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Introduction: Alluvial fans are crucial geomorphic features in arid regions, 
playing key roles in geomorphic evolution, hydrological modeling, and land-use 
planning. However, their irregular morphology and multi-scale characteristics 
make accurate boundary delineation challenging for conventional remote 
sensing methods.
Methods: To overcome these limitations, this study proposes a multi-module 
enhanced Mask R-CNN framework that integrates topographic and spectral 
information for precise alluvial fan recognition. The model consists of a 
Topographic–Spectral Fusion (TSF) module, a Scale-Adaptive Module (SAM), 
and a Mask–Boundary Refinement (MBR) module, jointly designed to improve 
recognition accuracy and structural detail preservation.
Results: Experiments based on multi-source remote sensing imagery and terrain 
data show that the proposed model achieves an accuracy of 91.7%, precision 
of 89.8%, recall of 88.5%, and F1-score of 89.1% in full-region classification. For 
segmentation, the model attains a mean intersection over union (mIoU) of 81.5%
and a boundary F1-score of 80.4%. Ablation experiments confirm that the TSF 
module enhances spatial–structural modeling, while the MBR module improves 
boundary fitting.
Discussion: The results demonstrate that the proposed framework provides 
robust and transferable performance across different fan size categories, 
achieving a minimum false negative rate of 3.9%. The method offers both 
theoretical value and practical applicability for accurate alluvial fan recognition 
in arid regions.

KEYWORDS

computer vision, alluvial fans segmentation, multi-scale feature extraction, boundary-
aware mask refinement, high-resolutionimage analysis 

 1 Introduction

Alluvial fans are fan-shaped depositional systems formed by rapid sedimentation 
at mountain outlets due to abrupt decreases in hydrodynamic energy. These fans are 
widely distributed in arid and semi-arid regions and hold significant implications in
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sedimentology, geomorphology, and resource geology (Ghahraman, 
2024). In fields such as petroleum exploration, groundwater 
development, debris flow monitoring, and the study of modern 
depositional environments, the accurate identification and 
delineation of alluvial fans—representing major coarse-grained 
depositional units—play a crucial role in reservoir prediction, 
watershed modeling, and disaster prevention planning (Shoshta 
and Marh, 2023). Therefore, precise and efficient recognition of 
the spatial distribution and boundary features of alluvial fans is of 
both theoretical and practical importance for enhancing resource 
detection and geomorphological understanding. Traditional 
methods for identifying alluvial fans have predominantly relied on 
field geological surveys, manual interpretation of remote sensing 
imagery, and spectral index techniques. Although feasible for 
small-scale investigations, these approaches suffer from substantial 
limitations, including insufficient spatial coverage, heavy reliance 
on expert experience, high subjectivity, and poor automation 
and batch-processing capabilities (Ghahraman and Nagy, 2023). 
Particularly in large-scale complex geomorphic regions, such 
methods fail to meet the demands for efficient, objective, and fine-
grained recognition, thereby hindering the broader application and 
scalability of alluvial fan studies.

In recent years, deep learning techniques have been widely 
applied in remote sensing image analysis, with architectures such 
as convolutional neural networks (CNNs), U-Net, and MASK R-
CNN achieving notable success in urban boundary extraction 
and disaster detection tasks (Lin et al., 2022). However, several 
technical bottlenecks remain when these models are applied to 
the identification of alluvial fans (Lv et al., 2023). On one hand, 
most existing models rely solely on optical imagery, limiting their 
ability to capture three-dimensional geomorphic structures and 
neglecting critical topographic features such as slope and aspect. 
On the other hand, current network architectures are typically 
designed for general object detection tasks and lack structural 
adaptation and boundary refinement mechanisms tailored to 
sedimentary fans. As a result, their accuracy and generalizability 
are constrained when dealing with alluvial fans of varying stages 
and source materials. To address the challenges of low automation, 
weak spatial structural representation, and inadequate utilization 
of topographic information in current alluvial fan recognition 
methods, an intelligent recognition framework integrating spectral 
and topographic information is proposed in this study. Specifically, 
a six-channel remote sensing input is constructed by combining 
RGB bands with terrain bands, including digital elevation model 
(DEM), slope, and aspect, to comprehensively encode both 
spectral and spatial geometric features of geomorphology. On this 
basis, the MASK R-CNN deep neural network architecture is 
modified to enhance the precision and robustness of boundary 
detection and morphological characterization for sedimentary 
bodies. The proposed method enables automatic extraction of 
alluvial fan regions while balancing recognition accuracy and spatial 
consistency, thereby significantly improving the intelligence level of 
remote sensing interpretation. The main contributions of this study 
are summarized as follows: 

1. A six-channel remote sensing input mechanism that fuses 
spectral and topographic information is proposed. For the 
first time, DEM, slope, and aspect are jointly modeled with 

RGB bands to enhance the spatial perception of alluvial fan 
geomorphology;

2. The MASK R-CNN architecture is modified to accommodate 
six-channel input, including reconstruction of the initial 
convolution layer, introduction of a slope-guided dynamic 
anchor configuration mechanism, and development of 
a boundary-aware mask optimization strategy, thereby 
improving adaptability to scale variation and boundary 
complexity;

3. A high-quality labeled remote sensing dataset is constructed, 
and empirical studies are conducted in representative alluvial 
fan areas located in the Junggar Basin and the southern margin 
of the Qilian Mountains, demonstrating the effectiveness and 
stability of the method under diverse geomorphic conditions.

2 Related work

2.1 Remote sensing-based identification of 
alluvial fans

Alluvial and debris flow fans, as typical coarse-grained 
depositional systems developed at the piedmont zones, are widely 
distributed in arid, semi-arid, and mountainous regions, holding 
significant implications for geomorphic evolution and resource-
environmental applications. With the advancement of remote 
sensing technologies, increasing efforts have been devoted to 
the identification and extraction of alluvial fans using multi-
source satellite data, leading to the formation of a preliminary 
technical framework (Zhou et al., 2022). Existing studies have 
primarily focused on three aspects: delineation of fan boundaries, 
extraction of morphological parameters, and spatial analysis of 
depositional evolution stages. The mainstream methodologies can 
be categorized into three types: visual interpretation, spectral index-
based approaches, and morphological parameter analysis. Visual 
interpretation relies on color, texture, shape, and topographic 
context within satellite imagery for manual delineation, and has 
been widely applied in early studies (Miliaresis and Argialas, 
2000). However, this method suffers from low efficiency, strong 
dependence on expert experience, and limited scalability. Spectral 
index methods utilize the differences in spectral signatures of 
vegetation, water, and soil to assist in boundary extraction. Gao 
et al. proposed and validated the use of the normalized difference 
water index (NDWI), computed from near-infrared and shortwave-
infrared bands, to detect surface water and vegetation moisture, 
providing foundational support for alluvial fan delineation in arid 
zones (Gao, 1996). Thannoun employed principal component 
analysis (PCA), band ratioing, and false-color composites based 
on Landsat-7 ETM + imagery to extract fan boundaries in 
northern Iraq (Thannoun et al., 2016). These methods offer 
simplicity and are suitable for preliminary large-area delineation, 
yet are highly sensitive to imaging conditions and surface cover, and 
are limited in capturing inherent geomorphic structures.

