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Anisotropy of intact loess under 
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To deeply investigate the anisotropic mechanical properties of intact loess under 
static and dynamic loads, static and dynamic triaxial tests were conducted on 
samples with different deposition directions (0°, 30°, 45°, 60°, 90°). Combining 
macroscopic mechanical tests with microstructural analysis, the anisotropic 
response mechanisms were systematically revealed. The study results indicate 
that under both static and dynamic loads, the stress-strain relationship curves 
of intact loess at different sampling angles exhibit significant anisotropy. Both 
the deviatoric stress at failure and the initial dynamic elastic modulus display 
anisotropy. The nonlinear pattern with varying angles is as follows: the maximum 
value occurs at 0°, followed by sequential decreases at 30°, 60° (slightly 
lower than 30° in some cases), and 45°, with the minimum value appearing 
at 90°. The consolidation effect of confining pressure weakens the original 
structural strength of loess, leading to a decrease in the initial dynamic elastic 
modulus as confining pressure increases, but the anisotropic characteristics 
remain pronounced. After the tests, the pore structure of loess changed from 
a large-pore, weakly cemented open structure to a fine and dense interlocking 
structure. The particle morphology transformed from single-grain and angular 
to flocculent and ellipsoidal. These microstructural evolutions constitute the 
intrinsic mechanism of the macroscopic mechanical responses. The findings 
of this study provide important experimental evidence and theoretical support 
for the design, construction, and disaster prevention of complex engineering 
projects in loess regions.
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 1 Introduction

Under the combined influence of natural sedimentation processes, geological 
structural movements, and the long-term history of anisotropic stress, soil has 
developed notable characteristics of structural anisotropy (Zarei et al., 2019; 
Yang et al., 2020; Zhou and Chen, 2021). This anisotropy is evident not only in the 
orientation of particle arrangements and the spatial heterogeneity of pore structures 
but also affects key engineering properties such as soil strength and permeability
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FIGURE 1
(a) Particle size distribution curve and (b) liquid limit and plasticity index.

(Graham and Houlsby, 1983; Cai et al., 2018; Hong et al., 2019; 
Li et al., 2025). In engineering practice, the influence brought by 
anisotropy is particularly prominent: in the analysis of slope stability, 
anisotropy can lead to spatial reorientation of potential slip surfaces, 
and traditional two-dimensional limit equilibrium analysis methods 
may significantly underestimate the sliding risk along sedimentary 
bedding planes (Soroush and Soltani-Jigheh, 2001). In underground 
engineering, anisotropic permeability induces asymmetric seepage 
fields, thereby affecting the pore water pressure distribution around 
excavation surfaces (Bobet, 2010). In light of this, there is a pressing 
need to evaluate the effect of soil anisotropy in engineering projects 
with complex stress conditions, securing their safety and stability 
(Yang et al., 2020; Zhang et al., 2022; Yu et al., 2025).

In recent years, the anisotropic characteristics of loess and other 
special soils, along with their effects on mechanical and hydraulic 
behavior, have attracted significant attention. Research indicates that 
the heterogeneity of pore structures and the non-uniform particle 
arrangement formed during natural deposition and consolidation 
processes play a decisive role in soil permeability and mechanical 
anisotropy (Hong et al., 2019; Zhang et al., 2022; Li et al., 2023; 
Zhang et al., 2025). A series of studies by Xu et al. (2019), Xu et al. 
(2020), Xu et al. (2021) systematically established that intact loess 
exhibits higher spatial variability in vertical permeability, primarily 
controlled by macro-pore distribution and cementation degree. 
Hao et al. (2022) found that the horizontal saturated permeability 
coefficient generally exceeds the vertical one and proposed that 
unsaturated permeability anisotropy can be predicted using pore 
connectivity tortuosity parameters. Hong et al. (2019) further 
demonstrated that permeability anisotropy decays with seepage 
duration, a behavior closely linked to deposition history-induced 
particle orientation. In terms of microstructure characterization, 
Wang et al. (2021) employed X-ray CT scanning to quantify 
the macro-pore structure of remolded loess, revealing a strong 
correlation between permeability anisotropy and pore distribution 
uniformity. They further characterized hydraulic conductivity 
anisotropy using a modified Kozeny-Carman equation. Li et al. 
(2023), Li et al. (2024) utilized CT imaging to elucidate preferential 
flow patterns in loess, demonstrating that pore connectivity and 
anisotropy jointly govern water migration pathways. In terms of 

