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Rapid, accurate, and efficient prediction of surrounding rock grades is crucial
for ensuring the safety and enhancing the efficiency of tunnel boring machine
(TBM) construction. To achieve intelligent perception of surrounding rock
grades based on TBM tunneling parameters, this study leverages data from
the TBM1 construction phase of the Luotian Reservoir-Tiegang Reservoir
Water Diversion Tunnel Project, integrating geological records and tunneling
parameters to establish models for different rock grades. First, raw data were
cleaned and denoised using box plots, followed by the selection of eight
critical parameters—including thrust, torque, penetration rate (PR), rotation
speed (RS), et al—through a hybrid approach combining "knowledge-driven”
and "data-driven” criteria. The dataset was partitioned into training, testing,
and validation sets at a 7:2:1 ratio. Three data processing methods were
applied, and machine learning algorithms (XGBoost, Random Forest, CatBoost,
and LightGBM) were employed to construct surrounding rock classification
models, with Optuna hyperparameter optimization implemented to enhance
model performance. The result reveals that the CatBoost model, optimized
via SMOTE (Synthetic Minority Oversampling Technique) and hyperparameter
tuning, delivered superior performance, achieving 99% validation accuracy
with no misclassification across adjacent surrounding rock grades. This
research provides actionable insights for advancing intelligent TBM construction
practices.

KEYWORDS

TBM tunneling parameters, surrounding rock classification, ensemble learning
algorithms, hyperparameter optimization, model performance

1 Introduction

Under the continuous impetus and leadership of Chinas informatization and
digitization, intelligent construction and smart tunneling are inevitably becoming the
mainstream development direction in the tunnel engineering field (Fang et al., 2025;
Aston et al, 1988; Xie et al, 2025), particularly for shield tunnels (Barton, 2012;
Fang et al., 2023; Zheng et al.,, 2016). Shield tunnels, constructed using tunnel boring
machines (TBMs), are equipped with numerous sensors that monitor and collect various
mechanical, electrical, and environmental parameters in real time at specific frequencies
during construction. This establishes a foundation for data-driven intelligent TBM
construction. Furthermore, with the rapid advancement of computer technology, artificial
intelligence (AI) has been widely applied across numerous fields such as finance, healthcare,
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TABLE 1 The Main characteristic parameters of TBM.

10.3389/feart.2025.1692577

Parameter Value Parameter Value
TBM type Earth Pressure/TBM Dual Mode Shield Maximum cutterhead rotation speed n,,,, (r/min) 6.1
Diameter of cutterhead D (mm) 6,730 Data acquisition frequency (Hz) 1
Maximum thrust F,, (kN) 40860 Number of disc cutter N (pcs) 43
Maximum torque T, (kN-m) 9,818 Breakout torque T (kN-m) 11781
Maximum advance speed v,,,, (mm/min) 100(Earth Pressure)/120(TBM) Drive Power (kW) 2000

transportation, and manufacturing. The emergence of open-source
machine learning libraries (e.g., Scikit-learn, PyTorch, TensorFlow)
has also provided more accessible channels for researchers in
tunneling to learn and apply AT algorithms.

