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In recent years, extreme rainfall events have become more frequent, leading
to a significant increase in shallow landslide disasters, which trigger debris
flows and increase the risk of subsequent chain disasters. Therefore, conducting
research on the identification and spatial distribution patterns of shallow
landslides is crucial for mitigating and preventing geological disasters induced
by rainfall. In this study, we utilized high-resolution remote sensing imagery and
introduced deep learning methods to develop a rapid identification approach
for shallow landslides. We constructed a shallow landslide dataset using high-
resolution optical satellite data from the Beijing-3(BJ-3) satellite. A Mask Region-
based Convolutional Neural Network (Mask R-CNN) deep learning model was
employed to train an automatic landslide identification model, generating a
landslide inventory. For the identified shallow landslides, we conducted a
correlation analysis between rainfall and landslide occurrence. Spatial statistical
analysis was used to examine the spatial distribution patterns, while and an
Information value method coupling support vector machine (I-SVM) model
was applied to assess the susceptibility of shallow landslides to extreme
rainfall. The study area was selected in Puwa Township, Fangshan District,
Beijing. Using the automatic landslide identification model, we identified 1,237
landslides with a precision of 88.04%, a recall rate of 69.40%, and a processing
time of 303 s. After manual screening, 13 landslide susceptibility evaluation
factors were selected for further spatial statistical analysis and susceptibility
assessment. The results indicate that landslides primarily occur on concave
steep slopes at elevations ranging from 540 to 1,080 m. Under given rainfall
conditions, the probability of shallow landslide occurrence is higher in Dong
Village, Anzigang Village, and Dongniwa villages. The Area Under Curve(AUC)
of the landslide susceptibility model is 97%, indicating a high evaluation
precision. The research conducted in this paper provides valuable references
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and recommendations for the rapid identification and disaster prevention of

shallow landslides.

shallow landslides, Mask R-CNN, spatial statistical analysis, landslide susceptibility,

predisposing factors

1 Introduction

Shallow landslides are one of the most common types of
natural disasters in China, usually triggered by extremely heavy
rainfall, earthquakes, and so forth. On 29 July 2023, the residual
circulation of super typhoon Doksuri and the combined effects
of subtropical high pressure, super typhoon Khanon water vapor
transport, and terrain were observed in Beijing. Extremely heavy
rainstorm occurred in the western mountain area of Beijing, with
the maximum rainfall intensity of 126.6 mm/h and the maximum
accumulated rainfall of 1,025 mm. Due to heavy rainfall, a large-
scale shallow landslide occurred in the western part of Beijing,
posing a giant threat to the personal and property safety of the
local people. Emergency interpretation of remote sensing data plays
a critical role in emergency rescue operations, as it is essential
for determining the disaster-affected area and evaluating the safety
of disaster-stricken areas. However, conventional manual visual
interpretation techniques impose significant limitations on disaster
identification efficiency, particularly in time-sensitive emergency
scenarios where rapid response is critical (Liu et al., 2024;
Cheng et al., 2020; Guo et al., 2023).

Deep learning methods have been widely developed in recent
years, and more and more scholars combine remote sensing images
with deep learning models to automatically identify landslides
using landslide identification models (e.g., Chen et al, 2022;
Mao et al,, 2023; Deng et al., 2024). In 2022, Wu used the dual
attention mechanism of the Convolutional Neural Network (CNN)
model to identify the landslide dataset in Jiangxi Province. By
focusing on the boundary features of landslides through spatial
and channel attention, relatively accurate landslide boundaries were
obtained (Wu et al., 2022a); In 2022, Chen used the Squeeze-and-
Excitation networks (SENet) optimized Deeplabv3+ algorithm to
identify the geohazards in power line corridors of western Sichuan,
avoiding the manpower and material resources consumed by the
traditional identification methods, and realizing the intelligent
screening of landslide areas (Chen et al., 2022); In 2023, Mao used
the improved DeepLabV3+ algorithm for training and prediction
of landslide dataset, and achieved better improvement in model
recognition precision. This demonstrates the ability of deep models
to capture the boundaries of fragmented landslides (Mao et al.,
2023); In 2024, Wang conducted a study on the unbalanced
sample situation in Yunnan Province and concluded that adopting
a deeper network structure and improving the quality of difficult
samples are conducive to improving the precision of landslide
identification (Wang H et al., 2024); In 2024, Deng used the Swin
Transformer model to identify soil landslides in the Three Gorges
Reservoir area, which the deep learning method can still obtain
identification results with high precision in the area with high
vegetation cover, breaking through the performance bottleneck of
traditional CNN under complex surface coverage conditions.
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Shallow landslides in high-resolution remote sensing images
exhibit the characteristics of discrete distribution and blurred
boundaries; the study area is dominated by small-scale landslides,
which are often interfered with vegetation and shadows, posing
dual requirements for identification methods: accurate localization
of individual landslide bodies and precise segmentation of their
contours. Existing models have obvious limitations: traditional
machine learning models (such as Support Vector Machines and
Random Forests) can only achieve pixel-level classification and
cannot simultaneously complete target localization; semantic
segmentation models like U-Net and Pyramid Scene Parsing
Network (PSPNet), although capable of generating pixel-
level masks, lack sufficient positioning precision for discretely
distributed small-scale landslides. In contrast, the Mask R-CNN
model, through its architecture consisting of Region Proposal
Network (RPN), Region of Interest (ROI) and mask branch, can
simultaneously output bounding boxes and pixel-level masks
in a single forward propagation, meeting both localization and
segmentation needs. Its integrated Feature Pyramid Network (FPN)
effectively retains detailed information of small-scale targets (such
as microtopography of landslide scarps and vegetation disturbance
traces) through top-down feature fusion, and the introduced mask
loss function adds pixel-level mask constraints beyond classification
and bounding box regression, enabling effective differentiation
between landslides and interfering ground objects (such as bare
land and construction areas), thus effectively adapting to research
requirements.

According to previous studies, current landslide identification
methods based on deep learning are mainly developed using
medium-to-low resolution imagery such as Sentinel-2 (10 m) and
Landsat-8 (30 m), with insufficient utilization of texture details from
high-resolution optical data, such as 0.3 m imagery from the BJ-3
satellite (Qin et al., 2021; Yu et al., 2020). Since shallow landslides
in the Beijing area are characterized by high vegetation coverage
and small individual area, high-resolution satellites—compared with
medium- and low-resolution ones—provide clearer delineation of
landslide boundaries and result in higher accuracy in landslide
identification. Although high-resolution imagery can capture fine
features such as microtopography of landslide scarps and vegetation
disturbances, it also introduces the risk of overfitting due to
increased complexity of ground objects. There is an urgent need for
targeted techniques for feature dimensionality reduction and scale
fusion. With the development of China’s optical satellite technology,
high-resolution optical images are more popular. It is necessary to
establish an identification model based on high-resolution optical
images. Most existing datasets are derived from landslides caused by
conventional rainfall conditions or seismic impacts, lacking effective
training samples for shallow landslides induced by short-duration
heavy rainfall (such as the supersaturated soil landslides in Beijing’s
“23.7" event). These landslides often exhibit the form of debris flows
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without obvious scarps. Furthermore, research on shallow landslides
triggered by extreme rainfall in the Beijing area remains critically
understudied. Shallow landslides typically occur under extreme
rainfall conditions and can easily trigger debris flows, posing a threat
to the safety of down-stream mountain communities. Efficient and
accurate identification of these disasters is the key to the application
of remote sensing technology in disaster relief and rescue efforts
(Huang et al., 2021; Liu et al., 2023; Chen et al., 2023).