mechanical properties, Liu et al. (2023) declared that the inherent 
cementation structures induce pronounced strength anisotropy, 
which diminishes upon remolding, thereby corroborating the 
crucial role of structural history. Zhang et al. (2022) and Zuo et al. 
(2022) conducted direct shear tests revealing that the shear strength 
of loess is generally higher in the vertical direction than in 
the horizontal direction, with small-strain stiffness anisotropy 
being significantly influenced by its inherent structure and 
stress history. Shrivastava and Sachan (2023) investigated the 
anisotropic behavior of shear modulus in coal ash fillers under 
cyclic loading, demonstrating that both deviatoric stress and 
mean effective stress collectively govern small-strain stiffness 
anisotropy. He et al. (2020) and Wang et al. (2024) elucidated 
the evolution mechanisms of meso-scale anisotropy in coarse-
grained soils subjected to cyclic loading, particularly highlighting 
the stress-path dependency of coordination number and contact 
fabric. In the field of numerical simulation and constitutive 
theory, Karimzadeh et al. (2024) developed a root-reinforced 
soil constitutive model based on microstructural fabric tensors, 
demonstrating that the alignment between root orientation and 
loading path determines reinforcement efficiency. Their findings 
indicate that the primary root system contributes most significantly 
under tensile loading conditions. Hu et al. (2021) proposed an 
elastoplastic constitutive framework integrating hyperelasticity with 
the Drucker-Prager criterion, capable of simultaneously accounting 
for both inherent and stress-induced anisotropy. Jiang et al. (2019) 
identified a critical threshold for fabric anisotropy in sands under 
cyclic loading, revealing coaxial evolution between strong contact 
fabric and stress tensor. Zhu et al. (2024) further advanced discrete 
element method analysis by quantifying the influence of loess 
particle morphology, demonstrating that non-spherical particles 
amplify both fabric anisotropy and mechanical performance.

Loess is widely distributed in the northwest of China (Wen et al., 
2023a) and can be easily obtained locally as an engineering 
material. Due to its unique micro-pore structure (large pores, 
weak cementation, and well-developed vertical joints) and 
engineering mechanical properties (collapsibility, water sensitivity, 
and anisotropy). Therefore, in-depth research on its anisotropy 
under static and dynamic loads is of great significance for the 
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construction of slopes, tunnels, and other projects. Moreover, 
current studies on the anisotropy of loess mainly focus on the 
response under a single load, while there is a lack of research 
on the static and dynamic load response mechanisms of intact 
loess under strain control. To further address the research gap, 
the objectives of this study are: (1) to compare the mechanical 
responses under static and dynamic loads at different angles, (2) to 
investigate the microstructure changes before and after loading 
at different sampling angles, and (3) to reveal the microscopic 
response mechanisms of anisotropy of intact loess under static and 
dynamic loads. 

2 Materials and methods

2.1 Materials

The loess applied to the present work was taken from a range 
of 3–4 m deep from Xining County, Qinghai Province, China. 
According to ASTM D7928-21e1 and D6913-04e1 (ASTM, 2010; 
ASTM, 2021), the physical properties of the loess were tested. The 
loess mainly contains 9.8% sand, 85.5% silt, and 4.7% clay. Its 
liquid limit ωL and plasticity index PI are also supplemented in 
Figure 1 and Table 1. 

