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In recent years, extreme rainfall events have become more frequent, leading 
to a significant increase in shallow landslide disasters, which trigger debris 
flows and increase the risk of subsequent chain disasters. Therefore, conducting 
research on the identification and spatial distribution patterns of shallow 
landslides is crucial for mitigating and preventing geological disasters induced 
by rainfall. In this study, we utilized high-resolution remote sensing imagery and 
introduced deep learning methods to develop a rapid identification approach 
for shallow landslides. We constructed a shallow landslide dataset using high-
resolution optical satellite data from the Beijing-3(BJ-3) satellite. A Mask Region-
based Convolutional Neural Network (Mask R-CNN) deep learning model was 
employed to train an automatic landslide identification model, generating a 
landslide inventory. For the identified shallow landslides, we conducted a 
correlation analysis between rainfall and landslide occurrence. Spatial statistical 
analysis was used to examine the spatial distribution patterns, while and an 
Information value method coupling support vector machine (I-SVM) model 
was applied to assess the susceptibility of shallow landslides to extreme 
rainfall. The study area was selected in Puwa Township, Fangshan District, 
Beijing. Using the automatic landslide identification model, we identified 1,237 
landslides with a precision of 88.04%, a recall rate of 69.40%, and a processing 
time of 303 s. After manual screening, 13 landslide susceptibility evaluation 
factors were selected for further spatial statistical analysis and susceptibility 
assessment. The results indicate that landslides primarily occur on concave 
steep slopes at elevations ranging from 540 to 1,080 m. Under given rainfall 
conditions, the probability of shallow landslide occurrence is higher in Dong 
Village, Anzigang Village, and Dongniwa villages. The Area Under Curve(AUC) 
of the landslide susceptibility model is 97%, indicating a high evaluation 
precision. The research conducted in this paper provides valuable references
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and recommendations for the rapid identification and disaster prevention of 
shallow landslides.

KEYWORDS

shallow landslides, Mask R-CNN, spatial statistical analysis, landslide susceptibility, 
predisposing factors 

1 Introduction

Shallow landslides are one of the most common types of 
natural disasters in China, usually triggered by extremely heavy 
rainfall, earthquakes, and so forth. On 29 July 2023, the residual 
circulation of super typhoon Doksuri and the combined effects 
of subtropical high pressure, super typhoon Khanon water vapor 
transport, and terrain were observed in Beijing. Extremely heavy 
rainstorm occurred in the western mountain area of Beijing, with 
the maximum rainfall intensity of 126.6 mm/h and the maximum 
accumulated rainfall of 1,025 mm. Due to heavy rainfall, a large-
scale shallow landslide occurred in the western part of Beijing, 
posing a giant threat to the personal and property safety of the 
local people. Emergency interpretation of remote sensing data plays 
a critical role in emergency rescue operations, as it is essential 
for determining the disaster-affected area and evaluating the safety 
of disaster-stricken areas. However, conventional manual visual 
interpretation techniques impose significant limitations on disaster 
identification efficiency, particularly in time-sensitive emergency 
scenarios where rapid response is critical (Liu et al., 2024; 
Cheng et al., 2020; Guo et al., 2023).

Deep learning methods have been widely developed in recent 
years, and more and more scholars combine remote sensing images 
with deep learning models to automatically identify landslides 
using landslide identification models (e.g., Chen et al., 2022; 
Mao et al., 2023; Deng et al., 2024). In 2022, Wu used the dual 
attention mechanism of the Convolutional Neural Network (CNN) 
model to identify the landslide dataset in Jiangxi Province. By 
focusing on the boundary features of landslides through spatial 
and channel attention, relatively accurate landslide boundaries were 
obtained (Wu et al., 2022a); In 2022, Chen used the Squeeze-and-
Excitation networks (SENet) optimized Deeplabv3+ algorithm to 
identify the geohazards in power line corridors of western Sichuan, 
avoiding the manpower and material resources consumed by the 
traditional identification methods, and realizing the intelligent 
screening of landslide areas (Chen et al., 2022); In 2023, Mao used 
the improved DeepLabV3+ algorithm for training and prediction 
of landslide dataset, and achieved better improvement in model 
recognition precision. This demonstrates the ability of deep models 
to capture the boundaries of fragmented landslides (Mao et al., 
2023); In 2024, Wang conducted a study on the unbalanced 
sample situation in Yunnan Province and concluded that adopting 
a deeper network structure and improving the quality of difficult 
samples are conducive to improving the precision of landslide 
identification (Wang H et al., 2024); In 2024, Deng used the Swin 
Transformer model to identify soil landslides in the Three Gorges 
Reservoir area, which the deep learning method can still obtain 
identification results with high precision in the area with high 
vegetation cover, breaking through the performance bottleneck of 
traditional CNN under complex surface coverage conditions.

Shallow landslides in high-resolution remote sensing images 
exhibit the characteristics of discrete distribution and blurred 
boundaries; the study area is dominated by small-scale landslides, 
which are often interfered with vegetation and shadows, posing 
dual requirements for identification methods: accurate localization 
of individual landslide bodies and precise segmentation of their 
contours. Existing models have obvious limitations: traditional 
machine learning models (such as Support Vector Machines and 
Random Forests) can only achieve pixel-level classification and 
cannot simultaneously complete target localization; semantic 
segmentation models like U-Net and Pyramid Scene Parsing 
Network (PSPNet), although capable of generating pixel-
level masks, lack sufficient positioning precision for discretely 
distributed small-scale landslides. In contrast, the Mask R-CNN 
model, through its architecture consisting of Region Proposal 
Network (RPN), Region of Interest (ROI) and mask branch, can 
simultaneously output bounding boxes and pixel-level masks 
in a single forward propagation, meeting both localization and 
segmentation needs. Its integrated Feature Pyramid Network (FPN) 
effectively retains detailed information of small-scale targets (such 
as microtopography of landslide scarps and vegetation disturbance 
traces) through top-down feature fusion, and the introduced mask 
loss function adds pixel-level mask constraints beyond classification 
and bounding box regression, enabling effective differentiation 
between landslides and interfering ground objects (such as bare 
land and construction areas), thus effectively adapting to research 
requirements. 