To accurately quantify the relationship between causative factors
and shallow landslide occurrence probability, researchers have
developed a range of landslide susceptibility assessment methods
and models (e.g., Duetal.,, 2024; Li H et al., 2024; Shu et al., 2024). In
2024, Li used an informative model to analyze the susceptibility of
landslides in Shijiazhuang, Hebei Province, and proved the reliability
of the model (Li C et al., 2024). In 2024, Du used a random forest
model to analyze landslide susceptibility in Southeast Tibet, and the
model results were verified to be accurate in the field (Du et al,,
2024). In 2024, Su used migration-based component analysis to
analyze the susceptibility of the Kushan area, and compared to
traditional machine models, it has higher prediction and stronger
generalization ability in cross regional prediction (Shu et al., 2024).
landslide
susceptibility assessments, prevailing methodologies generally

Although  previous studies have informed
ignores the abrupt weight change effect of disaster-causing factors
under extreme rainfall scenarios. Taking Beijing’s mountainous
areas as an example, Normalized Difference Vegetation Index
(NDVI) significantly inhibits landslides during regular rainy
seasons. However, during extreme rainfall, short-duration intense
infiltration leads to rapid soil saturation, weakening the soil-
reinforcing effect of vegetation roots and causing the influence
weight of NDVT to drop sharply. Additionally, notable variations
in geological backgrounds exist across different regions—for
instance, residual soil is dominant in the northern mountainous
areas, whereas fractured rocks prevail in the southwestern regions.
These differences give rise to complex and variable interaction
mechanisms among landslide-influencing factors, ultimately
rendering traditional fixed-weight models poorly adaptable to
dynamic scenarios. How to construct a data-driven dynamic factor
screening mechanism by integrating real-time rainfall data remains
an unsolved key problem (Guo et al., 2023; Yu et al., 2022).

Taking the “23-7” extreme rainfall event in Puwa Township,
Fangshan District, Beijing as an empirical case, this study aims
to construct a technical system for rapid identification and
susceptibility analysis of shallow landslides applicable to high-
resolution remote sensing data. The specific objectives are as follows:

First, Methodological Innovation focuses on developing a
Mask R-CNN recognition model based on high-resolution optical
imagery—this addresses the limitations of low-resolution imagery
in capturing fine details, thereby enabling precise detection of
landslides triggered by extreme rainfall.

Second, Model

susceptibility assessment framework that integrates spatial statistics

Optimization centers on proposing a
and an I-SVM model. This framework specifically tackles the
challenges of dynamically screening landslide-influencing factors
and constructing non-linear models for landslide assessment.
Finally, Emergency Application: Validate the practicality of the
technical system in disaster emergencies, realize fully automated
processes of “disaster identification - risk assessment - decision
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support’, and provide technical and data references for the
prevention and control of extreme rainfall disasters in northern
earth-rock mountainous areas.

2 Materials and methods

The
encompasses the following sequential stages: first, data acquisition

overall methodological framework of this study
and preprocessing involves the collection of BJ-3 high-resolution
remote sensing imagery, digital elevation model (DEM) data,
and rainfall datasets, followed by systematic preprocessing and
enhancement to ensure data quality and suitability for subsequent
analyses; subsequently, sample annotation and dataset construction
entails manual delineation of landslide boundaries using
professional annotation tools, enabling the creation of training,
validation, and testing datasets with pixel-level precision; next, Mask
R-CNN model training and optimization is conducted by leveraging
the annotated datasets to train the Mask R-CNN architecture,
with iterative parameter tuning to enhance model convergence
and predictive performance; following model training, automatic
landslide identification is implemented, wherein the trained model
is applied to the study area to generate preliminary landslide list
through automated detection of potential landslide features; to
refine the identification results, manual verification and correction
is performed, involving expert review to rectify misclassifications,
omissions, and boundary inaccuracies, thereby producing final
validated landslide inventories; landslide characteristics analysis
is then carried out, utilizing statistical methods to examine the
final inventories and characterize landslide properties such as
size distribution, spatial clustering patterns, and topographic
associations; in parallel, inducing factor analysis quantifies the
contribution of each environmental variable to landslide occurrence
via the information value model, identifying key drivers of
slope instability; subsequently, susceptibility assessment employs
the integrated I-SVM model to map the spatial distribution of
shallow landslide susceptibility across the study area. Finally, result
verification and analysis validates the susceptibility assessment
outcomes against independent observations and analyzes the spatial
attributes of high-risk zones to derive actionable insights for disaster

management (Figure 1).

2.1 Study area overview

The study area for this research is Puwa Township, located in
the western part of Fangshan District, Beijing. The township covers
approximately 85.85 km? (excluding the area of cloud cover) and has
a population of around 4,500 residents. The terrain is characterized
by a high northwest and a low southeast, with a maximum eleva-
tion of about 1,534 m and a maximum elevation difference of
approximately 1,200 m. The remote sensing image and digital
elevation model (DEM) of the study area are illustrated in Figure 2.
The remote sensing image was captured from high-resolution optical
data from the BJ-3 satellite on 14 August 2023, with an image
resolution of 0.3 m. The remote sensing data is of four bands. In
this study, three bands of RGB were selected for sample production.
This image contains approximately 10% cloud cover. The DEM was
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FIGURE 1

Flowchart of the methodology used in this study.

acquired using Light Detection and Ranging (LiDAR) technology,
with a spatial resolution of 2.5 m. Rainfall data were collected using
rain gauges, with measurements recorded at 10 min intervals.

From July 29 to 1 August 2023, affected by the residual
circulation of super typhoon “Doksuri,” the mountainous areas of
western Beijing experienced extreme rainfall. The study area, Puwa
Township, recorded a total rainfall of 585 mm from July 29 to August
2, with the main rainfall concentrated from July 30 to August I,
accumulating 584.5 mm, as shown in Figure 2d. This short-duration
intense rainfall triggered a large number of shallow landslides in the
study area, forming dense landslide clusters. These landslides appear
on remote sensing images as disturbed vegetation cover areas,
exposed soil areas, and debris flow deposits in river channels. The
geological conditions in the study area are dominated by Quaternary
sediments, with overlying strata of dolomitic tuff and relatively stable
geological conditions (Figures 2e,f).

2.2 Data acquisition and preprocessing

Currently, there are no publicly available high-resolution
shallow landslide datasets or annotated files. Therefore, this study
utilizes BJ-3 satellite data from the “23.7” heavy rainfall event
in Beijing to create a shallow landslide sample database for
the concentrated landslide areas in Mentougou District. Beyond
selecting the study area, we employed a grid division method
to partition the entire image into segments using a 1,024 X
1,024 window size and saved in 8-bit RGB format. Through the
identification of morphological features, texture features, vegetation
features, and other features of the optical image, the pixel-level labels
are manually labeled in the labelme sample labeling software to
delineate the boundary range of the landslides, which is used for
the final model training. Training and labeling results are shown in
Figure 3 (Liu et al., 2022; Wu et al,, 2022b). The landslide dataset
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was divided into a training set, a validation set, and a test set, with a
random split ratio of 7:1:2.

During the data preprocessing phase, we adopted the
following steps:

First, image enhancement. Apply contrast-limited adaptive
histogram equalization processing to the original remote sensing
image to enhance the local contrast of the image and improve the
distinguishability between landslides and the background. Second,
normalization: Normalize image pixel values to the [0, 1] range
to meet the input requirements of deep learning models. Finally,
data augmentation. To increase the diversity of training samples
and improve the generalization ability of the model, we applied
various data augmentation techniques to the training data, including
random rotation (—15°-15°), horizontal flipping, vertical flipping,
random cropping, and brightness adjustment.

2.3 Landslide automatic identification
model based on Mask R-CNN

Mask R-CNN is an advanced deep learning model renowned
for its simple training process, fast running speed, and superior
performance in various applications. As shown in Figure 4, its basic
architecture mainly includes a backbone network, an RPN, an ROI
alignment module, and a mask segmentation network. (Fan B.
S. etal., 2022; He et al., 2020).