2.2 Specimen preparation

To preserve the structural characteristics of intact loess, this 
study employed a specially designed soil-cutting disc (39.1 mm) 
to prepare intact loess samples measuring 39.1 mm × 80 mm 
(diameter × height). To investigate anisotropy, samples were cut 
along directions forming θ angles (θ = 0°, 30°, 45°, 60°, 90°) 
with the natural deposition plane of the soil during preparation, 
as shown in Figure 2. Additionally, all samples were collected from 
the same stratigraphic depth (about 3.5 m deep) to control the 
influence of factors such as dry density on experimental results. Dry 
density tests were conducted before experimental measurements, 
ensuring variations remained within 0.02 g/cm3. To control the 
single variable of moisture content in the experiment, the intact 
sample was placed in a mold after preparation, and the soil moisture 
content was adjusted to a uniform target value using the water 
injection titration method (natural moisture content). Then, the 
sample was sealed and stored for 3–4 days.

2.3 Methods

2.3.1 Testing apparatus
The present work used a bidirectional dynamic triaxial testing 

system manufactured by the UK-based GDS company (see Figure 3). 
Key technical specifications of the equipment include: a maximum 
confining pressure of 2 MPa, axial load capacity of 20 kN, frequency 
response range of 0–5 Hz, and precise implementation of both static 
and dynamic loading under stress or strain control modes. 

2.3.2 Static and dynamic testing procedures
This study employed a combined experimental method of static 

loading and strain-controlled equivalent cyclic graded dynamic 
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FIGURE 2
Schematic illustration of intact samples preparation: (a) at different angles to the deposition direction, (b) soil-cutting disc, and (c) angle marking.

FIGURE 3
The GDS dynamic triaxial device.
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TABLE 2  Parameters of the test.

Confining 
pressure (kPa)

Angle Loading 
protocol

Axial 
displacement 

rate

Termination 
criteria

Number of 
replicates

Drainage 
condition

1. Static triaxial tests

80

0°/30°/45°/60°/90°
Continuous linear 

loading
0.8 mm/min 15% axial strain 1

Consolidated-
undrained

120

160

Confining pressure 
(kPa)

Angle Loading protocol Strain amplitude Termination criteria Number of replicates Drainage condition

2. Dynamic triaxial tests

80

0°/30°/45°/60°/90° Step-by-step loading 0.2 mm 5% axial strain 20
Consolidated-

undrained
120

160

FIGURE 4
Schematic illustration of cyclic strain amplitude.

loading to conduct dynamic and static triaxial comparison tests. 
The test procedure was divided into two stages: consolidation 
and loading. Firstly, an axial force of 5 kPa was applied using 
the loading device to ensure proper contact between the sample 
and the axial sensor. After opening the drain valve, confining 
pressures of 80 kPa, 120 kPa, and 160 kPa were applied to the 
respective specimens by the cell pressure controller for isotropic 
consolidation. Axial deformation was monitored in real-time using 
high-precision sensors, and consolidation was considered complete 
when the axial deformation rate stabilized below 0.01 mm/h for one 
consecutive hour. The loading stage was conducted under undrained 
conditions. For static loading, specimens were continuously loaded 
at an axial displacement rate of 0.8 mm/min until shear failure at 
15% axial strain (see Table 2) (Liu et al., 2022). For dynamic loading, 
graded loading was implemented based on a 1.0 Hz sine wave 

fundamental frequency, with the strain amplitude incrementally 
increased by 0.25% per level, totaling 20 loading levels. Each level 
involved 50 cycles of loading, and the test was terminated when 
the cumulative dynamic strain of the specimen reached 5% (see 
Figure 4; Table 2) (Liao et al., 2011). In addition, parallel tests were 
conducted for each group of experiments to ensure the accuracy 
of the tests. 

2.3.3 Constitutive modelling
Because the shear modulus and damping of soil change with 

the number of load cycles, Hardin and Drnevich (1972) enhanced 
the Hardin-Drnevich (H-D) model (see Equation 1) using extensive 
experimental data and theoretical derivations to accurately represent 
the cyclic softening characteristics of soil. Additionally, Liao et al. 
(2011) and assert that the backbone curve of loess aligns with the H-
D model and indicate that the modified H-D model (see Equation 
2) can be utilized when the hyperbolic model is inadequate. Yu et al. 
(2018) and Zhang et al. (2022) also believe that the modified H-
D model is more suitable for describing the backbone curve under 
dynamic loads.