According to previous studies, current landslide identification 
methods based on deep learning are mainly developed using 
medium-to-low resolution imagery such as Sentinel-2 (10 m) and 
Landsat-8 (30 m), with insufficient utilization of texture details from 
high-resolution optical data, such as 0.3 m imagery from the BJ-3 
satellite (Qin et al., 2021; Yu et al., 2020). Since shallow landslides 
in the Beijing area are characterized by high vegetation coverage 
and small individual area, high-resolution satellites—compared with 
medium- and low-resolution ones—provide clearer delineation of 
landslide boundaries and result in higher accuracy in landslide 
identification. Although high-resolution imagery can capture fine 
features such as microtopography of landslide scarps and vegetation 
disturbances, it also introduces the risk of overfitting due to 
increased complexity of ground objects. There is an urgent need for 
targeted techniques for feature dimensionality reduction and scale 
fusion. With the development of China’s optical satellite technology, 
high-resolution optical images are more popular. It is necessary to 
establish an identification model based on high-resolution optical 
images. Most existing datasets are derived from landslides caused by 
conventional rainfall conditions or seismic impacts, lacking effective 
training samples for shallow landslides induced by short-duration 
heavy rainfall (such as the supersaturated soil landslides in Beijing’s 
“23·7″event). These landslides often exhibit the form of debris flows 
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without obvious scarps. Furthermore, research on shallow landslides 
triggered by extreme rainfall in the Beijing area remains critically 
understudied. Shallow landslides typically occur under extreme 
rainfall conditions and can easily trigger debris flows, posing a threat 
to the safety of down-stream mountain communities. Efficient and 
accurate identification of these disasters is the key to the application 
of remote sensing technology in disaster relief and rescue efforts 
(Huang et al., 2021; Liu et al., 2023; Chen et al., 2023).

To accurately quantify the relationship between causative factors 
and shallow landslide occurrence probability, researchers have 
developed a range of landslide susceptibility assessment methods 
and models (e.g., Du et al., 2024; Li H et al., 2024; Shu et al., 2024). In 
2024, Li used an informative model to analyze the susceptibility of 
landslides in Shijiazhuang, Hebei Province, and proved the reliability 
of the model (Li C et al., 2024). In 2024, Du used a random forest 
model to analyze landslide susceptibility in Southeast Tibet, and the 
model results were verified to be accurate in the field (Du et al., 
2024). In 2024, Su used migration-based component analysis to 
analyze the susceptibility of the Kushan area, and compared to 
traditional machine models, it has higher prediction and stronger 
generalization ability in cross regional prediction (Shu et al., 2024).

Although previous studies have informed landslide 
susceptibility assessments, prevailing methodologies generally 
ignores the abrupt weight change effect of disaster-causing factors 
under extreme rainfall scenarios. Taking Beijing’s mountainous 
areas as an example, Normalized Difference Vegetation Index 
(NDVI) significantly inhibits landslides during regular rainy 
seasons. However, during extreme rainfall, short-duration intense 
infiltration leads to rapid soil saturation, weakening the soil-
reinforcing effect of vegetation roots and causing the influence 
weight of NDVI to drop sharply. Additionally, notable variations 
in geological backgrounds exist across different regions—for 
instance, residual soil is dominant in the northern mountainous 
areas, whereas fractured rocks prevail in the southwestern regions. 
These differences give rise to complex and variable interaction 
mechanisms among landslide-influencing factors, ultimately 
rendering traditional fixed-weight models poorly adaptable to 
dynamic scenarios. How to construct a data-driven dynamic factor 
screening mechanism by integrating real-time rainfall data remains 
an unsolved key problem (Guo et al., 2023; Yu et al., 2022).

Taking the “23–7” extreme rainfall event in Puwa Township, 
Fangshan District, Beijing as an empirical case, this study aims 
to construct a technical system for rapid identification and 
susceptibility analysis of shallow landslides applicable to high-
resolution remote sensing data. The specific objectives are as follows:

First, Methodological Innovation focuses on developing a 
Mask R-CNN recognition model based on high-resolution optical 
imagery—this addresses the limitations of low-resolution imagery 
in capturing fine details, thereby enabling precise detection of 
landslides triggered by extreme rainfall.

Second, Model Optimization centers on proposing a 
susceptibility assessment framework that integrates spatial statistics 
and an I-SVM model. This framework specifically tackles the 
challenges of dynamically screening landslide-influencing factors 
and constructing non-linear models for landslide assessment.

Finally, Emergency Application: Validate the practicality of the 
technical system in disaster emergencies, realize fully automated 
processes of “disaster identification - risk assessment - decision 

support”, and provide technical and data references for the 
prevention and control of extreme rainfall disasters in northern 
earth-rock mountainous areas. 

2 Materials and methods

The overall methodological framework of this study 
encompasses the following sequential stages: first, data acquisition 
and preprocessing involves the collection of BJ-3 high-resolution 
remote sensing imagery, digital elevation model (DEM) data, 
and rainfall datasets, followed by systematic preprocessing and 
enhancement to ensure data quality and suitability for subsequent 
analyses; subsequently, sample annotation and dataset construction 
entails manual delineation of landslide boundaries using 
professional annotation tools, enabling the creation of training, 
validation, and testing datasets with pixel-level precision; next, Mask 
R-CNN model training and optimization is conducted by leveraging 
the annotated datasets to train the Mask R-CNN architecture, 
with iterative parameter tuning to enhance model convergence 
and predictive performance; following model training, automatic 
landslide identification is implemented, wherein the trained model 
is applied to the study area to generate preliminary landslide list 
through automated detection of potential landslide features; to 
refine the identification results, manual verification and correction 
is performed, involving expert review to rectify misclassifications, 
omissions, and boundary inaccuracies, thereby producing final 
validated landslide inventories; landslide characteristics analysis 
is then carried out, utilizing statistical methods to examine the 
final inventories and characterize landslide properties such as 
size distribution, spatial clustering patterns, and topographic 
associations; in parallel, inducing factor analysis quantifies the 
contribution of each environmental variable to landslide occurrence 
via the information value model, identifying key drivers of 
slope instability; subsequently, susceptibility assessment employs 
the integrated I-SVM model to map the spatial distribution of 
shallow landslide susceptibility across the study area. Finally, result 
verification and analysis validates the susceptibility assessment 
outcomes against independent observations and analyzes the spatial 
attributes of high-risk zones to derive actionable insights for disaster 
management (Figure 1). 