Morphological parameter analysis utilizes remote sensing 
imagery or DEMs to extract geometric attributes such as slope, 
curvature, and spatial extent (Zhang et al., 2022). Thresholding 
or clustering algorithms are then applied to identify fan 
morphologies. Babič et al. developed an automated framework 
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using DEMs to evaluate key parameters representing complex 
geomorphic characteristics, such as relative positioning within 
the surrounding terrain, and employed five machine learning 
algorithms to detect Slovenian torrential fans (Babič et al., 2021). 
Nevertheless, due to the morphological heterogeneity of alluvial 
fans formed under diverse provenance and climatic settings, 
conventional morphological models often lack generalization and 
robustness. To address these gaps, a deep learning-based method 
is proposed that integrates spectral and topographic features and 
supports end-to-end automatic recognition. This approach aims to 
overcome the shortcomings of traditional techniques by enhancing 
the modeling of spatial geometric information and enabling 
intelligent interpretation of complex sedimentary fans, thereby 
facilitating the paradigm shift from rule-based to data-driven 
geomorphological mapping. 

2.2 Deep learning in remote sensing-based 
geomorphological recognition

With recent advancements in the spatial resolution and revisit 
frequency of satellite imagery, deep learning has emerged as a 
powerful tool for the extraction and intelligent recognition of 
geomorphic features. CNNs known for their strong capability 
in spatial feature modeling, have been widely adopted for 
classification, detection, and segmentation tasks in remote sensing 
(Mei et al., 2024; Li et al., 2024). Among them, encoder-
decoder architectures such as U-Net (Wang and Li, 2024) and 
the DeepLab series (Wang et al., 2024) have achieved notable 
performance in semantic segmentation, enabling pixel-level 
delineation of geomorphic units. U-Net employs skip connections 
to fuse multi-scale contextual information, making it suitable 
for detecting fans with clear boundaries and high connectivity. 
DeepLabv3+ enhances the perception of complex textures 
and scale variations through atrous convolution and spatial
pyramid pooling.

These models have been successfully applied in geological 
hazard monitoring, land-use classification, and ecological zoning. 
Compared to semantic segmentation models, Mask R-CNN 
(Jiang et al., 2024) offers the combined capabilities of object 
detection and instance segmentation, with superior boundary 
localization and structural expression. Its applications span urban 
boundary extraction (Hou and Li, 2024; Ismael and Sadeq, 2025), 
landslide detection, and debris flow mapping (Wan et al., 2024). 
Studies have demonstrated that Mask R-CNN’s region proposal 
network (RPN) and mask branch are effective in capturing 
spatially complex and structurally ambiguous geomorphic entities, 
making it particularly suitable for targets with prominent spatial 
boundaries but diverse morphological characteristics. Therefore, a 
remote sensing recognition framework that integrates multi-source 
data, demonstrates structural sensitivity, and supports regional 
generalization is urgently needed. By incorporating topographic 
parameters and constructing feature extraction mechanisms specific 
to fan identification, and by combining instance segmentation with 
boundary refinement strategies, model capabilities in delineating 
complex sedimentary fans can be significantly enhanced. This 
study introduces a modified Mask R-CNN model tailored for 

alluvial fan recognition, aiming to achieve high-accuracy and robust 
performance in geomorphic identification tasks. 

2.3 Multi-source fusion strategies
for remote sensing data

As a core direction in applied remote sensing, geomorphological 
recognition has gradually shifted from reliance on single-source 
data to multi-source information integration. Traditional remote 
sensing analyses primarily leverage spectral features from visible and 
near-infrared bands to infer surface materials and fan structures. 
However, for complex geomorphic types such as sedimentary 
bodies, fluvial networks, and desert fans, spectral information alone 
is insufficient for accurate characterization and robust identification. 
To address this, increasing attention has been paid to integrating 
topographic variables—such as DEM, slope, and aspect—with 
multispectral imagery, enabling more comprehensive modeling of 
fan morphology, slope characteristics, and structural evolution 
(Li et al., 2020). Current mainstream fusion strategies can be 
categorized into three types: multi-source stacked input, multi-
channel encoding, and deep feature fusion. Among them, directly 
stacking spectral and topographic variables into multi-channel 
input images has become the most widely adopted approach in 
deep learning models. This strategy preserves the original spatial 
resolution and positional alignment of each data source, simplifies 
preprocessing, and provides high-dimensional and complementary 
discriminative features to neural networks (Lyu et al., 2021).

Multi-channel inputs significantly enhance model 
sensitivity to geometric and morphological features, improve 
discrimination in complex backgrounds, and boost generalization 
performance—particularly beneficial in tasks involving blurred 
fan boundaries and large scale variations. For instance, six-
band composite inputs have demonstrated advantages in various 
geomorphic scenarios. In aeolian desert fan recognition, DEM 
and slope information help delineate dune orientations and 
morphologies (Udin et al., 2019); in fluvial and alluvial plain 
analysis, aspect and elevation gradients are crucial for identifying 
floodplain boundaries and channel distributions (Odunuga and 
Raji, 2018); and in alluvial fan recognition, slope gradients and 
radial dispersion patterns derived from DEM can clearly distinguish 
fan structures. Studies have shown that such spectral-topographic 
joint input strategies significantly improve sensitivity to critical 
features, such as spatial boundaries, fan-edge gullies, and slope 
discontinuities, thereby enhancing segmentation accuracy and 
boundary delineation.