H-D model:

σd =
εd

a+ b|εd|
(1)

Modified H-D model:

σd =
εd

a+ b|εd|
c (2)

The dynamic elastic modulus primarily characterizes the stress-
strain relationship of soil during elastic deformation under dynamic 
loads, and its expression is Equation 3:

Ed =
σmax − σmin

εmax − εmin
=

σd

εd
(3)

Frontiers in Earth Science 05 frontiersin.org

https://doi.org/10.3389/feart.2025.1687402
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wen et al. 10.3389/feart.2025.1687402

FIGURE 5
Schematic diagram of the preparation process for intact loess microscopic specimens.

It can be known from the modified H-D model that the dynamic 
elastic modulus is:

Ed =
σd

εd
= 1

a+ bεd
c (4)

where a, b, and c are the parameters of the H-D hyperbolic 
model. It can be known from Equation 4 that when εd approaches 
0, the dynamic elastic modulus Ed = Emax = 1/a, and at 
this time Emax = Ed0. Where Ed0 is initial dynamic elastic
module. 

2.3.4 Scanning electron microscopy (SEM) tests
By conducting SEM tests and analyzing particle fractures 

on intact loess samples before and after the tests, the internal 
microstructural changes of the loess were obtained and analyzed. 
The preparation of microscopic specimens involves three core 
steps: fabrication, drying, and gold coating. First, a 10 mm × 
10 mm×20 mm cuboid specimen was cut from the middle section 
of the cylindrical sample along the direction of the intact soil. 
Then, a groove was carved in the center of the cuboid specimen 
to facilitate the preparation of the cross-section (see Figure 5). 
Subsequently, the freeze-vacuum drying method was employed to 
preserve the microstructure. After drying, the cross-section was 
fractured, and loose particles were removed. The specimen was 
then fixed on the sample stage and subjected to gold coating 
using a sputtering coater to enhance the conductivity of the 
weakly conductive loess, meeting the requirements for electron 
microscopy scanning (Wen et al., 2023b). The SEM images 
were quantitatively analyzed using the PCAS software to obtain 
parameters of pores (particles) within the loess, followed by 
classification statistics of the pores (particles) to generate statistical
parameters.

3 Results

3.1 Static strength

3.1.1 Deviatoric stress-strain relationship curves
The deviatoric stress-strain curves under different confining 

pressures and sampling angles exhibit distinct characteristic 
differences (Figure 6). During the initial loading stage (<3%), 
deviatoric stress demonstrates a rapid ascending trend with 
increasing strain, showing low sensitivity to sampling angles in 
terms of specimen strength and anisotropic characteristics. When 
strain progresses to intermediate and advanced stages (>5%), 
the incremental rate of deviatoric stress decreases significantly 
compared to the initial phase, accompanied by strain hardening 
phenomena. The influence of sampling angle on deviatoric stress 
becomes pronounced during this period, manifesting as marked 
differentiation in deviatoric stress values under equivalent strain 
conditions with varying sampling angles, with the failure deviatoric 
stress ranked from highest to lowest as: 0° > 30° > 60° (60° > 30°) > 
45° > 90°. Moreover, under a confining pressure of 160 kPa, the 
maximum difference between the horizontal (90°) and vertical 
(0°) deviatoric stresses is 85.6 kPa. Similarly, Li (2017) also found 
that the vertical plane (0°) has a greater shear strength than 
the horizontal plane (90°). Notably, during experimental testing, 
the specimens predominantly displayed typical bulging failure 
patterns at 15% strain (see Figure 7a), with only a small number 
exhibiting shear slip bands (see Figure 7b). Comparative analysis 
of test results from Figures 6a–c reveals that under identical 
strain conditions, increased confining pressure significantly 
enhances deviatoric stress response values. This strengthening 
effect demonstrates non-linear amplification trends with increasing 
confining pressure gradients.
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FIGURE 6
Deviatoric stress-strain curves at different sampling angles. (a) σ3 = 80 kPa. (b) σ3 = 120 kPa. (c) σ3 = 160 kPa.