2.1 Study area overview

The study area for this research is Puwa Township, located in 
the western part of Fangshan District, Beijing. The township covers 
approximately 85.85 km2 (excluding the area of cloud cover) and has 
a population of around 4,500 residents. The terrain is characterized 
by a high northwest and a low southeast, with a maximum eleva-
tion of about 1,534 m and a maximum elevation difference of 
approximately 1,200 m. The remote sensing image and digital 
elevation model (DEM) of the study area are illustrated in Figure 2. 
The remote sensing image was captured from high-resolution optical 
data from the BJ-3 satellite on 14 August 2023, with an image 
resolution of 0.3 m. The remote sensing data is of four bands. In 
this study, three bands of RGB were selected for sample production. 
This image contains approximately 10% cloud cover. The DEM was 
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FIGURE 1
Flowchart of the methodology used in this study.

acquired using Light Detection and Ranging (LiDAR) technology, 
with a spatial resolution of 2.5 m. Rainfall data were collected using 
rain gauges, with measurements recorded at 10 min intervals.

From July 29 to 1 August 2023, affected by the residual 
circulation of super typhoon “Doksuri,” the mountainous areas of 
western Beijing experienced extreme rainfall. The study area, Puwa 
Township, recorded a total rainfall of 585 mm from July 29 to August 
2, with the main rainfall concentrated from July 30 to August 1, 
accumulating 584.5 mm, as shown in Figure 2d. This short-duration 
intense rainfall triggered a large number of shallow landslides in the 
study area, forming dense landslide clusters. These landslides appear 
on remote sensing images as disturbed vegetation cover areas, 
exposed soil areas, and debris flow deposits in river channels. The 
geological conditions in the study area are dominated by Quaternary 
sediments, with overlying strata of dolomitic tuff and relatively stable 
geological conditions (Figures 2e,f). 

2.2 Data acquisition and preprocessing

Currently, there are no publicly available high-resolution 
shallow landslide datasets or annotated files. Therefore, this study 
utilizes BJ-3 satellite data from the “23·7” heavy rainfall event 
in Beijing to create a shallow landslide sample database for 
the concentrated landslide areas in Mentougou District. Beyond 
selecting the study area, we employed a grid division method 
to partition the entire image into segments using a 1,024 × 
1,024 window size and saved in 8-bit RGB format. Through the 
identification of morphological features, texture features, vegetation 
features, and other features of the optical image, the pixel-level labels 
are manually labeled in the labelme sample labeling software to 
delineate the boundary range of the landslides, which is used for 
the final model training. Training and labeling results are shown in 
Figure 3 (Liu et al., 2022; Wu et al., 2022b). The landslide dataset 

was divided into a training set, a validation set, and a test set, with a 
random split ratio of 7:1:2.

During the data preprocessing phase, we adopted the 
following steps:

First, image enhancement. Apply contrast-limited adaptive 
histogram equalization processing to the original remote sensing 
image to enhance the local contrast of the image and improve the 
distinguishability between landslides and the background.  Second, 
normalization: Normalize image pixel values to the [0, 1] range 
to meet the input requirements of deep learning models. Finally, 
data augmentation. To increase the diversity of training samples 
and improve the generalization ability of the model, we applied 
various data augmentation techniques to the training data, including 
random rotation (−15°–15°), horizontal flipping, vertical flipping, 
random cropping, and brightness adjustment. 

2.3 Landslide automatic identification 
model based on Mask R-CNN

Mask R-CNN is an advanced deep learning model renowned 
for its simple training process, fast running speed, and superior 
performance in various applications. As shown in Figure 4, its basic 
architecture mainly includes a backbone network, an RPN, an ROI 
alignment module, and a mask segmentation network. (Fan B. 
S. et al., 2022; He et al., 2020).

As depicted in Figure 5, the FPN layer primarily consists 
of a longitudinal path for bottom-up extraction of input image 
features by the ResNet network, a transverse path for feature 
fusion, and a top-down path. The ResNet network, serving as the 
feature extraction backbone, produces four stages of outputs in 
the FPN, denoted as (C2, C3, C4, and C5). These correspond to 
the four levels of the feature pyramid, representing the original 
image at resolutions of (1/4, 1/8, 1/16, and 1/32). The FPN 
layer integrates the low-resolution, high-semantic information 
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FIGURE 2
Optical image and digital elevation model of the study area. (a) The location of the research area in Beijing. (b) Digital elevation model. (c) Optical 
image. (d) Accumulated rainfall profile of Yudouquan Village, Puwa Township. (e) Enlarged image of local area 1. (f) Enlarged image of local area 2.

from high-level features with the high-resolution, low-semantic 
information from low-level features through lateral connections, 
thereby leveraging rich semantic information across multiple scales
(Lin et al., 2017).

The RPN layer receives the multi-scale features provided by the 
FPN layer and generates candidate regions, or proposals, according 
to predefined rules and through model training. The parameters of 
the trained model are then used to select the ROIs for the model, 
which in this experiment corresponds to potential shallow landslide 
areas. The selected ROIs are fed into the alignment network to more 
precisely adjust their positions to match the exact extent of the 
target. To accurately align the ROI with the precise spatial extent of 
the target, bilinear interpolation is first employed to derive values 
at multiple sampling points within the ROI. Max pooling is then 
applied to these sampled values to retain the most representative 
features, refining the ROI boundaries to better match the target’s 
geometric characteristics. Subsequently, the adjusted ROI is fed 
into a fully convolutional network (FCN) architecture, which 
constructs an end-to-end learning framework through alternating 
convolutional and deconvolutional layers. This network performs 
pixel-wise classification on the refined ROI, enabling the precise 
identification of all pixels belonging to shallow landslide targets. 