To overcome these challenges, a fusion modeling framework 
based on six-channel remote sensing inputs is proposed. RGB 
spectral bands and three topographic variables—DEM, slope, 
and aspect—are systematically integrated. The network input 
layer is reconstructed to accommodate the high-dimensional 
input. The theoretical foundation of this strategy lies in 
the complementarity between spectral and spatial geometric 
information. By enabling both data-level and structure-level fusion, 
the model’s representation of complex depositional boundaries 
and morphologies is enhanced, providing a structured solution 
for intelligent recognition of alluvial and other sedimentary fans. 
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TABLE 1  Statistics of remote sensing data and annotated samples.

Data type Junggar basin Southern qilian Total

LANDSAT-7 RGB imagery (2018–2022) 24 scenes 18 scenes 42 scenes

GDEMV2 DEM and derived layers (2018–2022) 24 tiles 18 tiles 42 tiles

Six-channel image tiles (Training set) 1120 733 1853

Six-channel image tiles (Validation set) 122 84 206

Six-channel image tiles (Test set) 115 85 200

3 Materials and methods

3.1 Data collection

The remote sensing data employed in this study were primarily 
derived from LANDSAT-7 ETM + optical imagery and GDEMV2 
topographic datasets, covering two typical arid-region alluvial fan 
development zones located in the northwestern margin of the 
Junggar Basin and the southern margin of the Qilian Mountains, 
as shown in Table 1. The optical imagery was acquired from the 
United States Geological Survey (USGS) Earth Explorer platform, 
with acquisition dates ranging from 2018 to 2022. Priority was 
given to scenes captured between June and October with cloud 
coverage less than 5%, thereby ensuring clear surface observations 
free from cloud contamination. The selected LANDSAT-7 ETM + 
images included red (R), green (G), and blue (B) bands with a 
spatial resolution of 30 m, offering robust fan representation and 
consistent large-scale image coverage. After downloading, all scenes 
underwent radiometric calibration, atmospheric correction, and 
geometric registration to ensure spectral consistency and spatial 
alignment across different years and regions. The topographic data 
were collected over a similar time span and were uniformly sourced 
from the GDEMV2 dataset released by the Institute of Geographic 
Sciences and Natural Resources Research, Chinese Academy of 
Sciences. This dataset also provides a spatial resolution of 30 m and 
was constructed through the fusion of ASTER GDEM, SRTM, and 
domestic photogrammetric survey data, ensuring high elevation 
accuracy and regional consistency. In this study, the original DEM 
layers were used as the base, from which slope and aspect layers 
were derived using raster-based differential algorithms. These layers 
collectively formed the topographic channels. To enhance the 
representation of three-dimensional geomorphological features, all 
topographic data were resampled and aligned at the pixel level, and 
reprojected to the WGS 84 UTM coordinate system. Furthermore, 
the elevation and its derivatives were normalized to the [0,1] interval 
using z-score normalization to prevent gradient imbalance during 
network training due to extreme terrain variation.

During the data fusion stage, the RGB optical bands and 
the topographic channels (DEM, slope, aspect) were concatenated 
along the channel dimension to construct a six-channel remote 
sensing input. The resulting composite imagery preserved original 
spectral and textural information while introducing structural 
priors, thereby enhancing the model’s capacity to perceive alluvial 
fan morphologies and boundary features. To build a high-quality 

labeled dataset, a manual annotation process was conducted using 
the ArcGIS platform, based on LANDSAT imagery and DEM data 
collected between 2019 and 2021. Through expert interpretation 
of visual spectral features and topographic cross-sections, the 
boundaries of alluvial fans were accurately delineated. The labeled 
regions spanned multiple representative fans characterized by 
different sediment sources, depositional phases, and distinct 
geomorphic configurations of fan structures. The composite images 
and their corresponding vector labels were then segmented into 
multiple image tiles at various scales, with resolutions ranging from 
512× 512 to 2048× 2048 pixels. This approach enabled the deep 
learning model to simultaneously capture local detail and global 
structure. The final dataset comprised 1853 six-channel tiles for 
training, 206 for validation, and 200 for testing, effectively covering 
diverse geomorphic patterns, background noise, and depositional 
scenarios, and providing a solid foundation for model training and 
generalization. 

3.2 Data preprocessing and augmentation 
strategy

To construct a high-quality training dataset suitable for 
multi-source remote sensing inputs, systematic preprocessing and 
augmentation procedures were applied to both the raw optical 
and topographic data prior to model training. To enrich the input 
beyond traditional RGB imagery, two spatial derivatives—slope 
and aspect—were extracted from the DEM to supplement the 
missing geometric information. Slope quantifies the steepness of 
elevation changes and was computed using the central difference 
method as follows:

Slope (x,y) = tan−1(√( ∂z
∂x
)

2
+(∂z

∂y
)

2
),

where ∂z
∂x

 and ∂z
∂y

 represent elevation gradients along the horizontal 
and vertical directions, approximated using a 3× 3 Sobel operator. 
Aspect describes the main orientation of the slope and was 
calculated as:

Aspect (x,y) = tan−1(

∂z
∂y
∂z
∂x

).

To avoid discontinuities caused by the circular nature of 
directional angles within the 360° domain, the aspect was projected 
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onto the unit circle and normalized as:

Aspectnorm =
1

2π
⋅ (Aspect mod 2π) .

This transformation ensures consistency in scale and periodic 
stability across all input channels, facilitating the network’s ability 
to learn directional patterns of surface slopes. To eliminate inter-
band scale discrepancies, each of the six input channels was 
normalized individually. For the RGB optical bands, standard score 
normalization was applied:

x′ =
x− μ

σ
,

where μ and σ denote the mean and standard deviation of 
the respective channel. For topographic bands, a terrain-guided 
normalization strategy was adopted to suppress extreme values in 
high-relief regions. Slope values exceeding a threshold τ (e.g., 30°) 
were penalized using a suppression term:

x′ = x
1+ α ⋅max (0,x− τ)

,

where α is a scaling factor introduced to mitigate gradient instability 
caused by abrupt slope variations. To improve model generalization 
to the morphological diversity of alluvial fans, a series of data 
augmentation strategies were designed and applied dynamically 
during training. Let I(x,y) denote the original image and I∗(x,y) the 
augmented version. First, to simulate directional variability of fans 
within terrain, affine rotation was performed:

I∗ (x,y) = I(Rθ ⋅ [x,y]
T) , θ ∼ U (−30°,30°) ,

where Rθ is the 2× 2 rotation matrix and θ is sampled from a 
uniform distribution over [−30°,30°]. Next, scale transformation was 
introduced to account for spatial size variation of fans:

I∗ (x,y) = I (s ⋅ x, s ⋅ y) , s ∼ U (0.75,1.25) ,

where s is a scaling factor sampled from U(0.75,1.25), and 
interpolation was used to maintain the original image size. To 
model illumination variability in remote sensing imagery, brightness 
perturbation was applied:

I∗ (x,y) = I (x,y) ⋅ (1+ δ) , δ ∼ U (−0.15,0.15) ,

where δ is a perturbation factor controlling global brightness 
variation. Additionally, random image flipping was used to augment 
directional symmetry:

I∗ (x,y) = I (W− x,y)

for horizontal flipping, and

I∗ (x,y) = I (x,H− y)

For vertical flipping, where W and H denote the image 
width and height, respectively. All augmentation strategies were 
applied with randomized combinations during each training epoch, 
effectively expanding the training distribution and improving model 
robustness and recognition accuracy under complex geomorphic 
conditions. After applying these augmentation strategies, the 
number of training samples was increased from 1,853 original six-
channel image tiles to approximately 5,559 augmented samples, 
providing a threefold expansion of the dataset and ensuring greater 
diversity for model learning. 

3.3 Proposed method

3.3.1 Overall
A multi-module recognition framework integrating spectral 

information and topographic structure was constructed in this 
study, aiming to achieve automatic recognition and fine boundary 
segmentation of alluvial fans. As shown in Figure 1, the model 
receives as input a six-channel composite image consisting of 
conventional RGB optical bands and three terrain-derived channels 
(elevation, slope, and aspect) from DEM data. The input is first 
passed to the topographic-spectral fusion input module, where 
the six-channel image is encoded through a modified ResNet101 
backbone, enabling unified extraction of low-level features. This 
stage is critical for simultaneously capturing surface texture and 
spatial geometric features, allowing the model to perceive the 
gradient patterns and radial dispersal structure characteristic of 
alluvial fans. The extracted features are then fed into the scale-
adaptive optimization module, which contains a terrain-gradient-
driven anchor generation mechanism that adaptively proposes 
candidate regions according to local slope variations. Additionally, 
the FPN structure and geomorphic feature enhancement links are 
introduced to improve the model’s response to fan boundaries and 
small-scale lobes. The proposed candidate regions are subsequently 
forwarded to the mask prediction branch, entering the mask 
refinement and boundary-aware segmentation module. At this 
stage, boundary attention mechanisms are introduced for explicit 
modeling of fan boundaries, the output mask resolution is increased, 
and edge-guided loss terms are incorporated to refine boundary 
fitting and enhance the model’s ability to reconstruct complex 
fan morphologies. The entire workflow forms a structural loop 
of “feature encoding–scale localization–boundary optimization,” 
where each module collaborates via shared spatial features and 
gradient feedback. Compared to the traditional three-channel 
MASK R-CNN, the proposed method significantly improves the 
model’s capacity to model spatial structures of alluvial fans and 
enhances its accuracy and boundary interpretability under multi-
scale and irregular conditions.

3.3.2 Topographic-spectral fusion input module
As shown in Figure 2, the proposed topographic-spectral 

fusion input module was developed to address the limitations of 
conventional remote sensing methods that rely solely on RGB 
imagery, which lack the ability to capture geometric structures. 
By incorporating multi-source terrain information, this module 
enables accurate modeling of the complex spatial features of alluvial 
fans. Structurally, optical imagery and terrain data are integrated 
at the channel level, resulting in a six-channel input composed of 
red, green, and blue optical bands, as well as DEM, slope, and 
aspect channels. To accommodate this high-dimensional input, 
the initial convolutional layer of the ResNet101 backbone was 
modified, expanding the original kernel from 7× 7× 3 to 7× 7×
6, thereby increasing the input channels from 3 to 6. The output 
feature map size remains 112× 112, with batch normalization and 
ReLU activation preserved, and residual connections maintained to 
ensure training stability. In data processing, the terrain channels 
are normalized. Slope is computed using the central difference 
method, while aspect is derived via gradient ratio and mapped 
to the unit circle to maintain continuity and differentiability 
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FIGURE 1
The illustrated overall architecture presents a remote sensing information processing framework.

in periodic angular features. Mathematically, for each pixel 

(x,y), the slope is defined as Slope(x,y) = tan−1(√( ∂z
∂x
)2 + ( ∂z

∂y
)

2
), 

and the aspect is defined as Aspect(x,y) = tan−1(
∂z
∂y
∂z
∂x

), with 

normalization applied as Aspectnorm =
1

2π
⋅ (Aspect mod 2π). These 

encoded features enable the input image to retain both spectral 
texture and 3D structural information, significantly enhancing the 
model’s initial geomorphic perception capabilities. Furthermore, 
a dual-branch feature extraction structure is employed after the 
backbone, consisting of a spectral stream and a spatial stream. The 
spectral stream employs a lightweight convolutional encoder and 
multi-head self-attention to capture inter-band relationships, while 
the spatial stream adopts Mamba blocks to implement non-local 
spatial modeling for terrain features. These features are subsequently 
fused in the cross-dimensional feature enhancement module, where 
bidirectional attention mechanisms (spectral-to-spatial and spatial-
to-spectral) reweight the features. Through the construction of 
selected spatial queries, terrain priors are used to filter spatial regions 
highly correlated with fan morphology, which are then utilized to 
guide the downstream mask prediction process.

From a mathematical perspective, the topographic-spectral 
fusion module not only extends the input dimensionality but 
also enables cooperative feature modeling in the latent space. 
The spectral and topographic channels exhibit complementarity 
across multiple scales. The terrain-guided attention mechanism 
can be interpreted as spatial modulation of attention weights Ai,j, 
and the optimization objective can be considered as minimizing 
reconstruction error under spatial-spectral discrepancy. This 
design significantly improves the model’s ability to express critical 
structural features such as slope inflection, fan dispersion direction, 
and edge discontinuities, making it particularly suitable for 
identifying alluvial fan fans with strong geometric organization. 
Experimental results demonstrate that this module, as the front-
end of the feature extraction pipeline, offers superior accuracy 

and boundary completeness compared to traditional RGB-only 
input models. 