FIGURE 7
Comparison pictures of the samples before and after the test (a) bulging failure patterns and (b) shear slip bands failure patterns.

3.1.2 Anisotropy of intact loess under static 
loading

The relationship between deviator stress and sampling angle 
under varying strain levels is shown in Figure 8. Under the same 
strain conditions, the deviator stress generally decreases with 
increasing sampling angle. The deviator stress is highest and the 

shear strength is greatest when the sampling direction is 0° relative 
to the natural deposition direction. Conversely, the deviator stress is 
lowest and the shear strength is weaker at 90°. The deviator stress 
at 45° is less than that at 30° and 60°. Notably, this angle effect 
fluctuates in the low strain stage (<5%), but after the strain exceeds 
the critical value of 5%, the correlation between sampling angle 
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FIGURE 8
Relationship curve between deviatoric stress and angle under different strains. (a) σ3 = 80 kPa. (b) σ3 = 120 kPa. (c) σ3 = 160 kPa.

and deviator stress tends to stabilize. This suggests that the particle 
rearrangement process enhances the anisotropic characteristics of 
the mechanical response. 

3.2 Dynamic strength

3.2.1 Dynamic stress-strain relationship curves
Figure 9 shows the dynamic stress-strain relationship curves 

of intact loess at different sampling angles. With the increase of 
dynamic shear strain, the dynamic shear stress shows obvious two-
stage variation characteristics: it rises rapidly in the early stage 
and the growth rate slows down in the later stage, presenting a 
typical strain hardening phenomenon. Notably, the curve shows 
a significant turning point when the dynamic strain reaches 
approximately 0.5%. When the dynamic strain is 5%, the order of 
dynamic stress of the specimens at different sampling angles from 
high to low is: 0° > 30° > 60° (60° > 30°) > 45° > 90°. Moreover, under 
a confining pressure of 80 kPa, the maximum difference between the 
horizontal (90°) and vertical (0°) deviatoric stresses is 52.2 kPa.

3.2.2 The initial dynamic elastic modulus Ed0
As shown in Figure 10, under a confining pressure of σ3 = 

80 kPa, the typical curves of the dynamic elastic modulus (Ed) of soil 
at different sampling angles vary with the dynamic strain εd. It can be 

observed that as the εe increases, the Ed exhibits a clear decay trend, 
demonstrating a significant nonlinear negative correlation between 
the two. In the small-strain stage (εd < 1%), the decay rate of Ed is 
relatively rapid. When the strain enters the medium range (1% < εd
< 3%), Ed decreases more slowly. In the large-strain stage (εd > 3%), 
Ed gradually stabilizes.

Since the initial dynamic elastic modulus (Ed0) of the soil cannot 
be directly obtained from the Ed-εd curve, this study employs the 
modified H-D model to fit the Ed

-1-εd curve and then extrapolates 
the fitted curve to determine Ed0. The fitting results under a 
confining pressure of σ3 = 80 kPa are shown in Figure 11. The 
parameters of the modified H-D model and the initial elastic 
modulus under different confining pressures are listed in Table 3. 
The modified H-D model provides a better description of the Ed-
εd curve of intact loess, with all fitting coefficients (R2) exceeding 
0.99. Similarly, in the study by Yu et al. (2025), it was also found 
that the modified H-D model is more suitable for describing the 
relationship curve between dynamic elastic modulus and dynamic 
strain. There are notable differences in the modified H-D model 
parameters obtained at different sampling angles. The initial elastic 
modulus follows this order from largest to smallest: 0° > 30° > 60°
(60° > 30°) > 45° > 90°. When the sampling direction aligns with the 
natural deposition direction (0°), the soil exhibits stronger resistance 
to vibration-induced deformation, whereas at 90°, its resistance 
is the weakest. Therefore, in complex engineering applications, 
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FIGURE 9
Dynamic stress-strain curves at different sampling angles. (a) σ3 = 80 kPa. (b) σ3 = 120 kPa. (c) σ3 = 160 kPa.

the anisotropic nature of loess cannot be ignored, and loading 
conditions at 45° and 90° should be avoided whenever possible. 
So that, during the construction of slopes, tunnels or underground 
structures in loess areas, the retaining structures in the 45° and 90°
load directions should be strengthened to ensure the stability of the 
slopes, tunnels or underground structures.