This process achieves end-to-end automatic identification of shallow 
landslides with high positional precision (Cai et al., 2022).

Mask R-CNN is a multitasking working network, and its loss 
function is weighted by the loss function of multiple branches as 
shown in the following Equation 1:

L = Lcls + Lbox + Lmask (1)

Where Lcls denotes the category loss function, Lbox denotes 
the regression frame loss function, and Lmask denotes the mask 
loss function. Where the specific expression of the loss function is 
as follows (Zhang and Chen, 2024):

Lmask =
1

m2

K

∑
1
(1k)

m2

∑
1
[−y∗ log (sigmoid(x)) − (1− y) ∗ log (1− sigmoid(x))]

(2)

The above equation indicates that the Sigmoid calculation is 
performed for each pixel to obtain the average of the cross-entropy 
of all pixels on the ROI as a loss function Lmask, where k denotes the 
class of the mask.

For each ROI, the mask branch generates an output with a 
dimensionality of k × m × m, where k denotes the number of 
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FIGURE 3
Visualization of dataset annotation. (a) Optical image (b) Sample labeling.

FIGURE 4
Mask R-CNN network structure.

FIGURE 5
FPN network structure.

target classes and m × m represents the spatial resolution of the 
masks. This output produces binary-encoded masks for k classes, 
each corresponding to an m × m-size segmentation map tailored to 
the ROIs semantic category. Specifically, as outlined in Equation 2, 

the loss function is computed by applying a sigmoid activation 
to each pixel within the ROI and calculating the average cross-
entropy value across all pixels (Casagli et al., 2023; Canming 
et al., 2023; Ghorbanzadeh et al., 2022).
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To better verify the recognition precision of the model, four 
precision evaluation methods, precision, recall, F1 score and mean 
intersection over union (mIoU), are used to evaluate the precision 
of the model. Among these metrics, Precision measures the overall 
correctness of the model’s identifications, while Recall focuses on 
addressing the issue of missed identifications of landslide areas by 
the model; the F1 score is used to balance Precision and Recall to 
avoid biases arising from a single metric, and mIoU—a core metric 
for evaluating the performance of semantic segmentation models. 
These four metrics are jointly employed to ensure the scientific rigor 
and accuracy of shallow landslide identification results, preventing 
the invalidation of evaluations caused by biases from relying on a 
single metric (Yuanzhen et al., 2020). The calculation method is as 
following Equation 3:

Precision = TP+TN
TP+TN+ FP+ FN

× 100%

Recall = TP
TP+ FN

× 100%

F1 = 2× Precision×Recall
Precision+Recall

× 100%

mIoU = 1
C

C

∑
C=1

TPC

TPC + FPC + FNC
× 100% (3)

Where TP (true positive) represents the number of pixels 
correctly predicted to be positive, TN (true negative) represents 
the number of pixels correctly predicted to be negative, FP(false 
positive) represents the number of pixels misjudged to be positive 
by negative samples, and FN(false negative) represents the number 
of pixels missed by positive samples.

The experiment constructs a Mask R-CNN deep learning model 
using the PyTorch 1.14 framework and the MMdetection toolkit. 
The computational environment runs on a Windows 11 system 
equipped with a GTX 1660 6 GB GPU and an I9-12900 KS CPU, 
supported by 128 GB of Random Access Memory (RAM). During 
the model training phase, the input image resolution is set to 
1,024 × 1,024 pixels, and Stochastic Gradient Descent (SGD) is 
utilized as the optimizer (Wu et al., 2022a; Wang L et al., 2024). 
To enhance the model’s learning capability, a stepwise learning rate 
adjustment algorithm is employed, which gradually reduces the 
learning rate over time. Hyperparameters are crucial for model 
training; specifically, the learning rate is set to 0.008, and the total 
number of training epochs is 1,000. The initial parameter sizes of the 
model are determined prior to training. Figure 6 displays the model’s 
training loss curve, showing a gradual convergence towards zero, 
which indicates a good fit between the validation set and the training 
outcomes. Upon completion of the training, the model’s precision 
can be assessed using standard evaluation metrics, including Recall 
and mean Average Precision (mAP) (Wang et al., 2022).

2.4 Landslide characteristics and formation 
condition analysis

2.4.1 Landslide development characteristics 
analysis

The analysis of landslide developmental characteristics 
is grounded in the stratigraphic information of the study 
area, the disaster zones affected by landslides, and To give 

FIGURE 6
Regression error curve of the model during the training process.

the statistical distribution of landslide areas, a probability 
density function p(δML) is defined according to Equation 4 
(Li J et al., 2024; Malamud et al., 2004):

p(δML) =
1
N

δNL

δML
(4)

Where, ML is the landslide disaster area, δML is the area 
increment, N is the total number of landslide disasters, and δNL
is the number of all landslide disasters in the interval ML ∼ML +
δML. After obtaining the scale-probability density of landslide 
disasters, a scale-probability density curve is plotted on a double 
logarithmic coordinate axis. The turning point of this curve serves 
as a threshold for classifying the scale of the current group-onset 
shallow landslides. Landslide areas exceeding this turning point 
are categorized as medium-to-large-scale landslides for the current 
event, while those below it are classified as small-scale landslides. 

2.4.2 Spatial distribution pattern analysis
In the analysis of the spatial distribution pattern of landslides, 

a Geographic Information System (GIS)-based spatial statistical 
analysis method is employed (Lv et al., 2024). This method involves 
counting parameters such as slope, slope direction, elevation, profile 
curvature, plan curvature, and point density information for each 
landslide body, thereby facilitating a comprehensive analysis of the 
spatial distribution pattern within the study area.