3.3.3 Scale-adaptive optimization module
As shown in Figure 3, the proposed scale-adaptive optimization 

module was designed to enhance the model’s perception of multi-
scale morphology and complex boundary structures of alluvial 
fans. The core idea involves dynamic anchor generation, feature 
pyramid construction, and channel-wise recalibration guided 
by local geometric structures, enabling accurate localization of 
geomorphic units across varying spatial scales, particularly in fan 
bodies characterized by multi-phase stacking (Zhang et al., 2021). 
Structurally, the module extends the RPN by incorporating terrain 
gradient information to reconstruct anchors and employs a multi-
scale grouped convolution pathway for scale-adaptive modeling. 
The input consists of multi-scale feature maps from the third, 
fourth, and fifth layers of the ResNet101 backbone, denoted as 
C3 ∈ ℝ256×128×128, C4 ∈ ℝ512×64×64, and C5 ∈ ℝ1024×32×32, respectively. 
Based on these, a feature pyramid network (FPN) is constructed, 
with each layer aligned to a unified channel dimension C = 256
using 1× 1 convolution. Each level of the pyramid is then passed 
to a geomorphic scale-adaptive sub-module, whose structure is 
illustrated in the figure. This sub-module contains three parallel 
branches (Group1, Group2, Group3), each employing combinations 
of convolution kernels with different receptive fields (e.g., 3× 3 and 
1× 1), where each branch comprises L = 2 convolutional layers with 
output channels set to Cl = 64. Outputs are aggregated via average 
pooling to form scalar guidance coefficients. The core scale selection 
strategy is governed by the following dynamic reconstruction 
(Equation 1): given the local gradient G(x,y) in a feature map region, 
the anchor scale s is defined as

s (x,y) = s0 ⋅ (1+ β ⋅
∂G (x,y)

∂n
), (1)

where s0 denotes the base anchor scale, β is a sensitivity factor, 
and ∂G(x,y)

∂n
 represents the rate of local variation along the gradient 
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FIGURE 2
The figure illustrates the architecture of the topographic-spectral fusion input module. Spatial and spectral features are extracted via parallel spatial and 
spectral streams, respectively, with terrain attributes (e.g., elevation, slope) and remote sensing spectral bands (e.g., texture, reflectance). These features 
are integrated using the cross-dimensional feature enhancement module and fed into a spatial-spectral decoder equipped with self-attention and 
deformable attention mechanisms.

direction. This formulation theoretically ensures a monotonic 
response between anchor scale and terrain gradient, generating 
denser anchors in areas of slope discontinuity while suppressing 
redundant candidates in flat regions. Furthermore, a channel-wise 
recalibration (Equation 2) is introduced via a geomorphology-
aware weighting map M ∈ ℝC×1×1, used to enhance feature channels 
through the Hadamard product, defined as

F̂ = F⊙ σ (ReLU (W2 ⋅AvgPool (W1 ⋅ F))) , (2)

where F denotes the original feature map, W1 and W2 are 
learnable parameters, and σ is the sigmoid function. This non-linear 
channel mapping allows feature-level emphasis and region-level 
scale redistribution, enabling selective amplification of geomorphic 
responses. Combined with the topographic-spectral fusion module, 
this component constitutes a complete spatial structure modeling 
path. The former provides rich geometric priors, while the latter 
adaptively adjusts the perceptual scale at the regional level. 
Theoretically, this can be interpreted as implicit modeling of a 
cross-scale attention (Equation 3), with an equivalent objective 
function defined as

min
s,M
𝔼(x,y)∼Ω|Ffusion(x,y;M) −Fanchor(x,y; s)|

2
2, (3)

where Ffusion denotes the fused spatial-channel attention features, 
Fanchor denotes the anchor-based region response, and Ω represents 
the training sample set. In the task of alluvial fan recognition, this 
multi-scale modeling mechanism accommodates morphological 
differences in fan width, length, and dispersion direction 
across provenance types, improving robustness and boundary 
fitting precision. Experimental results also demonstrated strong 
adaptability and stability across different study areas, with higher 
recall and accuracy observed in complex fan geometries.

3.3.4 Mask refinement and boundary-aware 
segmentation

The mask refinement and boundary-aware segmentation 
module was designed to address limitations in traditional 

MASK R-CNN architectures, particularly the issues of boundary 
blurring, mask aliasing, and inadequate segmentation precision 
in geomorphic recognition tasks. Structural enhancements were 
introduced to accommodate the highly variable outlines and 
complex edge curvatures of alluvial fans. This module is built 
upon the original mask branch of MASK R-CNN and embeds a 
learnable boundary attention channel along with a hierarchical mask 
refinement mechanism. Additionally, a support-query consistency 
matching mechanism was introduced to achieve high-fidelity 
reconstruction of fan boundary structures.

As shown in Figure 4, the module receives high-resolution, 
multi-scale feature maps from the scale-adaptive optimization 
module, denoted as F ∈ ℝC×H×W, where C = 256 and H =W = 28. 
To enhance mask expressiveness, the feature maps are upsampled 
to 56× 56 via a pixel decoder structure comprising two branches: 
a primary path for mask prediction and an auxiliary path for 
boundary-aware guidance. These are fused via residual connections. 
In the primary path, two standard transformer blocks—each 
with C = 128 channels and 8 attention heads—are employed to 
reconstruct mask features using multi-head self-attention and feed-
forward networks. Positional encoding consistency is maintained 
to enhance contextual awareness in the mask representation. In the 
boundary-guided path, a pseudo-boundary map E(x,y) is generated 
via gradient operators to serve as supervision for constructing 
a boundary-guided loss Ledge. A boundary attention map B(x,y)
is fused with the mask features through a Hadamard product 
operation. To further improve the model’s understanding of true fan 
contours, a boundary structure alignment method was introduced 
based on support-query consistency matching. Given support 
features Xs and query features Xq, alignment is performed via 
Equation 4 as

X̃q = SoftMax(
XqWq ⋅ (XsWk)

T

√dk

)⋅XsWv, (4)

where Wq, Wk, and Wv are learnable parameters, and dk is 
the scaling factor. This operation ensures localized consistency 
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FIGURE 3
Illustration of the scale-adaptive optimization module. The module leverages grouped convolutions and channel-wise attention to dynamically adjust 
feature extraction at different scales. Adaptive weighting is achieved via a combination of average pooling, grouped convolution layers, and 
element-wise operations, allowing the model to enhance multi-scale perception for alluvial fan structures.