3.3 The results of SEM tests

The microstructure of intact loess shows significant differences 
based on variations in the angle relative to its natural deposition 
direction, as illustrated in Figure 12. The soil particles are generally 
single-grained and well-defined. At the 0° angle, the particles are 
larger in area, primarily round or elliptical, and possess relatively 
flat surfaces. As the angle increases, more small particles emerge, 
their shapes become sharper, the void structure becomes more 
pronounced, and the particle arrangement becomes increasingly 
disordered. Additionally, some cementing components emerge. 
This indicates that the apparent morphology of loess particles is 
anisotropic. Figure 13 shows the microstructure of the intact loess 
after the experiment under σ3 = 80 kPa. Following loading, the 

angular soil particles transform into elliptical or rounded shapes. 
Small particles filling the pores cause macropores to shrink or 
disappear, destroying honeycomb structures. Particles demonstrate 
increased flocculation and aggregation, appearing cemented. The 
boundaries between soil particles become indistinct, and more small 
particles at contact surfaces increase, often in direct face-to-face 
contact. This change in contact mode promotes a transition in 
the state between particles from weakly cemented to interlocked
cemented.

The quantitative statistics of microstructure parameters are 
shown in Table 4. The proportion of pore area increases with the 
increase of sampling angle, indicating that soil particles are more 
densely arranged in the vertical direction, demonstrating significant 
anisotropy in the intact loess. After testing, this ratio decreased 
overall, but anisotropy still exists. This indicates that under loading, 
large pores in the soil gradually shrink or disappear, the overarching 
structure is damaged, and soil particles move towards a more stable 
and denser state. Before testing, the probability entropy values 
of the samples were all around 0.9 and showed an increasing 
trend with sampling angle, suggesting a gradual decrease in the 
ordering of soil particles. After testing, the probability entropy 
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FIGURE 10
The Ed-εd curves at different angles under σ3 = 80 kPa.

FIGURE 11
The Ed

-1-εd curves at different angles under σ3 = 80 kPa.

values of the samples were approximately 0.99, indicating that 
when subjected to external forces, the soil primarily relies on its 
soil particles to bear the load, and internal pores are a passive 
consequence of their movement. This suggests that soil particles 
move towards pore spaces under external forces. Before testing, the 
average pore shape coefficient was 0.38 and was not significantly 
affected by sampling angle, indicating relatively weak anisotropy in 
pore morphology. After testing, this coefficient decreased overall 
in samples taken at different angles, suggesting that under loading, 
soil pores changed from smooth to narrow and elongated, reflecting 
the gradual disappearance of the large-pore structure. Overall, 
the loess microstructure exhibits anisotropy, but the anisotropic 
characteristics related to pore ordering are not pronounced. The 
microscopic anisotropy of intact loess is mainly reflected in the 
shape, arrangement mode, area quantity, and complexity of soil 
particles. Figure 14 displays rose diagrams of particle inclination 
angles for the 0° and 90° samples, both before and after testing. 
Before testing, the 0° sample showed concentration within the 

90°–100° and 170°–180° ranges. In contrast, the 90° sample exhibited 
a more distributed pattern, with notable concentrations not only 
in the 90°–100° and 170°–180° ranges but also in the 0°–50°
range. This distinct angular distribution demonstrates deposition-
induced anisotropy between the two samples. After testing, the 
dispersion of particle inclination angles significantly decreased in 
both samples, indicating that the applied load induced reorientation 
and reorganization of the soil particles.