Currently, AI technologies based on big data are increasingly
being introduced into tunnel engineering to assist TBM
construction. Key research focuses include TBM efficiency
optimization, intelligent perception of surrounding rock grades,
tunneling performance prediction, and adverse geological condition
forecasting (Tang et al., 2024; Chen et al, 2021; Li et al,, 2023a;
Li et al, 2023b). In the domain of surrounding rock grade
classification, existing studies have employed various machine
learning algorithms (Afradi and Ebrahimabadi, 2020; Guo et al,
2022a; Guo et al.,, 2022b; Ghorbani and Yagiz, 2024; Feng et al.,
2021; Hou et al., 2022; Kohestani et al., 2017; Liu et al., 2020;
Xiong, 2014; Zhu et al, 2021)—such as ensemble methods
(Stacking, Random Forest, Adaboost/Adacost, Decision Trees,
GBDT), clustering techniques (KNN, SVM), and deep learning
models (MLP, DNN)—to develop intelligent surrounding rock
grade perception models based on TBM tunneling parameters.
These models incorporate parameters such as gripper pressure,
gear seal pressure, advance displacement, cutterhead power, shield
pressure and rolling force (Zhu et al, 2020; Mao et al, 2021;
Zhang et al.,, 2019; Wu et al,, 2021; Liu et al, 2021; Yin et al,
2022; Prechelt, 2002; Chen et al., 2015). However, due to data
imbalance, these models exhibit poor prediction accuracy for Grade
II and V surrounding rocks. Although the SMOTE oversampling
method has been applied to balance datasets, its effectiveness
remains limited (Wu et al., 2021; Liu et al., 2021; Yin et al., 2022;
Prechelt, 2002; Chen et al., 2015). Current feature selection methods
generally fall into two categories: “data-driven” and “knowledge-
driven” Data-driven approaches analyze correlations between input
tunneling parameters and target variables using techniques like
Random Forest, Pearson correlation analysis, PCA, and XGBoost,
ultimately selecting modeling parameters based on correlation
strength. Knowledge-driven methods rely on personal expertise
and experience to choose input parameters, which introduces
subjective biases. While using averaged stable-phase data for
modeling can improve accuracy to some extent, it conflicts with real-
time prediction requirements, rendering such models inadequate
for guiding actual construction. Although AI technologies have
advanced in TBM applications, existing models lack universality
due to variations in tunneling parameters across different TBM
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types (e.g., cutterhead diameter, tool configuration) and geological
conditions.

In summary, this study is based on the Luotian Reservoir-
Tiegang Reservoir Water Diversion Tunnel Project (hereafter
referred to as the Luotie Project), utilizing comprehensive
geological data and tunneling parameters from its TBMI1. First,
feature parameters were selected by integrating data-driven
and knowledge-driven criteria according to data characteristics
and prediction targets. The raw data were then cleaned using
box plots and partitioned into training (70%), testing (20%),
and validation (10%) sets. Subsequently, three data imbalance
mitigation strategies were applied to construct surrounding rock
classification models using XGBoost, RE, CatBoost, and Light GBM
algorithms. This research enables rapid, efficient, and intelligent
perception of surrounding rock grades, guiding shield drivers to
make parameter adjustments, ensuring safer and more efficient
tunneling.

2 Luotie Project
2.1 Description of the project

This study is based on the Luotie Project, a component of
the Shenzhen section of the Pearl River Delta Water Resources
Allocation Project. The project has a total water delivery
capacity of 2.6 million m®/day, with a main tunnel spanning
21.68 km. The target study section is TBM Construction Section 1,
starting and ending at chainage K0+486.74 to K5+108.64.
This section employs a dual-mode TBM (designated TBMI)
with a diameter of 6,730 mm. Key technical specifications are
summarized in Table 1.

2.2 Data sources and composition

In the Luotie Project, four TBMs are deployed concurrently,
with TBM1 operating in a heterogeneous geological formation
predominantly composed of quartz gneiss and sandstone, and
characterized by significant groundwater presence. The alignment
and longitudinal geological profile of TBMI1 are presented in
Figure 1. The dataset for this study includes tunneling parameters
and geological records derived from the completed excavation
segments of TBMI1. The tunneling parameters were recorded at
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Construction alignment and geological profile of TBM1 in the luotie project.

a frequency of 1Hz, and the distribution of surrounding rock
grades along the tunnel is depicted in Figure 2. As shown, the
majority of the tunnel encounters SR-IV (Surrounding Rock
Grade IV), which constitutes 50.3% (774 segments) of the
total excavation. This is followed by SR-III (Surrounding Rock
Grade III), representing 34.5% (532 segments), while SR-V
(Surrounding Rock Grade V) is the least encountered, comprising
only 15.2% (234 segments). This distribution highlights that the
tunnel primarily traverses SR-IV, followed by SR-III, with SR-V
occurring in a smaller portion of the excavation. Subsequent model
development and analysis were based exclusively on the tunneling
parameters collected from these segments.