FIGURE 4
Illustration of the mask refinement and boundary-aware segmentation module. The architecture adopts a dual-branch structure, consisting of a 
trainable query branch and a frozen support branch. Through consistent matching between query and support features, fine-grained boundary 
representations are enhanced using self-attention and mask alignment mechanisms. The output is directed to a segmentation head for 
boundary-aware prediction.

mapping in feature space, improving boundary representation 
across varying scales and spatial positions. The loss function 
incorporates the original classification loss Lcls, bounding 
box regression loss Lbbox, and mask loss Lmask, with the 
addition of the boundary-guided loss Ledge. Equation 5
is defined as

Ltotal = λ1Lcls + λ2Lbbox + λ3Lmask + λ4Ledge, (5)

where each weight λi is optimized on a validation set. This 
module substantially improves the model’s ability to reconstruct 
fan boundaries while maintaining overall segmentation precision. 
Experimental results indicated significant improvements in 
mIoU and boundary accuracy across multiple test regions, 
especially in areas with abrupt slope transitions and overlapping 
fans. The module demonstrated enhanced stability, consistent 
boundary alignment, and reduced occurrences of mask drift 
and edge discontinuities, thereby improving both geomorphic 
segmentation accuracy and interpretability. 

4 Experiment and results

4.1 Experimental settings

4.1.1 Experimental configuration
The proposed enhanced MASK R-CNN model was trained 

and evaluated for remote sensing-based identification of alluvial 
fans under a unified software and hardware environment. The 
experimental framework was implemented using TensorFlow 1.15 
as the deep learning backend, with all neural network components 
and data processing pipelines developed in Python 3.6. Image 
preprocessing and augmentation were carried out using standard 
image libraries such as OpenCV and NumPy. Model training 
employed the Adam optimizer with an initial learning rate set to 
0.0001. A step decay strategy was adopted, whereby the learning 
rate was halved every 10 epochs to improve training stability and 
convergence speed. The entire training process was executed over 
100 epochs with a batch size of 4. The high-dimensional six-
channel input was used to balance training efficiency and GPU 
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memory consumption. A composite weighted loss function was 
adopted, incorporating classification loss, bounding box regression 
loss, mask segmentation loss, and boundary structure loss. The 
respective weights were optimized using cross-validation. For 
dataset partitioning, the annotated alluvial fan samples were 
randomly divided into training, validation, and testing subsets 
with a ratio of 70%, 15%, and 15%, respectively. The training 
set was used to optimize network parameters, the validation 
set guided hyperparameter tuning and early stopping, while the 
independent test set was reserved for final performance evaluation. 
This partition ensured a balanced representation of different 
geomorphological conditions across subsets, thereby reducing 
overfitting and improving the reliability of performance assessment. 
All experiments were conducted on a high-performance server 
equipped with an NVIDIA Tesla V100 GPU (32 GB VRAM), an Intel 
Xeon Gold 6248 processor (2.50 GHz), and 256 GB of RAM. This 
configuration ensured sufficient training and inference efficiency for 
handling complex network structures and multi-scale input data. 

4.1.2 Evaluation metrics
To comprehensively assess the performance of the proposed 

method in terms of both accuracy and boundary delineation, several 
quantitative metrics were employed. These included classification-
based metrics such as Equations 6–9, as well as Equation 10 (mIoU) 
for evaluating segmentation consistency. In addition, visual analysis 
was conducted to qualitatively assess mask contour and boundary 
fitting performance. The metric definitions are given as:

Accuracy = TP+TN
TP+TN+ FP+ FN

, (6)

Precision = TP
TP+ FP

, (7)

Recall = TP
TP+ FN

, (8)

F1− score = 2 ⋅Precision ⋅Recall
Precision+Recall

, (9)

mIoU = 1
N

N

∑
i=1

TPi

TPi + FPi + FNi
, (10)

here, TP (true positive) denotes the number of correctly predicted 
pixels belonging to the fan region, TN (true negative) refers to 
correctly predicted non-fan pixels, FP (false positive) represents 
the number of pixels wrongly identified as fans, and FN (false 
negative) indicates missed fan pixels. mIoU, a widely used 
metric in semantic segmentation, computes the mean overlap 
between predicted and ground-truth areas across all classes. 
In addition to numerical metrics, qualitative comparisons were 
performed by overlaying predicted masks on ground-truth 
contours to visually assess the alignment of fan boundaries, 
particularly focusing on the model’s performance in edge
detail restoration. 

4.1.3 Baseline comparisons
To verify the effectiveness of the proposed method, several 

mainstream approaches were selected as baselines, covering 
both traditional machine learning and modern deep learning 
architectures. These included the original three-channel MASK 
R-CNN (He et al., 2017), U-Net (Ronneberger et al., 2015), 

DeepLabv3+ (Peng et al., 2020), a random forest with spectral 
indices method (RF + Spectral Indices) (Boonprong et al., 2018), 
and the high-resolution network HRNet (Yu et al., 2021). Among 
them, the original MASK R-CNN served as the structural reference 
for evaluating the improvements introduced by topographic-
spectral fusion and module enhancements. U-Net, known for 
its simplicity and strong edge preservation, is widely used in 
small-object segmentation in remote sensing. DeepLabv3+, 
utilizing atrous convolutions, enables multi-scale feature extraction 
suitable for large-scale geomorphological structures. The RF + 
Spectral Indices method, rooted in traditional remote sensing, 
relies on spectral and morphological descriptors with strong 
interpretability but limited generalization. HRNet, a recent state-
of-the-art model, maintains high-resolution representations 
across multiple scales and excels in structural continuity and 
boundary detail preservation. These baselines represent diverse 
perspectives in current methodologies and provide a comprehensive 
benchmark for evaluating the performance gains achieved by the
proposed framework. 

4.2 Overall classification performance 
comparison of different models on alluvial 
fan recognition

This experiment was designed to evaluate the overall 
classification performance of the proposed six-channel enhanced 
MASK R-CNN, which integrates topographic and spectral 
information, for alluvial fan recognition by comparing it against 
several representative remote sensing models. To this end, five 
baseline models were selected, including a traditional machine 
learning approach (RF + spectral indices), classic semantic 
segmentation networks (U-Net, DeepLabv3+), a high-resolution 
representation network (HRNet), and the standard three-channel 
MASK R-CNN. A comprehensive performance assessment 
was conducted across four metrics: accuracy, precision, recall, 
and F1-score.