As depicted in Figure 5, the FPN layer primarily consists
of a longitudinal path for bottom-up extraction of input image
features by the ResNet network, a transverse path for feature
fusion, and a top-down path. The ResNet network, serving as the
feature extraction backbone, produces four stages of outputs in
the FPN, denoted as (C2, C3, C4, and C5). These correspond to
the four levels of the feature pyramid, representing the original
image at resolutions of (1/4, 1/8, 1/16, and 1/32). The FPN
layer integrates the low-resolution, high-semantic information
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FIGURE 2

Optical image and digital elevation model of the study area. (a) The location of the research area in Beijing. (b) Digital elevation model. (c) Optical
image. (d) Accumulated rainfall profile of Yudouquan Village, Puwa Township. (e) Enlarged image of local area 1. (f) Enlarged image of local area 2.

from high-level features with the high-resolution, low-semantic
information from low-level features through lateral connections,
thereby leveraging rich semantic information across multiple scales
(Lin et al., 2017).

The RPN layer receives the multi-scale features provided by the
FPN layer and generates candidate regions, or proposals, according
to predefined rules and through model training. The parameters of
the trained model are then used to select the ROIs for the model,
which in this experiment corresponds to potential shallow landslide
areas. The selected ROIs are fed into the alignment network to more
precisely adjust their positions to match the exact extent of the
target. To accurately align the ROI with the precise spatial extent of
the target, bilinear interpolation is first employed to derive values
at multiple sampling points within the ROI. Max pooling is then
applied to these sampled values to retain the most representative
features, refining the ROI boundaries to better match the target’s
geometric characteristics. Subsequently, the adjusted ROI is fed
into a fully convolutional network (FCN) architecture, which
constructs an end-to-end learning framework through alternating
convolutional and deconvolutional layers. This network performs
pixel-wise classification on the refined ROI, enabling the precise
identification of all pixels belonging to shallow landslide targets.
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This process achieves end-to-end automatic identification of shallow
landslides with high positional precision (Cai et al., 2022).

Mask R-CNN is a multitasking working network, and its loss
function is weighted by the loss function of multiple branches as
shown in the following Equation 1:

L:LCIS+Lb0X+L (1)

mask

Where L
the regression frame loss function, and L, denotes the mask

s denotes the category loss function, L, denotes

loss function. Where the specific expression of the loss function is
as follows (Zhang and Chen, 2024):

mZ

(lk)z [—y * log (sigmoid(x)) — (1 - y) * log (1 — sigmoid(x))]
T
(2)

L

L
)

.—MN

‘mask —

The above equation indicates that the Sigmoid calculation is
performed for each pixel to obtain the average of the cross-entropy
of all pixels on the ROI as a loss function L, ., where k denotes the
class of the mask.

For each ROI, the mask branch generates an output with a

dimensionality of k x m x m, where k denotes the number of

frontiersin.org


https://doi.org/10.3389/feart.2025.1685773
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Wei et al.

FIGURE 3
Visualization of dataset annotation. (a) Optical image (b) Sample labeling.
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FPN network structure.

target classes and m x m represents the spatial resolution of the
masks. This output produces binary-encoded masks for k classes,
each corresponding to an m x m-size segmentation map tailored to
the ROIs semantic category. Specifically, as outlined in Equation 2,

Frontiers in Earth Science

the loss function is computed by applying a sigmoid activation
to each pixel within the ROI and calculating the average cross-
entropy value across all pixels (Casagli et al, 2023; Canming
et al., 2023; Ghorbanzadeh et al., 2022).
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To better verify the recognition precision of the model, four
precision evaluation methods, precision, recall, F1 score and mean
intersection over union (mlIoU), are used to evaluate the precision
of the model. Among these metrics, Precision measures the overall
correctness of the model’s identifications, while Recall focuses on
addressing the issue of missed identifications of landslide areas by
the model; the F1 score is used to balance Precision and Recall to
avoid biases arising from a single metric, and mIoU—a core metric
for evaluating the performance of semantic segmentation models.
These four metrics are jointly employed to ensure the scientific rigor
and accuracy of shallow landslide identification results, preventing
the invalidation of evaluations caused by biases from relying on a
single metric (Yuanzhen et al.,, 2020). The calculation method is as
following Equation 3:

Precision = & x 100%

TP+ TN+ FP+FN

Recall = _TIr x 100%
TP+ FN

F1=2x PreC}s%on x Recall % 100%
Precision + Recall

1< TP.

mloU = = x 100% (3)

c CZ:l TP.+FP.+FN,

Where TP (true positive) represents the number of pixels
correctly predicted to be positive, TN (true negative) represents
the number of pixels correctly predicted to be negative, FP(false
positive) represents the number of pixels misjudged to be positive
by negative samples, and FN(false negative) represents the number
of pixels missed by positive samples.

The experiment constructs a Mask R-CNN deep learning model
using the PyTorch 1.14 framework and the MMdetection toolKkit.
The computational environment runs on a Windows 11 system
equipped with a GTX 1660 6 GB GPU and an 19-12900 KS CPU,
supported by 128 GB of Random Access Memory (RAM). During
the model training phase, the input image resolution is set to
1,024 x 1,024 pixels, and Stochastic Gradient Descent (SGD) is
utilized as the optimizer (Wu et al., 2022a; Wang L et al., 2024).
To enhance the model’s learning capability, a stepwise learning rate
adjustment algorithm is employed, which gradually reduces the
learning rate over time. Hyperparameters are crucial for model
training; specifically, the learning rate is set to 0.008, and the total
number of training epochs is 1,000. The initial parameter sizes of the
model are determined prior to training. Figure 6 displays the model’s
training loss curve, showing a gradual convergence towards zero,
which indicates a good fit between the validation set and the training
outcomes. Upon completion of the training, the model’s precision
can be assessed using standard evaluation metrics, including Recall
and mean Average Precision (mAP) (Wang et al.,, 2022).

2.4 Landslide characteristics and formation
condition analysis

2.4.1 Landslide development characteristics
analysis
The analysis of landslide

is grounded in the stratigraphic information of the study

developmental characteristics

area, the disaster zones affected by landslides, and To give
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FIGURE 6
Regression error curve of the model during the training process.

the statistical distribution of landslide areas, a probability
density function p(dM;) is defined according to Equation 4
(LiJ et al., 2024; Malamud et al., 2004):

1 0N,

p(dM;) = N oM,

)
Where, M, is the landslide disaster area, M, is the area
increment, N is the total number of landslide disasters, and 6N}
is the number of all landslide disasters in the interval M; ~ M +
OM;. After obtaining the scale-probability density of landslide
disasters, a scale-probability density curve is plotted on a double
logarithmic coordinate axis. The turning point of this curve serves
as a threshold for classifying the scale of the current group-onset
shallow landslides. Landslide areas exceeding this turning point
are categorized as medium-to-large-scale landslides for the current
event, while those below it are classified as small-scale landslides.

2.4.2 Spatial distribution pattern analysis

In the analysis of the spatial distribution pattern of landslides,
a Geographic Information System (GIS)-based spatial statistical
analysis method is employed (Lv et al., 2024). This method involves
counting parameters such as slope, slope direction, elevation, profile
curvature, plan curvature, and point density information for each
landslide body, thereby facilitating a comprehensive analysis of the
spatial distribution pattern within the study area.

The development of shallow landslides is a very complex
process controlled by internal and external dynamic factors.
Internal factors determine the development and development
status of landslides, including geological structure, slope structure,
stratigraphic lithology, etc., which are the basis for the development
of shallow landslides; External factors can trigger landslides,
including rainfall, road damage to the mountain, and so on. When
selecting landslide evaluation factors, the geological structural
conditions and climatic factors of the study area were taken
into account. The elevation serves as the starting condition for
landslides, providing potential energy for slope sliding; Different
slope orientations can lead to variations in rainfall and vegetation,
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which in turn can affect the initiation of landslides; The slope
mainly affects the internal stress distribution of the landslide body;
Topographic Wetness Index (TWI) is used to describe surface
moisture conditions, while Topographic Roughness Index (TRI)
is used to describe surface roughness, both of which play a
role in the occurrence of landslides to a certain extent. Plane
curvature and section curvature are used to describe the steepness
of landslide bodies, which in turn affects their initiation; The
geological characteristics of the study area are determined by
the geological basis of faults and stratigraphic lithology; NDVI
reflects the type of Quaternary cover layer, which is also a major
component of shallow landslides (Zhang et al., 2021); Precipitation,
as the main initiating factor of landslides, directly affects the
occurrence of landslides. Analogous CFD-based flow simulations in
subsurface systems (Haroon et al., 2017) highlight the importance
of accurately representing fluid-structure interactions for landslide
triggering analysis.