Frontiers in Earth Science 03

3 Data processing
3.1 Data cleaning

Invalid data were removed from the collected tunneling
parameters by retaining only non-zero entries, i.e., any data row
containing a zero value in any parameter was deleted according to
the criterion defined in Equation 1. After preliminary data cleaning,
boxplots were used for secondary outlier removal. A boxplot
eliminates abnormal data based on the median, lower quartile
(Q1), upper quartile (Q3), maximum value (Q3+1.5 (Q3-Q1)),
and minimum value (Q1-1.5 (Q3-Ql)). In this study, the stable
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FIGURE 2
Percentage of different surrounding rock grades.

excavation phase was specifically extracted to analyze tunneling
parameter variations. Notably, even during stable excavation,
manual operational decisions introduce fluctuations in two critical
parameters—thrust and rotation speed—which subsequently
affect other operational indicators. To address this challenge, a
refined segmentation method for the stable excavation phase
was implemented using a stopping criterion method (Breiman,
2001), as defined in Equation 2. The processed distributions of
four key tunneling parameters are shown in Figure 3, where
distinct unimodal distributions under different surrounding
rock grades demonstrate the effectiveness of the data cleaning
methodology.

SE)- A(T)- fN)- flv) =0 (1)
Z;:t—kﬂE(tO)

P(H:=1000- | —= @)
k- m1ni0+k_1E(t0)

3.2 Feature parameter selection and
dataset spliting

Pearson correlation analysis was first conducted to assess
the linear relationships between all tunneling parameters and
surrounding rock classification. The objective of this analysis was
to quantify the strength of correlation between each parameter
and the surrounding rock grade, facilitating the identification of
the most relevant features. Based on the results of this analysis,
and employing a hybrid “knowledge-driven” and “data-driven”
approach, eight critical feature parameters were selected: Thrust,
Rotation Speed (RS), Torque, Penetration Rate (PR), 1# Middle
Shield Retracting Gripper Shoe Pressure (1#SSP), 2# Middle Shield
Retracting Gripper Shoe Pressure (2#SSP), Foam Pressure (1#FP),
and Surrounding Rock Classification (SR). The Pearson correlation
coeflicients for these parameters are presented in Figure 4. Notably,
the absolute correlation coefficients for the other seven features
with surrounding rock grade were all greater than 0.15, indicating
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a significant linear relationship. In contrast, Thrust exhibited a
correlation coefficient of only 0.05, reflecting a weak association
with surrounding rock grade. However, given that Thrust is a critical
control parameter in TBM tunneling, it was retained in the final
set of features. Following data cleaning and feature selection, the
dataset was partitioned into training, testing, and validation sets
in a 7:2:1 ratio. The partitioning process involved categorizing the
data samples by surrounding rock grade (III, IV, V), and then,
within each grade group, randomly selecting 70% of the data for the
training set, 20% for the testing set, and the remaining 10% for the
validation set.

3.3 Model training methods

Based on the selected feature parameters and processed data,
modeling is performed using the following three methods:

Method (1): Using raw data with default hyperparameters and
no additional processing; Method (2): Applying hyperparameter
optimization to the data; Method (3): Combining hyperparameter
optimization with SMOTE for data processing. The SMOTE
oversampling method was specifically employed to address
severe data imbalance issues across Grades III, IV, and V
surrounding rocks.

Surrounding rock grade classification models were developed
using XGBoost, CatBoost, RF, and LightGBM algorithms based on
these three modeling methods. Model performance was evaluated
using key metrics—Precision, Recall, and F1_score—to assess the
effectiveness of each strategy. The formulas for these metrics are
defined in Equations 3-5.

PRE= — P 3)
TP + FP

REC = _rr (4)
TP+FN

. 2XPREXREC 5)
1™ PRExREC

In the equations, TP denotes the number of true positive samples
(correctly predicted positive instances), FP represents false positive
samples (negative instances incorrectly predicted as positive), and
FN indicates false negative samples (positive instances incorrectly
predicted as negative).