As shown in Table 2; Figures 5–7, the proposed method 
outperformed all comparison models across all metrics, particularly 
demonstrating superior capability in recall and F1-score. This 
confirms the effectiveness of the six-channel input and multi-
module collaborative architecture in the task. From a theoretical 
standpoint, the RF + spectral indices approach relies on handcrafted 
features derived from spectral indices and lacks deep semantic 
modeling capacity, resulting in lower recall, especially in complex 
boundary regions of irregular fan shapes. U-Net and DeepLabv3+ 
adopt encoder-decoder architectures with reasonable feature 
reconstruction capabilities; however, their lack of topographic 
priors limits the ability to capture geometric structures of alluvial 
fans. HRNet maintains high-resolution representation through 
parallel multi-scale branches and exhibits certain advantages in 
continuous structure recognition. Nevertheless, it remains confined 
to two-dimensional spatial modeling and lacks the incorporation 
of three-dimensional features such as elevation and slope, which 
restricts its capability to model volumetric forms. The proposed 
method incorporates DEM-derived terrain bands at the input 
level and encodes six-channel data collaboratively via a ResNet 
backbone, while the scale-aware and boundary refinement modules 
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TABLE 2  Overall classification performance comparison of different models on alluvial fan recognition.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

RF + Spectral Indices 78.6 74.3 69.5 71.8

U-Net 85.2 82.7 80.1 81.4

DeepLabv3+ 86.9 84.5 82.0 83.2

HRNet 88.3 86.4 84.2 85.3

MASK R-CNN (3ch) 87.1 85.0 82.3 83.6

Proposed Method (6ch) 91.7 89.8 88.5 89.1

Bold values indicate the best performance.

FIGURE 5
Visualization of segmentation on different methods.

FIGURE 6
Overall boundary map of the Junggar Basin and the alluvial fan on the southern edge of the Qilian Mountains.

jointly enhance the network’s ability to perceive and reconstruct 
multi-scale fan boundaries. Mathematically, the terrain-spectral 
joint input extends the feature space dimensionality, and the 
integration of attention mechanisms and mask optimization boosts 
high-frequency detail modeling, ultimately resulting in improved 
recognition accuracy and boundary recovery.

4.3 Ablation study on key modules of the 
proposed method

This experiment was conducted to systematically evaluate the 
contribution of three core modules in the proposed model—terrain-
spectral fusion (TSF), scale-aware module (SAM), and mask 
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FIGURE 7
Overall classification performance comparison of different models on alluvial fan recognition.

boundary refinement (MBR)—through a stepwise ablation study. 
Using the three-channel MASK R-CNN as the baseline, each module 
was incrementally added, and the performance changes in terms of 
mIoU and boundary F1-score were recorded to determine the role of 
each component in enhancing geomorphological segmentation and
boundary fitting.

As shown in Table 3; Figure 8, each module contributed 
significantly to performance improvement, with the full model 
achieving 81.5% mIoU and 80.4% boundary F1-score, representing 
increases of 5.7 and 6.6 percentage points over the baseline, 
respectively. The results highlight the advantage of the multi-
module synergy. Theoretically, the TSF module enhances the model’s 
ability to perceive geomorphic forms and spectral structures by 
introducing joint terrain-spectral feature encoding, effectively 
enriching the geometric and spectral priors in the feature space 
and improving semantic segmentation accuracy. The SAM 
module employs a local gradient-guided dynamic scale-aware 
mechanism to refine anchor distributions and feature weighting, 
allowing for adaptive modeling of complex fan structures across 
scales and improving robustness. The MBR module explicitly 
optimizes mask boundaries during decoding, using a support-
query consistency alignment mechanism to enhance boundary 
recovery, which significantly boosts the boundary F1-score. From 
a mathematical modeling perspective, TSF extends the input 
tensor channel dimensionality, SAM introduces location-sensitive 
scale adjustment functions, and MBR applies an asymmetric 
attention mechanism to recalibrate edge representations in the 
mask. These innovations enable the model to better capture 
semantic structures and restore spatial details across different 
layers and spatial positions, thereby enhancing remote sensing
recognition performance.

4.4 Performance consistency of the 
proposed method across fan size 
categories

This experiment was designed to validate the robustness and 
generalization ability of the proposed model across different scales 
of alluvial fans. The test dataset was categorized into three groups 
based on area: small (<0.5 km2), medium (0.5–2 km2), and large 
(>2 km2). The model’s performance was then evaluated using mIoU, 
boundary F1-score, and false negative rate to assess its stability under 
multi-scale and irregular geomorphic conditions.

As shown in Table 4; Figure 9, the proposed method maintained 
consistently high accuracy and boundary recovery across all 
categories, with an average mIoU of 81.5%, boundary F1-score 
of 80.4%, and a false negative rate of only 4.8%. Particularly 
strong performance was observed in medium and large fan 
regions, indicating the model’s adaptability to complex fan 
structures. From the perspective of model architecture and 
mathematical characteristics, this consistency results from the 
synergy of the three core modules. The SAM module introduces 
a gradient-guided mechanism during multi-scale feature extraction, 
enabling the model to precisely capture primary radial and edge 
contours in large-scale fans, thereby enhancing mIoU. The MBR 
module strengthens boundary detail representation for small 
fans through boundary-aware optimization, mitigating issues 
of blurred boundaries and missed detections due to resolution 
limitations, thus improving boundary F1-score and reducing the 
false negative rate. The TSF module enriches the input feature 
representation by introducing spatial and spectral priors at the 
channel level, enabling differentiated modeling of fan morphology 
across scales from the encoding stage. Overall, the method exhibits 
strong scale invariance and structural consistency, making it 
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TABLE 3  Ablation study on key modules of the proposed method.

Model variant TSF SAM MBR mIoU (%) Boundary F1 (%)

Baseline (3ch MASK R-CNN) × × × 75.8 73.8

TSF ✓ × × 78.3 74.9

TSF + SAM ✓ ✓ × 80.1 77.0

TSF + MBR ✓ × ✓ 79.5 78.6

SAM + MBR × ✓ ✓ 77.2 76.9

Full Model ✓ ✓ ✓ 81.5 80.4

Bold values indicate the best performance.

FIGURE 8
It illustrates the impact of different module combinations on mIoU and boundary F1 performance.

well-suited for automated recognition tasks involving diverse
alluvial fan types.

5 Discussion

5.1 Practical value and applicability

The proposed remote sensing recognition method for alluvial 
fans, which integrates terrain-spectral features with multi-module 
optimization mechanisms, demonstrates substantial practical 
application value, particularly in typical geomorphological 
environments such as arid, semi-arid regions, and mountainous 
forelands. In real-world applications, alluvial fan areas are frequently 
associated with sudden natural hazards including flash floods, 

debris flows, and soil erosion. Traditional remote sensing methods 
relying on manual interpretation and rule-based extraction often 
struggle with the complex boundary morphologies and the 
coexistence of multi-scale geomorphic units, leading to high 
false detection rates and discontinuous delineation. Recent deep 
learning approaches such as U-Net, DeepLabv3+, HRNet, and the 
standard three-channel Mask R-CNN have improved recognition 
efficiency and automation; however, they still exhibit limitations 
in geomorphological tasks. For instance, U-Net and DeepLabv3+ 
rely primarily on spectral information and lack topographic priors, 
making them prone to blurred boundaries and misclassification 
in areas with complex terrain. HRNet maintains high-resolution 
features but remains constrained to two-dimensional modeling, 
failing to capture volumetric structures. The original three-channel 
Mask R-CNN offers stronger boundary localization but cannot 
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TABLE 4  Performance consistency of the proposed method across fan size categories.