The development of shallow landslides is a very complex 
process controlled by internal and external dynamic factors. 
Internal factors determine the development and development 
status of landslides, including geological structure, slope structure, 
stratigraphic lithology, etc., which are the basis for the development 
of shallow landslides; External factors can trigger landslides, 
including rainfall, road damage to the mountain, and so on. When 
selecting landslide evaluation factors, the geological structural 
conditions and climatic factors of the study area were taken 
into account. The elevation serves as the starting condition for 
landslides, providing potential energy for slope sliding; Different 
slope orientations can lead to variations in rainfall and vegetation, 
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which in turn can affect the initiation of landslides; The slope 
mainly affects the internal stress distribution of the landslide body; 
Topographic Wetness Index (TWI) is used to describe surface 
moisture conditions, while Topographic Roughness Index (TRI) 
is used to describe surface roughness, both of which play a 
role in the occurrence of landslides to a certain extent. Plane 
curvature and section curvature are used to describe the steepness 
of landslide bodies, which in turn affects their initiation; The 
geological characteristics of the study area are determined by 
the geological basis of faults and stratigraphic lithology; NDVI 
reflects the type of Quaternary cover layer, which is also a major 
component of shallow landslides (Zhang et al., 2021); Precipitation, 
as the main initiating factor of landslides, directly affects the 
occurrence of landslides. Analogous CFD-based flow simulations in 
subsurface systems (Haroon et al., 2017) highlight the importance 
of accurately representing fluid–structure interactions for landslide 
triggering analysis.

An information-degree random forest model was used to 
analyze the geomorphic formation conditions of landslides and 
evaluate landslide susceptibility. The information-degree model 
quantifies landslide inducing conditions into information-degree 
values by measuring the scope of observed shallow landslides. 
These inducing conditions include multiple factors such as altitude, 
precipitation, and NDVI. First, reclassification is performed, then 
the information values of various categories of each factor are 
calculated, exploring the relationships between various factors and 
the information degree values of various factors. This process 
can comprehensively analyze the formation conditions of shallow 
landslide disasters and help reveal their potential relationships. The 
following method was used to calculate the evaluation of factor 
information as following Equation 5:

I =
n

∑
i=1

ln
Ni/N
Si/S

(5)

Where, I is the total information of the evaluation factor, N i is 
the number of landslides of the factor within a category, N is the 
total number of shallow landslides in the study area, Si is the area of 
landslides of the factor within a category, S is the total area of shallow 
landslides in the study area. When the value of information is higher, 
it means that the factor is more favorable for landslide occurrence. 

2.4.3 Landslide susceptibility analysis
Landslide susceptibility analysis using the SVM model. SVM 

can map data into a high-dimensional space via a kernel function, 
transforming data that is originally linearly inseparable into linearly 
separable data in this new high-dimensional space. This capability 
enables SVM to handle a wide range of complex classification tasks. 
The development of the law of landslide disaster is the result of a 
number of factors, its complex occurrence mechanism through the 
SVM model to analyze the more effective.

To address the scenario where the SVM model fails to correctly 
classify some sample data, a slack variable ξ is introduced, and its 
constraint equation is as following Equation 6:

yi[φ(X)ϖ+ b] − 1+ ξi ≥ 0,ξi ≥ 0, i = 1,2,⋯n (6)

Where, X represents the sample, yi denotes the corresponding 
class. Meanwhile, a penalty factor c is introduced to adjust the degree 

of penalty for misclassified samples. The minimum value of ‖ϖ2‖ is 
obtained through the following method, as shown in the Equation 7 
below:

a = 1
2
‖ϖ2‖ + c

n

∑
i=1

ξi (7)

To solve the above equation, the Lagrange method can be 
employed. By solving the Lagrange dual problem, non-zero Lagrange 
multipliers in the suwhose mathematical expression is asbset of 
samples can be obtained, and thus the support vectors are derived. 
These support vectors are then used to construct the decision function 
expression for the generalized optimal hyperplane, which is used for 
classification. This expression is shown in the following Equation 8: 

f(X) = sgn[
n

∑
i=1

aiyiφ(X) + b] (8)

Where, ai denotes the Lagrange multiplier for each data sample, 
with ai > 0.

For nonlinearly separable problems, SVM maps the original low-
dimensional feature space to a high-dimensional feature space via a 
kernel function, enabling the data to become linearly separable in 
the high-dimensional space. The radial basis function (RBF) kernel 
can capture complex relationships in data and involves relatively 
straightforward parameter adjustment. Therefore, the RBF kernel 
was adopted as the kernel function for SVM, whose mathematical 
expression is as following Equation 9:

K(Xi,X) = exp{−g‖Xi −X‖2} (9)

After introducing the kernel function, the SVM decision 
function for nonlinear sample data can be expressed as 
following Equation 10:

f(X) = sgn[
n

∑
i=1

aiyiK(Xi,X) + b] (10)

By combining the information amount model with the support 
vector machine model, the factors affecting the occurrence of 
landslide disasters are first calculated through information amount 
values. Determine the types of data to be input into the SVM 
model, then collect relevant data from areas affected by landslide 
disasters. Filter the data using Pearson correlation coefficient 
analysis. Correlations less than 0.2 are considered irrelevant, while 
those between 0.2 and 0.4 are considered weakly correlated. Factors 
with correlations greater than 0.4 are removed and considered 
to have high correlation. Then, determine the same number of 
areas where landslide disasters have not occurred and extract the 
same data from these areas. The Pearson correlation coefficient r is 
calculated as following Equation 11, where x and y represent two sets 
of variables respectively.

r =
∑n

i=1
(xi − x)(yi − y)

√∑n
i=1
(xi − x)2√∑n

i=1
(yi − y)2

(11)

Use the two groups of data as a dataset to input into the SVM 
model, randomly dividing them into training and validation sets 
at a 7:3 ratio. The radial basis function (RBF) was selected as 
the kernel function of the model, with a kernel function cache 
of 200. The probability estimation method was adopted, and no 
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iteration number was set, while the tolerance for stopping training 
was 0.001. Adjust the model parameters accordingly and train the 
model to obtain the final result of group sudden shallow landslide 
susceptibility.