4 Machine learning algorithms
4.1 eXtreme gradient boosting (XGBoost)

The Extreme Gradient Boosting (XGBoost) algorithm,
proposed by Chen and Guestrin etal. (Zhang et al, 2022), is
a composite algorithm formed by combining base functions
and weights to achieve superior data fitting. It belongs to the
category of Gradient Boosting Decision Tree (GBDT). The core
principle of GBDT lies in combining multiple weak learners
(decision trees) to form a stronger predictive model. During
training, GBDT iteratively adds new decision trees to correct
errors from previous models until convergence or reaching
predefined iteration limits [Prokhorenkova et al. (2017) and
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35]. Unlike traditional GBDT, XGBoost enhances the objective
loss function by incorporating regularization terms. To address
challenges in calculating derivatives for certain loss functions,
XGBoost approximates the loss function using a second-
order Taylor expansion, improving computational precision.
Additionally, XGBoost employs shrinkage strategies and feature
subsampling to prevent overfitting and introduces a sparsity-
aware algorithm to handle missing data. It also supports greedy
algorithms and approximate learning for node splitting in
tree models.

Due to its efficiency in processing large-scale data and
complex models, as well as its robustness against overfitting,
XGBoost has gained widespread attention and application since its
inception.

4.2 Random Forest (RF)

Random Forest (RF), proposed by Breiman in 2001
(Hancock and Khoshgoftaar, 2020), is an ensemble learning
method based on decision tree algorithms. The RF model
employs a Bagging aggregation strategy, utilizing bootstrapping
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(a random sampling method with replacement) for data
sampling. These techniques effectively mitigate overfitting
By the
results of multiple base estimators, RF achieves superior
predictive performance compared to single-estimator models,
demonstrating enhanced generalization capability and robustness.
Additionally, the
imbalanced datasets and exhibits high training efficiency.

risks  during model construction. integrating

model reduces classification errors in
Consequently, it has been widely applied to both regression and

classification problems (Bentéjac et al., 2021).

4.3 Categorical boosting (CatBoost)

The CatBoost algorithm, proposed by Prokhorenkova et al.
(2017), Ke et al. (2017), Shen et al. (2025a), is an advanced
gradient boosting decision tree (GBDT) algorithm. Building upon
GBDT, CatBoost introduces two key enhancements: adaptive
learning rates and categorical feature processing, which enable
superior performance in both classification and regression
tasks. The adaptive learning rate optimizes the contribution of
decision trees in each iteration, thereby improving overall model
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Pearson correlation analysis results of tunneling parameters.
accuracy. Its calculation method is detailed in Equations6, 7. 4. Lower Memory Consumption: Requires less memory usage on
Categorical feature processing employs the Ordered Target computational hardware.
Statistics encoding technique to convert categorical features into 5. Native Categorical Feature Support: Unlike XGBoost, which
numerical representations. This method applies hash encoding relies on OneHot encoding for categorical features, CatBoost
to categorical values and maps the resulting hash values to directly handles string-type categorical features without
numerical equivalents, effectively capturing the influence of preprocessing.
categorical features.
Compared to XGBoost, CatBoost exhibits the following 1
advantages. n,= (6)
8 ! V1+t
1. Higher Model Accuracy: CatBoost often achieves high zt
precision without requiring extensive hyperparameter tuning. « = iz (7)
2. Faster Training Speed: Outperforms XGBoost in training t
efficiency. In the equations, ¢ denotes the iteration number, #, represents

3. Superior Prediction Speed: Delivers significantly faster  the learning rate at the tth iteration, and «, is the average learning
inference times than XGBoost. rate from the previous iteration.
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Precision

FIGURE 5
Evaluation metrics for intelligent diagnostic models: (a) Precision; (b)
Recall; (c) F1_score.

4.4 Light Gradient Boosting Machine
(LightGBM)

Light Gradient Boosting Machine (LightGBM), proposed by
Ke et al. (2017), Shen etal. (2025b), is an efficient framework
for implementing GBDT algorithms. Compared to XGBoost,
LightGBM significantly reduces time complexity by converting
sample-wise traversal into bin-wise calculations via the histogram
algorithm (optimizing from sample-level to bin-level traversal).

Additionally, LightGBM employs Gradient-based One-Side
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Sampling (GOSS), which retains samples with large gradients
while randomly selecting a subset of low-gradient samples,
thereby reducing computational load while maintaining gradient
distribution stability. Furthermore, its leaf-wise growth strategy
prioritizes splitting leaf nodes that yield the greatest loss
reduction during the tree-building process, generating deeper
asymmetric tree structures to minimize redundant computations.
LightGBM also combines optimized feature parallelism and
data parallelism methods to accelerate training and introduces
the Exclusive Feature Bundling (EFB) algorithm, which merges
sparse and mutually exclusive features into single composite
features to reduce dimensionality and memory consumption.
These innovations enable LightGBM to achieve high efficiency
and low resource utilization when processing large-scale, high-
dimensional data.