Fan size category mIoU (%) Boundary F1 (%) False negative rate (%)

Small Fans (<0.5 km2) 76.9 79.8 6.1

Medium Fans (0.5–2 km2) 82.1 81.3 4.3

Large Fans (>2 km2) 83.2 80.1 3.9

Average 81.5 80.4 4.8

Bold values indicate the best performance.

FIGURE 9
This figure presents the performance of the proposed method across different fan size categories (small, medium, large) in terms of mIoU, Boundary 
F1, and False Negative Rate.

effectively adapt to multi-scale fan morphologies due to the 
absence of terrain-spectral integration and boundary refinement. 
The presented model addresses these challenges by incorporating 
DEM-derived variables such as elevation, slope, and aspect, and 
introducing multi-scale attention modulation and boundary-guided 
refinement mechanisms, thereby enabling precise morphological 
modeling and detailed boundary reconstruction of alluvial fans. 
For example, in regions such as Xinjiang, Qinghai, and Gansu, 
where terrain undulations are pronounced and alluvial fans are 
extensively distributed across piedmont basins and river outlets, 
accurate recognition of fan morphology forms a critical foundation 
for flood risk assessment and territorial spatial planning. When 
processing large-scale high-resolution remote sensing imagery, 
the proposed method balances the representation of global fan 
distributions and the structural details of local lobes, providing 
technical support for the construction and dynamic updating of 
regional fan databases. Furthermore, in fields such as water resource 
assessment, agricultural irrigation planning, and ecological barrier 
construction, accurate delineation of alluvial fan boundaries and 
areal extents can assist in the demarcation of irrigation districts, 
identification of groundwater recharge zones, and the layout of 
desertification control projects. Therefore, compared with prior deep 
learning approaches, the improved Mask R-CNN model proposed 
in this study not only introduces methodological innovations from a 
theoretical perspective but also demonstrates stronger applicability 

and scalability in real-world geomorphological recognition tasks, 
particularly suitable for automated geoinformation extraction in 
environmentally fragile regions. 

5.2 Limitation and future work

Despite the superior performance of the proposed multi-module 
recognition framework that integrates terrain-spectral features, 
particularly in terms of accuracy and boundary resolution, several 
limitations remain. First, the model still suffers from omission 
errors when detecting small-scale alluvial fans, especially in cases 
where fan boundaries are blurred or exhibit strong visual similarity 
to adjacent fans, suggesting that spatial feature modeling requires 
further refinement. Second, the generalization capability of the 
framework across diverse geomorphic regions has yet to be fully 
validated. In monsoon or humid environments, for example, where 
alluvial–colluvial composite fans are common, the method may face 
challenges due to limited spectral contrast and weak topographic 
variation. Third, the framework is highly dependent on high-quality 
DEM and high-resolution remote sensing imagery. In regions with 
limited multisource data availability, or where imagery is affected by 
occlusions and shadows, performance degradation is likely. Future 
research will therefore focus on improving detection performance 
for small fans and boundary-ambiguous areas, potentially through
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the integration of higher-dimensional auxiliary data such as SAR 
radar or geological mapping units. Such enhancements would 
enable a more comprehensive perception of morphological details 
and genesis-related context. In addition, advancing cross-regional 
transferability and few-shot adaptation capabilities will be critical to 
strengthen robustness and generalizability in diverse environments. 
Ultimately, the aim is to build a continuously updateable, multi-
geomorphology-adaptive automated recognition system for alluvial 
fans, providing sustained support for regional disaster assessment, 
resource management, and ecological development. 

6 Conclusion

Alluvial fans, as typical geomorphic units in arid and semi-
arid regions, play a pivotal role in disaster risk assessment, water 
resource management, and land-use planning. However, their 
complex spatial morphology and pronounced scale variability 
present significant challenges to traditional remote sensing 
techniques, often resulting in limited accuracy and imprecise 
boundary delineation. To overcome these limitations, this study 
proposes an enhanced Mask R-CNN framework that incorporates 
terrain-spectral features. The end-to-end architecture integrates 
a topographic-spectral fusion (TSF) input module, a scale-
adaptive optimization module, and a mask-boundary refinement 
(MBR) module, collectively aimed at achieving high-precision 
recognition and fine-grained boundary characterization of alluvial 
fans.In comparative experiments against several mainstream 
methods, the proposed model achieved an accuracy of 91.7%, 
a precision of 89.8%, and a recall of 88.5%, with an F1-
score reaching 89.1%, significantly outperforming conventional 
approaches such as Mask R-CNN, U-Net, and DeepLabv3+. 
Segmentation performance further demonstrated superiority, with 
a mean intersection over union (mIoU) of 81.5% and a boundary F1-
score of 80.4%, highlighting strong capabilities in spatial structure 
modeling and edge delineation. Ablation studies confirmed 
the significant contributions of each core module, particularly 
the TSF and MBR components, in enhancing boundary detail 
representation. Additionally, scale-consistency analysis validated 
the model’s robustness and stability across various fan size 
categories, especially in reducing omission rates for small-scale 
fans.Beyond its technical contributions, the proposed method 
offers foundational value for sedimentological research and facies 
analysis. By accurately capturing the morphological complexity 
and depositional patterns of alluvial fans, it facilitates improved 
understanding of sedimentary processes, facies associations, and 
alluvial architecture. Furthermore, the ability to extract detailed 
geomorphic and structural features supports paleogeographic 
reconstruction efforts—such as paleo-topography modeling, 
provenance analysis, and paleoclimate inference—by providing 
reliable spatial constraints and high-resolution terrain proxies. 
Overall, this research presents a generalized and transferable 
solution for the automated recognition of complex geomorphic 
systems, with broad applicability in intelligent remote sensing 
interpretation and terrain analysis in arid environments, while 
offering critical analog references for basin evolution studies and 
sedimentary system modeling. 
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