blurred boundaries and missed detections due to resolution
limitations, thus improving boundary F1-score and reducing the
false negative rate. The TSF module enriches the input feature
representation by introducing spatial and spectral priors at the
channel level, enabling differentiated modeling of fan morphology
across scales from the encoding stage. Overall, the method exhibits
strong scale invariance and structural consistency, making it
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TABLE 3 Ablation study on key modules of the proposed method.

10.3389/feart.2025.1685685

Model variant Boundary F1 (%)
Baseline (3ch MASK R-CNN) X X X 75.8 73.8
TSF v x x 78.3 74.9
TSE + SAM v v x 80.1 77.0
TSF + MBR v x v 79.5 78.6
SAM + MBR x v v 77.2 76.9
Full Model v v v 81.5 80.4

Bold values indicate the best performance.
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It illustrates the impact of different module combinations on mloU and boundary F1 performance.

well-suited for automated recognition tasks involving diverse
alluvial fan types.

5 Discussion
5.1 Practical value and applicability

The proposed remote sensing recognition method for alluvial
fans, which integrates terrain-spectral features with multi-module
optimization mechanisms, demonstrates substantial practical
particularly in typical geomorphological
environments such as arid, semi-arid regions, and mountainous

application value,

forelands. In real-world applications, alluvial fan areas are frequently
associated with sudden natural hazards including flash floods,
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debris flows, and soil erosion. Traditional remote sensing methods
relying on manual interpretation and rule-based extraction often
struggle with the complex boundary morphologies and the
coexistence of multi-scale geomorphic units, leading to high
false detection rates and discontinuous delineation. Recent deep
learning approaches such as U-Net, DeepLabv3+, HRNet, and the
standard three-channel Mask R-CNN have improved recognition
efficiency and automation; however, they still exhibit limitations
in geomorphological tasks. For instance, U-Net and DeepLabv3+
rely primarily on spectral information and lack topographic priors,
making them prone to blurred boundaries and misclassification
in areas with complex terrain. HRNet maintains high-resolution
features but remains constrained to two-dimensional modeling,
failing to capture volumetric structures. The original three-channel
Mask R-CNN offers stronger boundary localization but cannot
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TABLE 4 Performance consistency of the proposed method across fan size categories.

Fan size category mloU (%) Boundary F1 (%) False negative rate (%)
Small Fans (<0.5 km?) 76.9 79.8 6.1
Medium Fans (0.5-2 km?) 82.1 81.3 43
Large Fans (>2 km?) 83.2 80.1 3.9
Average 81.5 80.4 4.8
Bold values indicate the best performance.
mloU (%) Boundary F1 (%) False Negative Rate (%)
80% 80% 6.0%
70% 70% 5.0%
60% 60%
4.0%
o 50% 50% °
=2
g 40% 40% 3.0%
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Fan Size Fan Size Fan Size
FIGURE 9
This figure presents the performance of the proposed method across different fan size categories (small, medium, large) in terms of mloU, Boundary
F1, and False Negative Rate.

effectively adapt to multi-scale fan morphologies due to the
absence of terrain-spectral integration and boundary refinement.
The presented model addresses these challenges by incorporating
DEM-derived variables such as elevation, slope, and aspect, and
introducing multi-scale attention modulation and boundary-guided
refinement mechanisms, thereby enabling precise morphological
modeling and detailed boundary reconstruction of alluvial fans.
For example, in regions such as Xinjiang, Qinghai, and Gansu,
where terrain undulations are pronounced and alluvial fans are
extensively distributed across piedmont basins and river outlets,
accurate recognition of fan morphology forms a critical foundation
for flood risk assessment and territorial spatial planning. When
processing large-scale high-resolution remote sensing imagery,
the proposed method balances the representation of global fan
distributions and the structural details of local lobes, providing
technical support for the construction and dynamic updating of
regional fan databases. Furthermore, in fields such as water resource
assessment, agricultural irrigation planning, and ecological barrier
construction, accurate delineation of alluvial fan boundaries and
areal extents can assist in the demarcation of irrigation districts,
identification of groundwater recharge zones, and the layout of
desertification control projects. Therefore, compared with prior deep
learning approaches, the improved Mask R-CNN model proposed
in this study not only introduces methodological innovations from a
theoretical perspective but also demonstrates stronger applicability
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and scalability in real-world geomorphological recognition tasks,
particularly suitable for automated geoinformation extraction in
environmentally fragile regions.