The AUC metric is frequently used to measure the discriminative 
ability of binary classification models; therefore, it was selected as the 
performance evaluation metric for the I-SVM model in this study. 
The value range of AUC is [0.5, 1], where different values correspond 
to different levels of the model’s discriminative ability. The closer 
AUC is to 1, the better the model’s classification performance; when 
AUC equals 0.5, the model’s classification performance is the lowest, 
with no practical application value. In this study, the Wilcoxon-
Mann-Whitney statistical method was employed to calculate the 
AUC metric, and the formula is as following Equation 12:

AUC = 1
np × nn

np

∑
i=1

nn

∑
j=1

I(si > tj) (12)

Where, np denotes the number of landslide samples; nn enotes 
the number of non-landslide samples; I (·) is the indicator function; 
si represents the predicted probability that the ith landslide sample 
is classified as a landslide; tj represents the predicted probability that 
the jth non-landslide sample is classified as a non-landslide. For the 
indicator function I (·), the assignment rule is defined as follows: I = 
1, if si > tj, I = 0.5, if si = tj, I = 0, if si < tj. 

3 Results and analysis

3.1 Mask R-CNN model identification 
results

Applying the Mask R-CNN model to the 95 km2 study area, 
a total of 1,406 shallow landslides were detected, predominantly 
distributed across the Luzishui-Puwa-Senshui corridor in Puwa 
Township. After comparison and verification with manual 
interpretation results, 1,237 of them were confirmed as correct 
identifications, with an identification precision of 88.04%, recall rate 
of 69.40%, F1 score of 77.79%, and mIoU of 64.37%. The model 
processing time for the entire study area was 303 s, with an average 
processing time of approximately 3.53 s/km2, indicating that the 
model has high processing efficiency.

Table 1 shows the performance comparison of Mask R-CNN 
model with several other commonly used deep learning models 
on the same dataset. Results show that Mask R-CNN performs 
best in terms of precision, recall rate, and F1 score, especially 
having obvious advantages in small-scale landslide identification. 
Compared with U-Net, PSPNet, and FCN, the mIoU of Mask R-
CNN is 2.17%, 7.07%, and 10.06% higher respectively, indicating its 
superiority in boundary positioning and detail capture.

The model successfully detected the majority of landslides, with 
some omissions attributed to the lack of distinct features and the 
influence of vegetation coverage. The overall distribution pattern of 
the landslides shows a dense clustering. As shown in Figure 7, fewer 
landslides were detected in the central and upper parts of the study 
area, likely due to cloud cover interference.

To better demonstrate the model’s recognition performance, 
a close-up visualization of the results is presented in the 
following Figure 8.

3.2 Landslide development characteristics 
analysis

According to the landslide area statistical analysis, the shallow 
landslide areas in the study area are mainly concentrated between 
30 and 1,000 m2, accounting for approximately 91.7% of the 
total number of landslides. The probability density function 
of landslide area distribution is shown in Figure 9, and the 
landslide area probability density basically conforms to the inverse 
gamma distribution. On the double logarithmic coordinate, the 
landslide area and probability density show obvious segmented 
characteristics, with the inflection point appearing at approximately 
800 m2. This inflection point divides landslides into small landslides 
(less than 800 m2) and medium to large landslides (greater than 
or equal to 800 m2). Small landslides account for 99.3% of the 
study area, while medium to large landslides only account for 
0.7%, indicating that the study area is dominated by small shallow 
landslides.

The landslide area is small compared to the scale of other 
occurrence-intensive landslides. The total area of landslides is about 
5.111 km2, accounting for about 5.52% of the area of the study area, 
and the characteristics of landslides in the study area are typical. 
According to the analysis of landslide scale, landslides are mainly 
small landslides, accounting for 99.3%, and the number of mdium-
scale landslides is relatively small, accounting for 0.7%. According 
to the scale probability density formula for statistics, the scale-
probability density of landslide hazards in the study area basically 
conforms to the inverse gamma distribution. After taking the double 
logarithm of the scale and probability density of landslides, it is as 
shown in Figure 9. After the landslide area reaches the turning point, 
the landslide conforms to the power law distribution characteristics, 
and the probability density gradually decreases with the increasing 
landslide area (Xu et al., 2024; Fan X. M. et al., 2022; Ji et al., 2020).

Spatial analysis of the landslide occurrence area using the point 
density method, as shown in Figure 9, the distribution of landslide 
area has a certain spatial distribution characteristic, on both sides of 
the river, shallow landslides are more concentrated, with the highest 
point density of 57/km2, at the same time, there is a fracture zone 
passing through the study area, and the landslides near the fracture 
zone are also more developed. 

3.3 Spatial distribution pattern analysis

GIS-based spatial statistical analysis (Figure 10) shows that 
shallow landslides in the study area show obvious regularity 
in spatial distribution. Landslides are mainly distributed in the 
elevation range of 540–1,080 m, accounting for 82.6% of the total 
number of landslides. This elevation interval corresponds to the 
middle and high mountainous areas of the study area, where the 
terrain fluctuates greatly and the slope is steep, making it a high-
incidence area for debris flows and shallow landslides.

The distribution of landslides in different aspects also shows 
obvious differences. As shown in Figure 10, landslides are mainly 
distributed in southeast, south, and southwest aspects, with the 
largest number of landslides in the southeast aspect, accounting 
for 36% of the total. This phenomenon is related to the climate 
characteristics of the Beijing area. The southeast aspect is more 
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TABLE 1  Performance comparison of different deep learning models in landslide identification.