5 Predictive models and results
5.1 Surrounding rock classification model

Surrounding rock classification models were developed using
XGBoost, CatBoost, RE, and LightGBM algorithms. First, eight
TBM tunneling parameters—Thrust, Rotation Speed (RS), Torque,
Penetration Rate (PR), 1#SSP, 2#SSP, 1#FP, and SR—were selected
through a hybrid “data-driven” and “knowledge-driven” approach.
The data were cleaned according to Equation 1 and denoised using
boxplots. The preprocessed dataset was partitioned into training,
testing, and validation sets at a 7:2:1 ratio. Three imbalanced data
processing methods were applied, with the input parameters being
the eight selected TBM tunneling parameters and the output being
the surrounding rock grades (IIL, IV, V), labeled as 3, 4, and 5,
respectively.

Before model training, the training set was standardized using
Equation 8. The Optuna hyperparameter optimizer was employed
for automated hyperparameter tuning, with the optimization cycle
setto 100 iterations, yielding final hyperparameters for models based
on the three imbalanced data processing methods. Training was
then conducted using these optimized hyperparameters. Finally, the
trained models were validated using the testing set to obtain the final
surrounding rock classification results.

(®)

In the equation, x,,,,, represents the standardized data, x denotes
the raw data, u is the mean of the sample data, and o is the standard
deviation of the sample data.

5.2 Model performance evaluation

Surrounding rock classification models under three data
processing methods were established using XGBoost, CatBoost,
RE and LightGBM ensemble learning algorithms. The prediction
results of these models were evaluated using three key metrics:
Precision, Recall, and F1_score, as shown in Figure5. The
optimal hyperparameters obtained via Optuna optimization
are summarized in Table 2. The results indicate: Method (1)
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TABLE 2 The hyperparameter optimization results of the intelligent diagnostic model.

Model type

Unbalanced data handing
methods (2)

XGBoost

n_estimators: 1855
max_depth: 9
learning_rate: 0.0468
subsample: 0.8663
colsample_bytree: 0.8882
gamma: 0.5033
min_child_weight: 5
reg_alpha: 0.1713
reg_lambda: 2.6573

RF

n_estimators: 1,559
max_depth: 18
min_samples_split: 3
min_samples_leaf: 3

CatBoost

iterations: 1,142

depth: 4

learning_rate: 5.38e-2
12_leaf _reg: 0.0188
bagging_temperature: 0.2057
random_strength: 2.3258
border_count: 252

10.3389/feart.2025.1692577

LightGBM

n_estimators: 1,241
max_depth: 0
learning_rate: 0.1681
subsample: 0.7184
colsample_bytree: 0.9625
num_leaves: 55
min_child_samples: 35
reg_alpha:0.0187
reg_lambda: 1.1492

Unbalanced data handing
methods (3)

n_estimators: 455
max_depth: 18
learning_rate: 8.36e-3
subsample: 0.9832
colsample_bytree: 0.9238
gamma: 0.3049
min_child_weight: 9
reg_alpha: 1.003e-4
reg_lambda: 1.181e-4

n_estimators: 1,023
max_depth: 11
min_samples_split: 3
min_samples_leaf: 3

iterations: 542

depth: 6

learning_rate: 2.63e-2
12_leaf reg: 0.0610
bagging_temperature: 0.5349
random_strength: 3.6250
border_count: 35

n_estimators: 1,511
max_depth: 14
learning_rate: 9.30e-3
subsample: 0.9086
colsample_bytree: 0.8780
num_leaves: 130
min_child_samples: 4
reg_alpha:0.0024
reg_lambda: 5.2011

True label

True label

FIGURE 6
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(raw data only): All four models exhibited poor performance.
The RF model performed worst for Grade V surrounding rock
(Precision:0.67, Recall:0.53, F1:0.89). Method (2) (hyperparameter
optimization): Significant accuracy improvements were achieved
compared to Method (1). The CatBoost model satisfied all evaluation
criteria, indicating reliable predictions, while RF and XGBoost
models still underperformed. Method (3) (hyperparameter
optimization + SMOTE): All models showed further accuracy
gains, with the CatBoost model achieving the best prediction
performance.