An information-degree random forest model was used to
analyze the geomorphic formation conditions of landslides and
evaluate landslide susceptibility. The information-degree model
quantifies landslide inducing conditions into information-degree
values by measuring the scope of observed shallow landslides.
These inducing conditions include multiple factors such as altitude,
precipitation, and NDVT. First, reclassification is performed, then
the information values of various categories of each factor are
calculated, exploring the relationships between various factors and
the information degree values of various factors. This process
can comprehensively analyze the formation conditions of shallow
landslide disasters and help reveal their potential relationships. The
following method was used to calculate the evaluation of factor
information as following Equation 5:

I= iln
i=1

Where, I is the total information of the evaluation factor, N; is

N,/N

/S 5)

the number of landslides of the factor within a category, N is the
total number of shallow landslides in the study area, S; is the area of
landslides of the factor within a category, S is the total area of shallow
landslides in the study area. When the value of information is higher,
it means that the factor is more favorable for landslide occurrence.

2.4.3 Landslide susceptibility analysis

Landslide susceptibility analysis using the SVM model. SVM
can map data into a high-dimensional space via a kernel function,
transforming data that is originally linearly inseparable into linearly
separable data in this new high-dimensional space. This capability
enables SVM to handle a wide range of complex classification tasks.
The development of the law of landslide disaster is the result of a
number of factors, its complex occurrence mechanism through the
SVM model to analyze the more effective.

To address the scenario where the SVM model fails to correctly
classify some sample data, a slack variable £ is introduced, and its
constraint equation is as following Equation 6:

yileX@+b]-1+&>0,E>0,i=1,2,--n (6)

Where, X represents the sample, y; denotes the corresponding
class. Meanwhile, a penalty factor c is introduced to adjust the degree
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of penalty for misclassified samples. The minimum value of ||@?|| is
obtained through the following method, as shown in the Equation 7
below:
1 n
a=5||a)2||+c21:€i (7)
p
To solve the above equation, the Lagrange method can be
employed. By solving the Lagrange dual problem, non-zero Lagrange
multipliers in the suwhose mathematical expression is asbset of
samples can be obtained, and thus the support vectors are derived.
These support vectors are then used to construct the decision function
expression for the generalized optimal hyperplane, which is used for
classification. This expression is shown in the following Equation 8:

Y aypX)+ b] 8)

i=1

fIX) = sgn[

Where, a; denotes the Lagrange multiplier for each data sample,
with a; > 0.

For nonlinearly separable problems, SVM maps the original low-
dimensional feature space to a high-dimensional feature space via a
kernel function, enabling the data to become linearly separable in
the high-dimensional space. The radial basis function (RBF) kernel
can capture complex relationships in data and involves relatively
straightforward parameter adjustment. Therefore, the RBF kernel
was adopted as the kernel function for SVM, whose mathematical
expression is as following Equation 9:

K(X;,X) = exp {-gllX; - XII*} 9)

After introducing the kernel function, the SVM decision
function for nonlinear sample data can be expressed as
following Equation 10:

n
fX) = sgn[ZaiyiK(X,.,x) + b} (10)

i=1

By combining the information amount model with the support

vector machine model, the factors affecting the occurrence of
landslide disasters are first calculated through information amount
values. Determine the types of data to be input into the SVM
model, then collect relevant data from areas affected by landslide
disasters. Filter the data using Pearson correlation coefficient
analysis. Correlations less than 0.2 are considered irrelevant, while
those between 0.2 and 0.4 are considered weakly correlated. Factors
with correlations greater than 0.4 are removed and considered
to have high correlation. Then, determine the same number of
areas where landslide disasters have not occurred and extract the
same data from these areas. The Pearson correlation coefficient r is
calculated as following Equation 11, where x and y represent two sets
of variables respectively.

r= Z:ﬂ(xf_’_‘)()’i_y)
\/Z?=1(xi - ’_C)Z \/Zil(yi _;)2

Use the two groups of data as a dataset to input into the SVM

(11)

model, randomly dividing them into training and validation sets
at a 7:3 ratio. The radial basis function (RBF) was selected as
the kernel function of the model, with a kernel function cache
of 200. The probability estimation method was adopted, and no
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iteration number was set, while the tolerance for stopping training
was 0.001. Adjust the model parameters accordingly and train the
model to obtain the final result of group sudden shallow landslide
susceptibility.

The AUC metric is frequently used to measure the discriminative
ability of binary classification models; therefore, it was selected as the
performance evaluation metric for the I-SVM model in this study.
The value range of AUC is [0.5, 1], where different values correspond
to different levels of the model’s discriminative ability. The closer
AUC is to 1, the better the model’s classification performance; when
AUC equals 0.5, the model’s classification performance is the lowest,
with no practical application value. In this study, the Wilcoxon-
Mann-Whitney statistical method was employed to calculate the
AUC metric, and the formula is as following Equation 12:

n n,

AUC= —!

3 I(si > tj) (12)
Py

n,xn,
Where, n, denotes the number of landslide samples; 7,, enotes
the number of non-landslide samples; I (-) is the indicator function;
s; represents the predicted probability that the ith landslide sample
is classified as a landslide; t; represents the predicted probability that
the jth non-landslide sample is classified as a non-landslide. For the
indicator function I (), the assignment rule is defined as follows: I =
1, ifs; > t, I=05,ifs; = tj,I =0,ifs; < .

3 Results and analysis

3.1 Mask R-CNN model identification
results

Applying the Mask R-CNN model to the 95km? study area,
a total of 1,406 shallow landslides were detected, predominantly
distributed across the Luzishui-Puwa-Senshui corridor in Puwa
Township. After comparison and verification with manual
interpretation results, 1,237 of them were confirmed as correct
identifications, with an identification precision of 88.04%, recall rate
of 69.40%, F1 score of 77.79%, and mIoU of 64.37%. The model
processing time for the entire study area was 303 s, with an average
processing time of approximately 3.53 s/km?, indicating that the
model has high processing efficiency.

Table 1 shows the performance comparison of Mask R-CNN
model with several other commonly used deep learning models
on the same dataset. Results show that Mask R-CNN performs
best in terms of precision, recall rate, and F1 score, especially
having obvious advantages in small-scale landslide identification.
Compared with U-Net, PSPNet, and FCN, the mIoU of Mask R-
CNN is 2.17%, 7.07%, and 10.06% higher respectively, indicating its
superiority in boundary positioning and detail capture.

The model successfully detected the majority of landslides, with
some omissions attributed to the lack of distinct features and the
influence of vegetation coverage. The overall distribution pattern of
the landslides shows a dense clustering. As shown in Figure 7, fewer
landslides were detected in the central and upper parts of the study
area, likely due to cloud cover interference.

To better demonstrate the model’s recognition performance,
a close-up visualization of the results is presented in the
following Figure 8.
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3.2 Landslide development characteristics
analysis

According to the landslide area statistical analysis, the shallow
landslide areas in the study area are mainly concentrated between
30 and 1,000 m?, accounting for approximately 91.7% of the
total number of landslides. The probability density function
of landslide area distribution is shown in Figure 9, and the
landslide area probability density basically conforms to the inverse
gamma distribution. On the double logarithmic coordinate, the
landslide area and probability density show obvious segmented
characteristics, with the inflection point appearing at approximately
800 m?. This inflection point divides landslides into small landslides
(less than 800 m?) and medium to large landslides (greater than
or equal to 800 m?). Small landslides account for 99.3% of the
study area, while medium to large landslides only account for
0.7%, indicating that the study area is dominated by small shallow
landslides.