Method Precision/% Recall/% F1 score/% MIoU/%

FCN 76.51 58.32 66.28 54.31

PSPNet 80.12 64.31 71.47 57.30

U-Net 82.35 65.23 73.02 62.10

Mask RCNN 88.04 69.40 77.79 64.37

FIGURE 7
Model identification results.

affected by the southeast monsoon in summer, with more 
concentrated precipitation and longer sunshine duration, which may 
lead to differences in vegetation coverage and soil characteristics.

Slope analysis shows that landslides in the study area mainly 
occur in the slope range of 25°–55°, accounting for 73.5% of the total 
number of landslides. Among them, the slope interval of 30°–40° has 
the most concentrated landslides, accounting for 44% of the total. 
This is consistent with theoretical analysis because within this slope 
range, the gravitational force and rainwater scouring effect reach 
equilibrium, making it most prone to shallow landslides.

Plan curvature and profile curvature analysis show that 
landslides are mainly distributed in areas with negative plan 

curvature (concave slopes) and positive profile curvature (convex 
slopes). Specifically, landslides are most concentrated in areas with 
plan curvature between −20 and 10 and profile curvature between 
−5 and 10. This indicates that landslides tend to occur in areas with 
obvious topographic changes, such as gully sources, near ridge lines, 
and slope change points. 

Point density analysis shows that landslides show obvious 
aggregation characteristics in space, mainly concentrated in the 
northwestern and central parts of the study area. The landslide 
density along both sides of river channels and near fault zones is 
the highest, reaching 57/km2, while the landslide density far from 
these areas decreases significantly. This indicates that hydrological 
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FIGURE 8
Local magnification results. (a) Landslide 1. (b) Landslide 2. (c) Landslide 3.

FIGURE 9
(a) Landslide area-probability density distribution map. (b) Point density map.

conditions and geological structures have important influences on 
the spatial distribution of landslides. 

3.4 Landslide formation condition analysis

The method of reclassifying the factors was used to calculate 
the information content of each factor in different classification 
situations using the information content method (Dai et al., 2017), 
as shown in Figure 11; Table 2. By analyzing 13 potential landslide 
influencing factors through the information value model (Table 2), 
the information values of each factor were obtained, with results 
showing significant differences in their contribution to landslide 
occurrence: among topographic factors, the slope >40° has an 
information value of 0.239, indicating that steep slopes are 
conducive to landslide occurrence; elevation at 1,300–1,500 m and 
>1,500 m has information values of 1.553 and 1.872 respectively, 
suggesting higher landslide risk in high-altitude areas; plan 
curvature >0 has an information value of 1.113, meaning concave 
slopes are more prone to landslides; and profile curvature <0 has an 
information value of 1.21, indicating that convex terrain promotes 
landslides; for meteorological factors, rainfall in the 200–450 mm 

range has the highest information value of 0.703 among all factors, 
showing a high correlation with landslide occurrence, while rainfall 
>700 mm has an information value of −0.047, implying that 
extremely high-intensity rainfall may lead to different disaster types 
(such as mudslide); regarding vegetation factors, NDVI in the 0 to 
0.069 range has an information value of 0.410, indicating that areas 
with low vegetation coverage are more prone to landslides, and as 
NDVI increases, the information value gradually decreases, with 
NDVI >0.373 having an information value of −0.340, showing that 
dense vegetation inhibits landslides; in terms of geological factors, 
the distance from faults within 0–1,500 m has an information value 
of 0.068, indicating slightly higher landslide risk in areas near faults, 
and relatively hard rock lithology has an information value of 0.50, 
meaning areas covered with relatively hard rock are more prone to 
landslides; for human activity factors, the distance from roads within 
0–750 m has an information value of 0.004, indicating that areas near 
roads have slightly higher landslide risk, though the impact is not 
significant.

To better illustrate the degree of importance of the influencing 
factors, the factors were sorted in descending order of their 
importance based on the amount of information they carry, and the 
histogram presented below was plotted (Figure 12).
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FIGURE 10
(a) Histogram of vertical curvature distribution; (b) Histogram of horizontal curvature distribution; (c) Histogram of slope distribution; (d) Histogram of 
slope direction distribution.

FIGURE 11
Importance ranking chart of influencing factors.

Using pearson correlation coefficient to analyze the correlation 
between factors (Figure 13), it was found that there is a high 
correlation (r = 0.72, p < 0.01) between TRI and TWI. In 

the I-SVM model, influencing factors are mapped into a high-
dimensional feature space by means of a kernel function, and 
an optimal hyperplane is then identified to distinguish between 
landslide areas and non-landslide areas. The rationality of 
the model’s parameters directly depends on the independent 
information value of these influencing factors; strong correlation 
among factors undermines this foundation and increases the 
risk of overfitting. Therefore, in subsequent analyses, the two 
factor was excluded to avoid multicollinearity issues. The 
correlation between other factors is low (r < 0.4), indicating 
that they can be independently used for landslide susceptibility
analysis.

3.5 Landslide susceptibility assessment

An I-SVM landslide susceptibility model was constructed 
by combining the information value model with SVM, wherein 
12 landslide influencing factors were first weighted using 
information values, and the weighted factors were then used 
as input to the SVM model. Model performance was evaluated 
using Receiver Operating Characteristic (ROC) curves and AUC 
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FIGURE 12
Plan of evaluation factors. (a) Land-use type; (b) Hardness; (c) Aspect; (d) Slope; (e) Profile curvature; (f) Plan curvature; (g) Distance from fault; (h)
Distance from road; (i) Accumulated rainfall; (j) Elevation (k) NDVI; (l) TRI; (m) TWI.
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FIGURE 13
Correlation of contributing factors.

FIGURE 14
ROC curve Diagram.

indicators, with results showing the I-SVM model achieved 
an AUC value of 0.97 (Figure 14), indicating high prediction
precision.