Performance analysis revealed varying degrees of classification
confusion among all models using raw data, as demonstrated
by the confusion matrix of the validation set in Figure 6. The
RF model exhibited a misclassification rate of 1.92% (1/52)
between Grades III and V, with cross-grade misclassifications
observed. The misclassification rate between Grades IV and
V reached 10.71% (6/56). The XGBoost and LightGBM
models showed improved performance, reducing the IV-
V misclassification rates to 7.14% (4/56) and 7.27% (4/55),
respectively. The CatBoost model outperformed others, achieving

Frontiers in Earth Science

a IV-V misclassification rate of 3.57% (2/56), with prediction
accuracies of 100% for Grade III, 100% for Grade IV, and
86% for Grade V. These results confirm that the CatBoost
model delivers the best predictive performance under raw data
conditions.

After hyperparameter optimization, the confusion matrices
of different models on the validation set are shown in Figure 7.
The RF and XGBoost exhibited
no misclassification between Grades III and V, while the
misclassification rate between Grades IV and V decreased
to 7.14% (4/56). LightGBM model further reduced the IV-V
misclassification rate to 3.57% (2/56). CatBoost model achieved
zero misclassification with 100% prediction accuracy for Grades III,

results indicate: models

IV, and V, demonstrating its superior effectiveness.

When combining SMOTE with hyperparameter optimization,
the classification prediction results of the validation set confusion
matrix are shown in Figure 8. The results demonstrate: The XGBoost
model achieved further improvement, reducing the misclassification
rate between Grades IV and V to 5.36% (3/56). The RF and
LightGBM models increased the prediction accuracy for Grade V to
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Classification prediction results with SMOTE and hyperparameter optimization: (a) XGBoost; (b) RF; (c) CatBoost; (d) LightGBM.
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FIGURE 9
Convergence curve of CatBoost model.
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93.3% (14/15) with no cross-grade misclassifications. These results
indicate that SMOTE-enhanced hyperparameter optimization
further improves model accuracy. The CatBoost model, which
already achieved excellent performance with hyperparameter
optimization alone, showed negligible differences after SMOTE
integration.

Therefore, through comprehensive consideration of prediction
accuracy, the CatBoost model integrated with SMOTE and
hyperparameter optimization was selected as the optimal intelligent
diagnostic model in this study. Without further validating the
performance curves of the CatBoost model, its convergence curve
was plotted as shown in Figure 9. The results indicate that the model
exhibits only slight overfitting, and its overall performance remains
acceptable.

6 Conclusion

TBM tunneling efficiency and construction safety are
highly dependent on real-time perception of surrounding rock
conditions and parameter optimization. This study, based on
TBM construction data from the Luotie Project, established
intelligent diagnostic models for surrounding rock classification
using XGBoost, RE, CatBoost, and LightGBM algorithms. These
models integrate feature selection methods combining data-driven
and knowledge-driven approaches, along with three data processing
techniques. Model performance was evaluated using three key
metrics: Precision, Recall, and F1_score. The conclusions are
as follows.

1. Feature-selected tunneling parameters from TBMI in
the Luotie Project were processed using three methods
to develop surrounding rock classification models. The

CatBoost model with SMOTE-enhanced hyperparameter

optimization achieved the highest prediction accuracy

(average 99%).

2. The RF model using raw data exhibited a 1.92% (1/52)
misclassification rate between Grades III and V, involving
cross-grade errors. Other models (XGBoost, CatBoost,
LightGBM) and the hyperparameter-optimized RF model
with SMOTE eliminated cross-grade misclassifications,

demonstrating perfect differentiation between Grades

I and V. This confirms that SMOTE-enhanced
hyperparameter ~ optimization  significantly  improves
prediction accuracy.

3. The CatBoost model achieved optimal prediction

accuracy with hyperparameter optimization alone, showing
negligible performance differences when combined with
SMOTE. Both approaches satisfied all key evaluation
criteria.
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