The landslide area is small compared to the scale of other
occurrence-intensive landslides. The total area of landslides is about
5.111 km?, accounting for about 5.52% of the area of the study area,
and the characteristics of landslides in the study area are typical.
According to the analysis of landslide scale, landslides are mainly
small landslides, accounting for 99.3%, and the number of mdium-
scale landslides is relatively small, accounting for 0.7%. According
to the scale probability density formula for statistics, the scale-
probability density of landslide hazards in the study area basically
conforms to the inverse gamma distribution. After taking the double
logarithm of the scale and probability density of landslides, it is as
shown in Figure 9. After the landslide area reaches the turning point,
the landslide conforms to the power law distribution characteristics,
and the probability density gradually decreases with the increasing
landslide area (Xu et al., 2024; Fan X. M. et al., 2022; Ji et al., 2020).

Spatial analysis of the landslide occurrence area using the point
density method, as shown in Figure 9, the distribution of landslide
area has a certain spatial distribution characteristic, on both sides of
the river, shallow landslides are more concentrated, with the highest
point density of 57/km?, at the same time, there is a fracture zone
passing through the study area, and the landslides near the fracture
zone are also more developed.

3.3 Spatial distribution pattern analysis

GIS-based spatial statistical analysis (Figure 10) shows that
shallow landslides in the study area show obvious regularity
in spatial distribution. Landslides are mainly distributed in the
elevation range of 540-1,080 m, accounting for 82.6% of the total
number of landslides. This elevation interval corresponds to the
middle and high mountainous areas of the study area, where the
terrain fluctuates greatly and the slope is steep, making it a high-
incidence area for debris flows and shallow landslides.

The distribution of landslides in different aspects also shows
obvious differences. As shown in Figure 10, landslides are mainly
distributed in southeast, south, and southwest aspects, with the
largest number of landslides in the southeast aspect, accounting
for 36% of the total. This phenomenon is related to the climate
characteristics of the Beijing area. The southeast aspect is more
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TABLE 1 Performance comparison of different deep learning models in landslide identification.

Method Precision/% Recall/% Fl score/% MloU/%
FCN 76.51 58.32 66.28 54.31
PSPNet 80.12 64.31 71.47 57.30
U-Net 82.35 65.23 73.02 62.10
Mask RCNN 88.04 69.40 77.79 64.37
115°25' 115°30"

39°45'

= Road
@®© Village
[ Results

39°42'

0 1.5 3

it

S2one!

>

-

e

FIGURE 7
Model identification results.

affected by the southeast monsoon in summer, with more
concentrated precipitation and longer sunshine duration, which may
lead to differences in vegetation coverage and soil characteristics.

Slope analysis shows that landslides in the study area mainly
occur in the slope range of 25°-55°, accounting for 73.5% of the total
number of landslides. Among them, the slope interval of 30°-40° has
the most concentrated landslides, accounting for 44% of the total.
This is consistent with theoretical analysis because within this slope
range, the gravitational force and rainwater scouring effect reach
equilibrium, making it most prone to shallow landslides.

Plan curvature and profile curvature analysis show that
landslides are mainly distributed in areas with negative plan

Frontiers in Earth Science

curvature (concave slopes) and positive profile curvature (convex
slopes). Specifically, landslides are most concentrated in areas with
plan curvature between —20 and 10 and profile curvature between
-5 and 10. This indicates that landslides tend to occur in areas with
obvious topographic changes, such as gully sources, near ridge lines,
and slope change points.

Point density analysis shows that landslides show obvious
aggregation characteristics in space, mainly concentrated in the
northwestern and central parts of the study area. The landslide
density along both sides of river channels and near fault zones is
the highest, reaching 57/km?, while the landslide density far from
these areas decreases significantly. This indicates that hydrological
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FIGURE 8
Local magnification results. (a) Landslide 1. (b) Landslide 2. (c) Landslide 3.
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(a) Landslide area-probability density distribution map. (b) Point density map.

conditions and geological structures have important influences on
the spatial distribution of landslides.

3.4 Landslide formation condition analysis

The method of reclassifying the factors was used to calculate
the information content of each factor in different classification
situations using the information content method (Dai et al., 2017),
as shown in Figure 11; Table 2. By analyzing 13 potential landslide
influencing factors through the information value model (Table 2),
the information values of each factor were obtained, with results
showing significant differences in their contribution to landslide
occurrence: among topographic factors, the slope >40° has an
information value of 0.239, indicating that steep slopes are
conducive to landslide occurrence; elevation at 1,300-1,500 m and
>1,500 m has information values of 1.553 and 1.872 respectively,
suggesting higher landslide risk in high-altitude areas; plan
curvature >0 has an information value of 1.113, meaning concave
slopes are more prone to landslides; and profile curvature <0 has an
information value of 1.21, indicating that convex terrain promotes
landslides; for meteorological factors, rainfall in the 200-450 mm
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range has the highest information value of 0.703 among all factors,
showing a high correlation with landslide occurrence, while rainfall
>700 mm has an information value of —0.047, implying that
extremely high-intensity rainfall may lead to different disaster types
(such as mudslide); regarding vegetation factors, NDVI in the 0 to
0.069 range has an information value of 0.410, indicating that areas
with low vegetation coverage are more prone to landslides, and as
NDVT increases, the information value gradually decreases, with
NDVTI >0.373 having an information value of —0.340, showing that
dense vegetation inhibits landslides; in terms of geological factors,
the distance from faults within 0-1,500 m has an information value
of 0.068, indicating slightly higher landslide risk in areas near faults,
and relatively hard rock lithology has an information value of 0.50,
meaning areas covered with relatively hard rock are more prone to
landslides; for human activity factors, the distance from roads within
0-750 m has an information value of 0.004, indicating that areas near
roads have slightly higher landslide risk, though the impact is not
significant.

To better illustrate the degree of importance of the influencing
factors, the factors were sorted in descending order of their
importance based on the amount of information they carry, and the
histogram presented below was plotted (Figure 12).
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Importance ranking chart of influencing factors.

Using pearson correlation coefficient to analyze the correlation
between factors (Figure 13), it was found that there is a high
correlation (r = 0.72, p < 0.01) between TRI and TWI In

Frontiers in Earth Science

the I-SVM model, influencing factors are mapped into a high-
dimensional feature space by means of a kernel function, and
an optimal hyperplane is then identified to distinguish between
landslide areas and non-landslide areas. The rationality of
the model’s parameters directly depends on the independent
information value of these influencing factors; strong correlation
among factors undermines this foundation and increases the
risk of overfitting. Therefore, in subsequent analyses, the two
factor was excluded to avoid multicollinearity issues. The
correlation between other factors is low (r < 0.4), indicating
that they can be independently used for landslide susceptibility
analysis.

3.5 Landslide susceptibility assessment

An I-SVM landslide susceptibility model was constructed
by combining the information value model with SVM, wherein
12 landslide influencing factors were first weighted using
information values, and the weighted factors were then used
as input to the SVM model. Model performance was evaluated
using Receiver Operating Characteristic (ROC) curves and AUC
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Plan of evaluation factors. (a) Land-use type; (b) Hardness; (c) Aspect; (d) Slope; (e) Profile curvature; (f) Plan curvature; (g) Distance from fault; (h)
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indicators, with results showing the I-SVM model achieved
an AUC value of 0.97 (Figure 14), indicating high prediction
precision.
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Because the resolutions of each factor are different, factor
extraction should be performed at the same resolu-tion for each
factor. We use an optical resolution of 0.3 m as the minimum
analysis unit. Input the extracted factors into the I-SVM model
for landslide susceptibility under extreme rainfall conditions. We
used the I-SVM model to analyze the landslide susceptibility
under extreme rainfall conditions in the study area. We obtained
the distribu-tion map of landslide susceptibility in the study
area through the analysis, as shown in Figure 15. Using the
natural breakpoint method, landslide susceptibility is classified
into four levels: low, medium, high, and very high, by search-
ing for crack points within the landslide probability dataset.
Through the analysis, it can be seen that the landslide disaster
susceptibility area is mainly concentrated in the vicinity of the
villages of Dong, Anzigang, and Dongniwa. Attention should
be paid to evacuation and relocation planning for these villages
under the conditions of extreme rainfall. The rainy season should
be cleared of mudslide material sources in the river channel to
avoid mudslides and other disasters that threaten the safety of the
villagers. When the rainy season comes, the source of mudslide
materials in the river should be cleared in time to avoid rainfall-
triggering mudslides and other disasters that threaten the safety of
villagers.
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Evaluation of shallow landslide susceptibility under extreme rainfall conditions in Puwa Township.