Because the resolutions of each factor are different, factor 
extraction should be performed at the same resolu-tion for each 
factor. We use an optical resolution of 0.3 m as the minimum 
analysis unit. Input the extracted factors into the I-SVM model 
for landslide susceptibility under extreme rainfall conditions. We 
used the I-SVM model to analyze the landslide susceptibility 
under extreme rainfall conditions in the study area. We obtained 
the distribu-tion map of landslide susceptibility in the study 
area through the analysis, as shown in Figure 15. Using the 
natural breakpoint method, landslide susceptibility is classified 
into four levels: low, medium, high, and very high, by search-
ing for crack points within the landslide probability dataset. 
Through the analysis, it can be seen that the landslide disaster 
susceptibility area is mainly concentrated in the vicinity of the 
villages of Dong, Anzigang, and Dongniwa. Attention should 
be paid to evacuation and relocation planning for these villages 
under the conditions of extreme rainfall. The rainy season should 
be cleared of mudslide material sources in the river channel to 
avoid mudslides and other disasters that threaten the safety of the 
villagers. When the rainy season comes, the source of mudslide 
materials in the river should be cleared in time to avoid rainfall-
triggering mudslides and other disasters that threaten the safety of
villagers. 
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FIGURE 15
Evaluation of shallow landslide susceptibility under extreme rainfall conditions in Puwa Township.

4 Conclusion

In July 2023, extreme rainfall in Beijing triggered a mass of 
shallow landslides in the western mountainous area. In this study, 
we chose Puwa Township, Fangshan District, as the interesting area 
for the study of automatic identi-fication and triggering analysis 
of shallow landslide hazards. In this study, we first applied the 
Mask R-CNN deep learning model to automatically identify shallow 
landslides in Puwa Township, compiled a landslide inventory, and 
performed spatial and susceptibility analyses for both occurred and 
potential shallow landslides in the study area. 

1. Against the scarcity of public high-resolution datasets for 
extreme rainfall-induced shallow landslides, this study, for 
the first time, constructed a region-specific shallow landslide 
dataset targeting the July 2023 extreme rainfall event in 
Beijing. The dataset was developed based on high-precision 
optical images from the Chinese-developed BJ-3 satellite. After 
applying the Mask R-CNN model to automatic landslide 
identification, the study achieved a precision of 88.04%, 
a recall rate of 69.40%, and a total processing time of 
merely 303 s. This approach outperforms traditional manual 
interpretation significantly in terms of efficiency and surpasses 
low-resolution image-based identification methods in terms of 

precision. From the identification results, shallow landslides 
in the study area cover a total area of 5.11 km2, accounting 
for 5.52% of the study area’s total extent, and exhibit a 
distinct clustering pattern. This outcome provides a robust data 
foundation for subsequent analytical work.

2. Through spatial statistical analysis, this study for the first 
time revealed that the scale-probability density of shallow 
landslides in Puwa Township conforms to an inverse gamma 
distribution. Specifically, shallow landslides in the study 
area are predominantly small-to-medium-sized, with their 
probability density decreasing as their area increases. To 
further refine the analysis, the study integrated multi-
dimensional spatial analysis to precisely delineate the core 
landslide distribution zones: elevations ranging from 540 to 
1,080 m, steep slopes, concave slope profiles, along riverbanks, 
and in the vicinity of fault zones. This finding advances 
the understanding of topographic controlling factors for 
shallow landslides in the northern mountainous regions of
China.

3. The I-SVM landslide susceptibility model was used to analyze 
the susceptibility of the study area, and the probability of 
shallow landslides in Dong, Anzigang, and Dongniwa villages 
was very high under extreme rainfall conditions. The AUC 
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metric of the landslide susceptibility model was 0.97, which 
proved to a certain extent that the I-SVM coupled model has 
a higher precision in the evaluation of the susceptibility to 
landslides in the region. In light of the spatial distribution 
characteristics of the landslide-prone areas (Dong Village, 
Anzigang Village, and Dongniwa Village), it is proposed to 
construct a hierarchical monitoring system integrating satellite 
remote sensing and ground-based monitoring. Specifically, 
equipment such as automatic rainfall stations and Global 
Navigation Satellite System (GNSS) should be deployed to 
realize real-time data transmission to the early warning 
platform. Furthermore, quarterly unmanned aerial vehicle 
(UAV) inspections combined with Interferometric Synthetic 
Aperture Radar (InSAR) monitoring are recommended 
to achieve early identification of potential disasters. The 
evaluation results of this paper can provide certain reference 
and suggestions for landslide disaster prevention and control 
in Puwa Township.

However, this study also has limitation. Model performance 
is highly dependent on the quality and quantity of training 
data. Due to the lack of public high-resolution landslide data 
set, the data set constructed in this study is mainly based on 
the “23–7″ event in Beijing, and limited by the problem of 
obtaining high-resolution data, it has not been applied to other 
regions. The next step is to carry out the extraction experiment 
of shallow landslide in other areas to verify the robustness of
the model.

While this study provides valuable insights for landslide 
prevention and mitigation, it has the following limitations that 
require improvement. 

1. Limitations in Data Coverage and Dimensions. First, the 
constructed dataset is highly dependent on a specific 
event—namely, the July 2023 extreme rainfall event in 
Beijing—and lacks support from data corresponding to other 
rainfall scenarios or different disaster seasons. Additionally, 
the dataset is deficient in key soil mechanical parameters and 
high-resolution human activity data. The absence of such 
information may weaken the model’s ability to capture the 
physical mechanisms underlying landslide initiation and the 
impacts of anthropogenic disturbances.

2. Limitations in Regional Generalizability. This study was 
conducted exclusively in Puwa Township, which is located 
in North China, China, and features specific geological 
and topographic contexts. Its applicability in other 
geomorphic regions—such as Southwest China—remains to be
explored.

To address the aforementioned limitations, future research 
will focus on: integrating data from multiple regions and rainfall 
events; supplementing in-situ soil mechanical parameters and high-
resolution human activity data to establish a multi-scenario, multi-
dimensional shallow landslide dataset covering mountainous areas 
across China; and conducting validation of the optimized model 
in regions like the Yunnan-Tibet Plateau and the Yunnan-Guizhou 
Plateau, with parameter adjustments to adapt to the characteristics 
of different regions.
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