4 Discussion

During the long-term geological history, the soil undergoes 
sedimentation and consolidation processes, and the resulting 
original skeletal structure forms the basis of its intrinsic mechanical 
properties, endowing the soil with excellent initial resistance to 
deformation (Zhou and Chen, 2021). This inherent structural 
advantage is particularly prominent in the initial loading stage: 
the original skeletal structure can effectively bear and transmit 
externally applied loads, leading to a rapid initial rise in shear stress 
under both dynamic and static conditions (Figures 6, 9). However, as 
the external strain (whether static or dynamic) continues to increase, 
the original skeletal structure inevitably undergoes progressive 
failure. During this process, soil particles experience significant 
displacement and rearrangement, gradually filling the original large 
pore spaces (Zhang et al., 2022). The microstructure evolution is 
manifested by a significant reduction in macropores (Table 4) and 
a change in the direction and angle of soil particle arrangement 
(Figure 14). The particle contact mode shifts toward a more 
compactly interlocked state, and the soil as a whole shows a trend 
of densification and reconstruction (Figures 12, 13). In addition, 
the consolidation process destroys the primary structure, which will 
reduce anisotropy. As a result, anisotropy is relatively weak at the 
initial loading stage (Figure 8). Similarly, Chen et al. (2023) also 
reported a negative correlation between consolidation stress and 
anisotropy. It is noteworthy that, as the strain increases, the original 
skeletal structure becomes damaged. Particle rearrangement and 
tight interlocking produce a strengthening effect. This effect causes 
the soil’s static and dynamic stress responses to continue growing 
in the subsequent stage of strain development (see Figures 6, 9). 
Additionally, the proportional distribution of particle orientations 
changes significantly before and after samples failure (Figure 14). 
This confirms that, compared with the initial stage, significant 
anisotropy develops in the later loading phase (see Figure 8).

Further analysis reveals significant anisotropy in the soil’s 
mechanical behavior, rooted in the oriented arrangement of its 
microstructure (Li et al., 2023). Along the original deposition 
direction (0°), soil particles tend to exhibit a dense, layered 
arrangement, with face-to-face contact as the dominant interaction 
mode. This highly oriented and compact structure results in 
relatively low porosity in this direction. When loading is applied 
along this orientation, the load transfer within the soil sample 
primarily relies on the efficient transmission of interparticle forces 
(mainly through contact surfaces), leading to notably higher shear 
strength at the macroscopic level. As the sampling angle increases, 
the dominant contact mode between particles gradually shifts 
from face-to-face to point-to-point interactions. Concurrently, 
microstructural data indicate an approximately 2% increase in 
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FIGURE 12
SEM images of intact loess before testing (×500 magnification). (a) 0°. (b) 30°. (c) 45°. (d) 60°. (e) 90°.

FIGURE 13
SEM images of intact loess after testing (×500 magnification). (a) 0°. (b) 30°. (c) 45°. (d) 60°. (e) 90°.
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TABLE 4  Statistics of microscopic quantitative parameters of intact loess.

Sample Angle Proportion of pore area Probability entropy Average shape factor

Before the test

0° 0.4468 0.8973 0.3823

30° 0.4497 0.8998 0.3878

45° 0.4562 0.9004 0.3899

60° 0.4506 0.9003 0.3881

90° 0.4602 0.9031 0.3897

After the test

0° 0.3973 0.9902 0.3687

30° 0.3998 0.9906 0.3731

45° 0.4014 0.9915 0.3748

60° 0.4013 0.9907 0.3732

90° 0.4031 0.9911 0.3745

FIGURE 14
Anisotropy of particle orientation is represented. (a) before the test under 0°. (b) after the test under 0°. (c) before the test under 90°. (d) after the test 
under 90°.

porosity in the 90° sampling direction (see Table 4). Moreover, 
the increase in particle inclination within the 0°–50° range 
further illustrates the anisotropy manifested in the mechanical 
properties (Riyahikhoo et al., 2025). This microstructural alteration-
characterized by increased point contacts and larger pores-directly 
reduces the effective stress-transfer area along load transmission 
paths, thereby weakening the soil’s resistance to deformation. 
Macroscopically, this manifests as a relative decline in deformation 

resistance. The above microstructural analysis clearly explains 
the anisotropy in the mechanical behavior of intact loess (see 
Figures 8, 9).