4 Conclusion

In July 2023, extreme rainfall in Beijing triggered a mass of
shallow landslides in the western mountainous area. In this study,
we chose Puwa Township, Fangshan District, as the interesting area
for the study of automatic identi-fication and triggering analysis
of shallow landslide hazards. In this study, we first applied the
Mask R-CNN deep learning model to automatically identify shallow
landslides in Puwa Township, compiled a landslide inventory, and
performed spatial and susceptibility analyses for both occurred and
potential shallow landslides in the study area.

1. Against the scarcity of public high-resolution datasets for
extreme rainfall-induced shallow landslides, this study, for
the first time, constructed a region-specific shallow landslide
dataset targeting the July 2023 extreme rainfall event in
Beijing. The dataset was developed based on high-precision
optical images from the Chinese-developed BJ-3 satellite. After
applying the Mask R-CNN model to automatic landslide
identification, the study achieved a precision of 88.04%,
a recall rate of 69.40%, and a total processing time of
merely 303 s. This approach outperforms traditional manual
interpretation significantly in terms of efficiency and surpasses
low-resolution image-based identification methods in terms of
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precision. From the identification results, shallow landslides
in the study area cover a total area of 5.11 km?, accounting
for 5.52% of the study area’s total extent, and exhibit a
distinct clustering pattern. This outcome provides a robust data
foundation for subsequent analytical work.

. Through spatial statistical analysis, this study for the first

time revealed that the scale-probability density of shallow
landslides in Puwa Township conforms to an inverse gamma
distribution. Specifically, shallow landslides in the study
area are predominantly small-to-medium-sized, with their
probability density decreasing as their area increases. To
further refine the analysis, the study integrated multi-
dimensional spatial analysis to precisely delineate the core
landslide distribution zones: elevations ranging from 540 to
1,080 m, steep slopes, concave slope profiles, along riverbanks,
and in the vicinity of fault zones. This finding advances
the understanding of topographic controlling factors for
shallow landslides in the northern mountainous regions of
China.

. The I-SVM landslide susceptibility model was used to analyze

the susceptibility of the study area, and the probability of
shallow landslides in Dong, Anzigang, and Dongniwa villages
was very high under extreme rainfall conditions. The AUC
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metric of the landslide susceptibility model was 0.97, which
proved to a certain extent that the I-SVM coupled model has
a higher precision in the evaluation of the susceptibility to
landslides in the region. In light of the spatial distribution
characteristics of the landslide-prone areas (Dong Village,
Anzigang Village, and Dongniwa Village), it is proposed to
construct a hierarchical monitoring system integrating satellite
remote sensing and ground-based monitoring. Specifically,
equipment such as automatic rainfall stations and Global
Navigation Satellite System (GNSS) should be deployed to
realize real-time data transmission to the early warning
platform. Furthermore, quarterly unmanned aerial vehicle
(UAV) inspections combined with Interferometric Synthetic
Aperture Radar (InSAR) monitoring are recommended
to achieve early identification of potential disasters.The
evaluation results of this paper can provide certain reference
and suggestions for landslide disaster prevention and control
in Puwa Township.

However, this study also has limitation. Model performance
is highly dependent on the quality and quantity of training
data. Due to the lack of public high-resolution landslide data
set, the data set constructed in this study is mainly based on
the “23-7" event in Beijing, and limited by the problem of
obtaining high-resolution data, it has not been applied to other
regions. The next step is to carry out the extraction experiment
of shallow landslide in other areas to verify the robustness of
the model.

While this study provides valuable insights for landslide
prevention and mitigation, it has the following limitations that

require improvement.

1. Limitations in Data Coverage and Dimensions. First, the
constructed dataset is highly dependent on a specific
event—namely, the July 2023 extreme rainfall event in
Beijing—and lacks support from data corresponding to other
rainfall scenarios or different disaster seasons. Additionally,
the dataset is deficient in key soil mechanical parameters and
high-resolution human activity data. The absence of such
information may weaken the model’s ability to capture the
physical mechanisms underlying landslide initiation and the
impacts of anthropogenic disturbances.

2. Limitations in Regional Generalizability. This study was
conducted exclusively in Puwa Township, which is located
in North China, China, and features specific geological

Its applicability

geomorphic regions—such as Southwest China—remains to be

and topographic contexts. in other

explored.

To address the aforementioned limitations, future research
will focus on: integrating data from multiple regions and rainfall
events; supplementing in-situ soil mechanical parameters and high-
resolution human activity data to establish a multi-scenario, multi-
dimensional shallow landslide dataset covering mountainous areas
across China; and conducting validation of the optimized model
in regions like the Yunnan-Tibet Plateau and the Yunnan-Guizhou
Plateau, with parameter adjustments to adapt to the characteristics
of different regions.

Frontiers in Earth Science

17

10.3389/feart.2025.1685773

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

WZ: Writing - original draft, Writing - review and editing.
JH: Writing - review and editing, Methodology. R]: Data curation,
Writing - review and editing. ML: Writing — review and editing,
Funding acquisition. WG: Writing - review and editing, Validation.
CM: Validation, Writing - review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research was
funded by the Beijing Natural Science Foundation (8244062);
the Key Technology Research Project for Comprehensive Remote
Sensing Identification and Monitoring of Sudden Geological Hazard
Risks in Megacities (2023ZRBSHZ046); the early identification and
early warning of typical geological disasters in Xishan, Beijing
Demonstration Study (11000022T000001362678); Research Project
on Intelligent Early Recognition Methods and Prevention Strategies
for Typical Collapse and Landslide Hazards in Beijing (bjkx202311);
Operation of the Beijing Sudden Geological Disaster Monitoring
and Early Warning System Project (11000023T000002124048).

Acknowledgments

We are very grateful for the free access to GLC_FCS30-2020
land-cover products provided by professor Liu (https://doi.org/
10.5281/zen0d0.3986872).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

frontiersin.org


https://doi.org/10.3389/feart.2025.1685773
https://doi.org/10.5281/zenodo.3986872
https://doi.org/10.5281/zenodo.3986872
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Wei et al.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

References

Canming, Y., Qihang, L., Wen, N., and Chunyang, Y. (2023). A depth information-
based method to enhance rainfall-induced landslide deformation area identification.
Measurement 219, 113288. doi:10.1016/j.measurement.2023.113288

Cai, H. ], Han, H. H., Zhang, Y. L., and Wang, L. S. (2022). Convolutional neural
network landslide recognition based on terrain feature fusion. J. Earth Sci. Environ. 44,
568-579. doi:10.19814/j.jese.2021.12016

Casagli, N., Intrieri, E., Tofani, V., Gigli, G., and Raspini, F. (2023). Landslide
detection, monitoring and prediction with remote-sensing techniques. Nat. Rev. Earth
and Environ. 4, 51-64. doi:10.1038/s43017-022-00373-x

Chen, Z, Lu, S. K, Tan, Z. ], and Zhang, Q. (2022). SENet-optimized
Deeplabv3+Landslide ~ detection.  Sci.  Technol.  Eng. 22, 14635-14643.
d0i:10.3969/j.issn.1671-1815.2022.33.011

Chen, W. H,, Yu, B, Liu, K, Ye, L. Z, and Ma, Y. (2023). Fast recognition
method for debris flows caused by shallow landslides. Yangtz River. 54, 152-158.
doi:10.1007/s11069-023-06229-x

Cheng, G., Xie, X., Han, J,, Guo, L., and Xia, G. S. (2020). Remote sensing
image scene classification meets deep learning: challenges, methods, benchmarks, and
opportunities. Jeee J.-Stars 13, 3735-3756. doi:10.11834/jrs.20210597