5.2 Limitation and future work

Despite the superior performance of the proposed multi-module
recognition framework that integrates terrain-spectral features,
particularly in terms of accuracy and boundary resolution, several
limitations remain. First, the model still suffers from omission
errors when detecting small-scale alluvial fans, especially in cases
where fan boundaries are blurred or exhibit strong visual similarity
to adjacent fans, suggesting that spatial feature modeling requires
further refinement. Second, the generalization capability of the
framework across diverse geomorphic regions has yet to be fully
validated. In monsoon or humid environments, for example, where
alluvial-colluvial composite fans are common, the method may face
challenges due to limited spectral contrast and weak topographic
variation. Third, the framework is highly dependent on high-quality
DEM and high-resolution remote sensing imagery. In regions with
limited multisource data availability, or where imagery is affected by
occlusions and shadows, performance degradation is likely. Future
research will therefore focus on improving detection performance
for small fans and boundary-ambiguous areas, potentially through
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the integration of higher-dimensional auxiliary data such as SAR
radar or geological mapping units. Such enhancements would
enable a more comprehensive perception of morphological details
and genesis-related context. In addition, advancing cross-regional
transferability and few-shot adaptation capabilities will be critical to
strengthen robustness and generalizability in diverse environments.
Ultimately, the aim is to build a continuously updateable, multi-
geomorphology-adaptive automated recognition system for alluvial
fans, providing sustained support for regional disaster assessment,
resource management, and ecological development.

6 Conclusion

Alluvial fans, as typical geomorphic units in arid and semi-
arid regions, play a pivotal role in disaster risk assessment, water
resource management, and land-use planning. However, their
complex spatial morphology and pronounced scale variability
present significant challenges to traditional remote sensing
techniques, often resulting in limited accuracy and imprecise
boundary delineation. To overcome these limitations, this study
proposes an enhanced Mask R-CNN framework that incorporates
terrain-spectral features. The end-to-end architecture integrates
a topographic-spectral fusion (TSF) input module, a scale-
adaptive optimization module, and a mask-boundary refinement
(MBR) module, collectively aimed at achieving high-precision
recognition and fine-grained boundary characterization of alluvial
fans.In comparative experiments against several mainstream
methods, the proposed model achieved an accuracy of 91.7%,
a precision of 89.8%, and a recall of 88.5%, with an F1-
score reaching 89.1%, significantly outperforming conventional
approaches such as Mask R-CNN, U-Net, and DeepLabv3+.
Segmentation performance further demonstrated superiority, with
amean intersection over union (mlIoU) of81.5% andaboundary F1-
score of 80.4%, highlighting strong capabilities in spatial structure
modeling and edge delineation. Ablation studies confirmed
the significant contributions of each core module, particularly
the TSF and MBR components, in enhancing boundary detail
representation. Additionally, scale-consistency analysis validated
the model’s robustness and stability across various fan size
categories, especially in reducing omission rates for small-scale
fans.Beyond its technical contributions, the proposed method
offers foundational value for sedimentological research and facies
analysis. By accurately capturing the morphological complexity
and depositional patterns of alluvial fans, it facilitates improved
understanding of sedimentary processes, facies associations, and
alluvial architecture. Furthermore, the ability to extract detailed
geomorphic and structural features supports paleogeographic
reconstruction efforts—such as paleo-topography modeling,
provenance analysis, and paleoclimate inference—by providing
reliable spatial constraints and high-resolution terrain proxies.
Overall, this research presents a generalized and transferable
solution for the automated recognition of complex geomorphic
systems, with broad applicability in intelligent remote sensing
interpretation and terrain analysis in arid environments, while
offering critical analog references for basin evolution studies and
sedimentary system modeling.
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