Anisotropy under static loading is primarily controlled by 
natural sedimentary fabric. Along the deposition direction (0°), 
particles exhibit a dense, layered arrangement (dominated by face-
to-face contacts) (see Figure 12), resulting in low porosity and 
high shear strength. As the sampling angle increases, porosity 

Frontiers in Earth Science 13 frontiersin.org

https://doi.org/10.3389/feart.2025.1687402
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wen et al. 10.3389/feart.2025.1687402

rises (see Table 4), reducing the effective stress-transfer area and 
weakening deformation resistance. In the early strain stage (<3%), 
structural anisotropy is not yet pronounced, with deformation 
mainly provided by the compression of large pores. When strain 
exceeds 5%, particle realignment maintains high strength in the 
0° direction, while higher-angle directions experience strength 
degradation due to particle instability. Under confining pressure, 
particles are in tighter contact, enhancing interlocking forces, 
cohesion, and frictional resistance. Thus, higher confining pressure 
imposes greater constraints, making particle slippage more difficult 
and requiring higher shear stress to achieve the same strain. The high 
confining pressure maintains the specimen in an overconsolidated 
state, leading to a bulge during shear (see Figure 7A). This 
dilatancy occurs because soil particles ride over and displace 
each other from their densely packed arrangement to undergo 
bulging failure patterns. Anisotropy under dynamic loading stems 
from the coupling of cumulative dynamic damage and structural 
reorganization (Wang et al., 2024). In the initial stage (strain 
<0.5%), the 0° direction can sustain 20% higher stress than the 90°
direction (see Figure 9) due to the relatively high proportion of 
soil particle arrangement angles within the range of 90°–100° and 
170°–180° (see Figure 14), resulting in a higher initial dynamic shear 
modulus (see Table 3). As dynamic strain increases, the original 
structure disintegrates and undergoes a three-stage reorganization: 
(1) coarse particle breakage filling large pores, (2) fine particle 
rotation and reorientation, and (3) formation of a stable secondary 
structure. Confining pressure enhances particle interlocking via 
constraints, improving strain resistance and effectively suppressing 
particle slippage. The phenomenon was also described in the 
article by Zhang et al. (2022). However, since confining pressure 
is applied before dynamic loading, it partially disrupts the soil’s 
original structure, leading to varying degrees of reduction in 
the initial dynamic elastic modulus with increasing confining 
pressure (see Table 3). 

5 Conclusion

This paper explored the mechanical response of anisotropy in 
intact loess through macro and micro tests. Based on the results and 
discussion, some main conclusions can be drawn as follows: 

1. The stress-strain curves of intact loess samples taken at 
different angles to the depositional direction exhibit significant 
anisotropy under both static and dynamic loading conditions. 
The failure deviatoric stress ranked from highest to lowest as: 
0° > 30° > 60° (60° > 30°) > 45° > 90°.

2. The consolidation effect induced by confining pressure 
disrupts the original structure of intact loess. With increasing 
confining pressure, the initial dynamic elastic modulus 
exhibits a decreasing trend. Although the confining 
pressure compromises the intact structure, its anisotropic 
characteristics remain pronounced. The initial elastic modulus 
follows this order from largest to smallest: 0° > 30° > 60° (60° > 
30°) > 45° > 90°.

3. The microstructure of intact loess transitions from a large-
pore, weakly-cemented overhead structure to a small-
pore inlay structure before and after testing, while particle 

morphology shifts from single-grain and angular forms to 
flocculent and elliptical shapes. These microstructural changes 
perfectly explain the phenomena observed in macroscopic 
mechanical tests. Furthermore, the anisotropy of undisturbed 
loess is primarily attributed to variations in soil porosity, 
particle morphology, arrangement patterns, and effective 
contact area.

4. These findings provide a theoretical and data-driven 
foundation for understanding anisotropy in intact loess. 
However, it is important to note that the use of isotropic 
overconsolidation in this study inherently diminishes 
the anisotropic effects. Future research should therefore 
prioritize investigating the evolution of anisotropy under 
K0 consolidation conditions to better represent in-situ
stress states.
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