Dai, L. X,, Xu, Q,, Fan, X. M., Chang, M., Yang, Q., Yang, E, etal. (2017). A preliminary
study on spatial distribution patterns of landslides triggered by JiuZhaiGou earthquake
in SiChuan on August 8", 2017 and their susceptibility assessment. J. Eng. Geol. 25, 14.
doi:10.13544/j.cnki.jeg.2017.04.030

Deng, Z. E, Huang, H. F, Li, Q Q.,, Zhou, H., Zhang, R,, Liu, Q. et al. (2024).
Identification of soil landslides at the head of the three GorgesReservoir based onswin
transformer target panoramic segmentation. WaterResources Hydropower Eng. 55,
176-185. doi:10.13928/j.cnki.wrahe.2024.04.016

Du, P, Chen, N. S, Wu, K. L., Li, Z,, and Zhang, Y. Y. L. (2024). Evaluation of
landslide susceptibility in southeast Tibet based on a random forest model. J. Chengdu
Univ. Technology(Science>TechnologyE dition). 51, 328-344. doi:10.3969/j.issn.1671-
9727.2024.02.12

Fan, B. S., Zuo, Y. B,, Xu, X. L., and Wang, L. F. (2022). Road information detection
algorithm based on improved Mask RCNN. J. Beijing Inf. Science & Technology Univ. 37,
88-95. doi:10.16508/j.cnki.11-5866/1.2022.03.015

Fan, X. M., Wang, X, Dai, E X,, Fang, C. Y, Deng, Y., Zhou, C. B,, et al. (2022).
Characteristics and spatial distribution pattern of MS6.8 Luding Earthquake occurred
on September 5, 2022. J. Eng. Geol., 30, 1504-1516. doi:10.13544/j.cnki.jeg.2022-0665

Ghorbanzadeh, O., Shahabi, H., Crivellari, A., Homayouni, S., Blaschke,
T, and Ghamisi, P. (2022). Landslide detection using deep learning and
object-based image analysis. Landslides 19, 929-939. doi:10.1007/s10346-021-
01843-x

Guo, Z. Z., He, ]., Huang, D., Zhou, Y. Q,, and Zhu, Y. H. (2023). Fast assessment
model for rainfall-induced shallow landslide hazard and application. Chin. J. Rock Mech.
Eng. 42, 1188-1201. doi:10.13722/j.cnki.jrme.2022.0605

Haroon, A., Ahmad, S., and Hussain, A. (2017). “CFD prediction of loss coefficient
in straight pipes,” in Development of water resources in India. Editors V. Garg,
V. Singh, and V. Raj (Cham: Springer), Vol. 75, 477-485. d0i:10.1007/978-3-319-
55125-8_41

He, K., Gkioxari, G., Dollar, P, and Girshick, R. (2020). Mask R-CNN. IEEE Trans.
Pattern Anal. Mach. Intell. 42, 386-397. d0i:10.1109/tpami.2018.2844175

Huang, S., Chui, S. L., Xing, P, Wang, T, and Liang, C. Y. (2021). Study
on rainfall threshold and spatial distribution of clustered shallowlandslides in
Tianshui City on July 25. J. Nat. Disasters. 30, 181-190. doi:10.13577/j.jnd.
2021.0320

Ji, S., Yu, D., Shen, C., Li, W.-le, and Xu, Q. (2020). Landslide detection from an
open satellite imagery and digital elevation model dataset using attention boosted
convolutional neural networks. Landslides 17, 1337-1352. doi:10.1007/s10346-020-
01353-2

Jiao, Q. J., Zhang, B, Liu, L. Y, Li, Z. W,, Yue, Y. M,, and Hu, Y. (2014).
Assessment of spatio-temporal variations in vegetation recovery after the Wenchuan
earthquake using landsat data. Nat. Hazards 70, 1309-1326. d0i:10.1007/s11069-
013-0875-8

Li, C. L, Liu, Y. S, Lai, S. H, Wang, D, He, X. H,, and Liu, Q (2024).
Landslide susceptibility analysis based on the coupling model of logistic regression
and support vector machine. J. Nat. Disasters 33, 75-86. doi:10.13577/j.jnd.
2024.0208

Frontiers in Earth Science

18

10.3389/feart.2025.1685773

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Li, H,, Li, T. X, Zai, X., Gao, M. H., Wan, X. Z., Zhang, W. X, et al. (2024). Study
on multi_model comparative analysis of landslide vulnerability in mountainous areas
of West Shijiazhuang based on informative approach. Nonferrous Met. Metall., 63-73.
doi:10.3969/j.issn.1007-7545.2024.04.008

Li, J. Y., Guan, Y. L, Xu, Y. B,, Pu, X. K,, and Tang, M. H. (2024). Reginal landslide
susceptibility evaluation based on I-SVM coupled model. J. Geol. Hazards Environ.
Preserv. 35, 19-25. d0i:10.3969/j.issn.1006-4362.2024.01.004

Liang, J., Pei, X. J., Wen, Y., Luo, L. G., and Jian, D. J. (2019). Research on development
and distribution rules of geohazardsin jiuzhaigou earthquake in 2017. J. Nat. Disasters.
28, 181-188. doi:10.13577/.jnd.2019.0520

Liu, J, Wu, Y. M., Gao, X,, and Si, W. T. (2022). Image recognition of Co-
seismic landslide based on GEE and U-net neural network. . Geo-information Sci. 24,
1275-1285. doi:10.12082/dqxxkx.2022.210704

Liu, X. H., Yao, X,, Yang, B, Tang, W. K, and Zhou, Z. K. (2023). InSAR-
based indentification and spatial distribution analysis of active landslides in the
Western Sichuan Plateau. J. Geomechanics 29, 111-126. doi:10.12090/j.issn.1006-6616.
2022024

Liu, Y, Yang, H, Jiao, R, Wang, Z, Wang, L., Zeng, W, et al. (2024).
A new deformation enhancement method based on multitemporal InSAR for
landslide surface stability assessment. Ieee J.-Stars, 17. doi:10.1109/JSTARS.2024.
3409376

Lv, J., He, X., Bao, Y., and Li, H. (2024). Spatiotemporal pattern of post-earthquake
vegetation recovery in a mountainous catchment in southwestern China. Nat. Hazards
121, 3023-3046. doi:10.1007/s11069-024-06918-1

Ma, Y, Yu, B, He, Y. X, Ma, X. Y, Wu, Y. E, Wy, Y. Y, et al. (2019).
Rainfall threshold and development characteristics of shallow landslides induced
by rainfall: a case study of the disaster in the Dajishan area, Quannan County,
Jiangxi Province. Geol. Explor. 2023 (59), 1065-1073. doi:10.12134/j.dzykt.2023.
05.012

Malamud, B. D., Turcotte, D. L., Guzzetti, F, and Reichenbach, P. (2004).
Landslides, earthquakes, and erosion. Earth and Planet. Sci. Lett. 229, 45-59.
doi:10.1016/j.epsl.2004.10.018

Mao, J. Q, He,J., Liu, G., and Fu, R. (2023). Landslide recognition based on improved
DeepLabV3+ algorithm. J. Nat. Disasters 32, 227-234. doi:10.13577/j.jnd.2023.
0224

Qin, S., Guo, Xu, Sun, J., Qiao, S., Zhang, L., Yao, J., et al. (2021). Landslide detection
from open satellite imagery using distant domain transfer learning. Remote. Sens. 13,
3383. doi:10.3390/rs13173383

Shu, Y., Huang, S. X,, Lai, X. H,, Chen, Y. X, Yang, L. Y,, Lin, C,, et al. (2024).
Evaluation of trans regional landslide susceptibility of Reservoir Bank based on transfer
component analysis. Earth Sci. 49, 1636-1653. doi:10.3799/dqkx.2022.453

Wan, Y., Guo, J, Ma, E S, Liu, J, and Song, Y. W. (2022). Landslide
susceptibility assessment based on MaxEnt model of along Sino-Nepal traffic
corridor. Chin. J. Geol. Hazard Control. 33, 88-95. doi:10.16031/j.cnki.issn.1003-8035.
2022.02-11

Wang, Y., Zhang, P, Sun, K. Y., Sun, X. H,, and Liu, L. P. (2022). Remote sensing
landslide target recognition based on attention fusion. Chin. J. Liq. Cryst. Displays 37,
1498-1506. doi:10.37188/cjlcd.2022-0133

Wang, H. E, Zhou, C. ], Chen, X. E, and Yang, Y. (2024). Detection of earthquake-
damaged buildings via UAV high-resolution remote sensing images. J. Remote Sens. 28,
911-916. doi:10.11834/jrs.20221569

Wang, L. X,, Xi, Y. E, Shi, Z. T,, Zhao, Z. L., Qian, T. H., Zhao, L., et al. (2024). Study
on sample unbalance in landslide recognition algorithm based on depth learning. Bull.
Surv. Mapp., 12-18. doi:10.13474/j.cnki.11-2246.2024.0503

Wu, Q, Ge, D. Q, Yu, J. C, Zhang, L, Li, M, Liu, Y, et al. (2022a).
Deep learning identification technology of InSAR significant deformation zone of
potential landslide hazard at large scale. Acta Geod. Cartogr. Sinica 51, 2046-2055.
doi:10.11947/j.AGCS.2022.20220303

Wu, Q,, Zhou, C. B., Huang, F. M., and Yao, C. (2022b). Optimization of the landslide
identification method based on a dual attention mechanism. Bull. Geol. Sci. Technol. 41,
246-253. doi:10.19509/j.cnki.dzkq.2022.0053

Xu, Q, Xu, E S, Pu, C. H, Li, W. L, Fan, X. M., Dong, X. J., et al. (2024). Preliminary
analysis of extreme rainfall-induced cluster landslides in Jiangwan Township,

Shaoguan. Geomatics Inf. Sci. Wuhan Univ. 49, 1264-1274. doi:10.13203/j.whugis
20240202

frontiersin.org


https://doi.org/10.3389/feart.2025.1685773
https://doi.org/10.1016/j.measurement.2023.113288
https://doi.org/10.19814/j.jese.2021.12016
https://doi.org/10.1038/s43017-022-00373-x
https://doi.org/10.3969/j.issn.1671-1815.2022.33.011
https://doi.org/10.1007/s11069-023-06229-x
https://doi.org/10.11834/jrs.20210597
https://doi.org/10.13544/j.cnki.jeg.2017.04.030
https://doi.org/10.13928/j.cnki.wrahe.2024.04.016
https://doi.org/10.3969/j.issn.1671-9727.2024.02.12
https://doi.org/10.3969/j.issn.1671-9727.2024.02.12
https://doi.org/10.16508/j.cnki.11-5866/n.2022.03.015
https://doi.org/10.13544/j.cnki.jeg.2022-0665
https://doi.org/10.1007/s10346-021-01843-x
https://doi.org/10.1007/s10346-021-01843-x
https://doi.org/10.13722/j.cnki.jrme.2022.0605
https://doi.org/10.1007/978-3-319-55125-8_41
https://doi.org/10.1007/978-3-319-55125-8_41
https://doi.org/10.1109/tpami.2018.2844175
https://doi.org/10.13577/j.jnd.2021.0320
https://doi.org/10.13577/j.jnd.2021.0320
https://doi.org/10.1007/s10346-020-01353-2
https://doi.org/10.1007/s10346-020-01353-2
https://doi.org/10.1007/s11069-013-0875-8
https://doi.org/10.1007/s11069-013-0875-8
https://doi.org/10.13577/j.jnd.2024.0208
https://doi.org/10.13577/j.jnd.2024.0208
https://doi.org/10.3969/j.issn.1007-7545.2024.04.008
https://doi.org/10.3969/j.issn.1006-4362.2024.01.004
https://doi.org/10.13577/j.jnd.2019.0520
https://doi.org/10.12082/dqxxkx.2022.210704
https://doi.org/10.12090/j.issn.1006-6616.2022024
https://doi.org/10.12090/j.issn.1006-6616.2022024
https://doi.org/10.1109/JSTARS.2024.3409376
https://doi.org/10.1109/JSTARS.2024.3409376
https://doi.org/10.1007/s11069-024-06918-1
https://doi.org/10.12134/j.dzykt.2023.05.012
https://doi.org/10.12134/j.dzykt.2023.05.012
https://doi.org/10.1016/j.epsl.2004.10.018
https://doi.org/10.13577/j.jnd.2023.0224
https://doi.org/10.13577/j.jnd.2023.0224
https://doi.org/10.3390/rs13173383
https://doi.org/10.3799/dqkx.2022.453
https://doi.org/10.16031/j.cnki.issn.1003-8035.2022.02-11
https://doi.org/10.16031/j.cnki.issn.1003-8035.2022.02-11
https://doi.org/10.37188/cjlcd.2022-0133
https://doi.org/10.11834/jrs.20221569
https://doi.org/10.13474/j.cnki.11-2246.2024.0503
https://doi.org/10.11947/j.AGCS.2022.20220303
https://doi.org/10.19509/j.cnki.dzkq.2022.0053
https://doi.org/10.13203/j.whugis20240202
https://doi.org/10.13203/j.whugis20240202
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

Wei et al.

Yan, J. K., Huang, J. B., Li, H. L., Chen, L., and Zhang, Y. L. (2020). Study on instability
mechanism of shallow landslide caused by typhoon and heary rain. . Geomechanics 26,
481-491. d0i:10.12090/j.issn.1006-6616.2020.26.04.041

Yu, B., Chen, E, and Xu, C. (2020). Landslide detection based on contour-based deep
learning framework in case of national scale of Nepal in 2015. Comput. Geosci. 135,
104388. doi:10.1016/j.cageo.2019.104388

Yu, Z. W, Liu, K, Ying, J., and Yu, B. (2022). A grid-scale division method
applicable to logistic regression models for evaluating the susceptibility of shallow
landslides—taking the 2019 cluster of shallow landslides in Sanming, Fujian as example.
Mt. Res. 40, 106-119. doi:10.16089/j.cnki.1008-2786.000659

Frontiers in Earth Science

19

10.3389/feart.2025.1685773

Yuanzhen, J., Qiang, X., Shichao, J., Weile, L., Xiujun, D., and Qinghua, G. (2020).
Automatic object detection of loess landslide based on deep learning. Geomatics Inf.
Sci. Wuhan Univ., 45 (11). doi:10.13203/j.whugis20200132

Zhang, X. Y., and Chen, B. (2024). Generation method of hand-drawn feature sketch
virtual terrain based on improved generative adversarial network. Natl. Remote Sens.
Bull. 28, 1-12. doi:10.11834/jrs.20233090

Zhang, X., Liu, L., Chen, X,, Gao, Y., Xie, S., and Mi, J. (2021). GLC_FCS30:
global land-cover product with fine classification system at 30 m using time-
series Landsat imagery. Earth Syst. Sci. Data 13, 2753-2776. doi:10.5194/essd-13-
2753-2021

frontiersin.org


https://doi.org/10.3389/feart.2025.1685773
https://doi.org/10.12090/j.issn.1006-6616.2020.26.04.041
https://doi.org/10.1016/j.cageo.2019.104388
https://doi.org/10.16089/j.cnki.1008-2786.000659
https://doi.org/10.13203/j.whugis20200132
https://doi.org/10.11834/jrs.20233090
https://doi.org/10.5194/essd-13-2753-2021
https://doi.org/10.5194/essd-13-2753-2021
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Study area overview
	2.2 Data acquisition and preprocessing
	2.3 Landslide automatic identification model based on Mask R-CNN
	2.4 Landslide characteristics and formation condition analysis
	2.4.1 Landslide development characteristics analysis
	2.4.2 Spatial distribution pattern analysis
	2.4.3 Landslide susceptibility analysis


	3 Results and analysis
	3.1 Mask R-CNN model identification results
	3.2 Landslide development characteristics analysis
	3.3 Spatial distribution pattern analysis
	3.4 Landslide formation condition analysis
	3.5 Landslide susceptibility assessment

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

