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Intelligent recognition of 
surrounding rock grades based 
on TBM tunneling parameters
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Rapid, accurate, and efficient prediction of surrounding rock grades is crucial 
for ensuring the safety and enhancing the efficiency of tunnel boring machine 
(TBM) construction. To achieve intelligent perception of surrounding rock 
grades based on TBM tunneling parameters, this study leverages data from 
the TBM1 construction phase of the Luotian Reservoir-Tiegang Reservoir 
Water Diversion Tunnel Project, integrating geological records and tunneling 
parameters to establish models for different rock grades. First, raw data were 
cleaned and denoised using box plots, followed by the selection of eight 
critical parameters—including thrust, torque, penetration rate (PR), rotation 
speed (RS), et al—through a hybrid approach combining “knowledge-driven” 
and “data-driven” criteria. The dataset was partitioned into training, testing, 
and validation sets at a 7:2:1 ratio. Three data processing methods were 
applied, and machine learning algorithms (XGBoost, Random Forest, CatBoost, 
and LightGBM) were employed to construct surrounding rock classification 
models, with Optuna hyperparameter optimization implemented to enhance 
model performance. The result reveals that the CatBoost model, optimized 
via SMOTE (Synthetic Minority Oversampling Technique) and hyperparameter 
tuning, delivered superior performance, achieving 99% validation accuracy 
with no misclassification across adjacent surrounding rock grades. This 
research provides actionable insights for advancing intelligent TBM construction 
practices.

KEYWORDS

TBM tunneling parameters, surrounding rock classification, ensemble learning 
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 1 Introduction

Under the continuous impetus and leadership of China’s informatization and 
digitization, intelligent construction and smart tunneling are inevitably becoming the 
mainstream development direction in the tunnel engineering field (Fang et al., 2025; 
Aston et al., 1988; Xie et al., 2025), particularly for shield tunnels (Barton, 2012; 
Fang et al., 2023; Zheng et al., 2016). Shield tunnels, constructed using tunnel boring 
machines (TBMs), are equipped with numerous sensors that monitor and collect various 
mechanical, electrical, and environmental parameters in real time at specific frequencies 
during construction. This establishes a foundation for data-driven intelligent TBM 
construction. Furthermore, with the rapid advancement of computer technology, artificial 
intelligence (AI) has been widely applied across numerous fields such as finance, healthcare,

Frontiers in Earth Science 01 frontiersin.org

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2025.1692577
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2025.1692577&domain=pdf&date_stamp=
2025-10-10
mailto:2150471020@email.szu.edu.cn
mailto:2150471020@email.szu.edu.cn
https://doi.org/10.3389/feart.2025.1692577
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2025.1692577/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1692577/full
https://www.frontiersin.org/articles/10.3389/feart.2025.1692577/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Dang et al. 10.3389/feart.2025.1692577

TABLE 1  The Main characteristic parameters of TBM.

Parameter Value Parameter Value

TBM type Earth Pressure/TBM Dual Mode Shield Maximum cutterhead rotation speed nmax (r/min) 6.1

Diameter of cutterhead D (mm) 6,730 Data acquisition frequency (Hz) 1

Maximum thrust Fmax (kN) 40860 Number of disc cutter N (pcs) 43

Maximum torque Tmax (kN·m) 9,818 Breakout torque T (kN·m) 11781

Maximum advance speed vmax (mm/min) 100(Earth Pressure)/120(TBM) Drive Power (kW) 2000

transportation, and manufacturing. The emergence of open-source 
machine learning libraries (e.g., Scikit-learn, PyTorch, TensorFlow) 
has also provided more accessible channels for researchers in 
tunneling to learn and apply AI algorithms.

Currently, AI technologies based on big data are increasingly 
being introduced into tunnel engineering to assist TBM 
construction. Key research focuses include TBM efficiency 
optimization, intelligent perception of surrounding rock grades, 
tunneling performance prediction, and adverse geological condition 
forecasting (Tang et al., 2024; Chen et al., 2021; Li et al., 2023a; 
Li et al., 2023b). In the domain of surrounding rock grade 
classification, existing studies have employed various machine 
learning algorithms (Afradi and Ebrahimabadi, 2020; Guo et al., 
2022a; Guo et al., 2022b; Ghorbani and Yagiz, 2024; Feng et al., 
2021; Hou et al., 2022; Kohestani et al., 2017; Liu et al., 2020; 
Xiong, 2014; Zhu et al., 2021)—such as ensemble methods 
(Stacking, Random Forest, Adaboost/Adacost, Decision Trees, 
GBDT), clustering techniques (KNN, SVM), and deep learning 
models (MLP, DNN)—to develop intelligent surrounding rock 
grade perception models based on TBM tunneling parameters. 
These models incorporate parameters such as gripper pressure, 
gear seal pressure, advance displacement, cutterhead power, shield 
pressure and rolling force (Zhu et al., 2020; Mao et al., 2021; 
Zhang et al., 2019; Wu et al., 2021; Liu et al., 2021; Yin et al., 
2022; Prechelt, 2002; Chen et al., 2015). However, due to data 
imbalance, these models exhibit poor prediction accuracy for Grade 
II and V surrounding rocks. Although the SMOTE oversampling 
method has been applied to balance datasets, its effectiveness 
remains limited (Wu et al., 2021; Liu et al., 2021; Yin et al., 2022; 
Prechelt, 2002; Chen et al., 2015). Current feature selection methods 
generally fall into two categories: “data-driven” and “knowledge-
driven.” Data-driven approaches analyze correlations between input 
tunneling parameters and target variables using techniques like 
Random Forest, Pearson correlation analysis, PCA, and XGBoost, 
ultimately selecting modeling parameters based on correlation 
strength. Knowledge-driven methods rely on personal expertise 
and experience to choose input parameters, which introduces 
subjective biases. While using averaged stable-phase data for 
modeling can improve accuracy to some extent, it conflicts with real-
time prediction requirements, rendering such models inadequate 
for guiding actual construction. Although AI technologies have 
advanced in TBM applications, existing models lack universality 
due to variations in tunneling parameters across different TBM 

types (e.g., cutterhead diameter, tool configuration) and geological 
conditions.

In summary, this study is based on the Luotian Reservoir-
Tiegang Reservoir Water Diversion Tunnel Project (hereafter 
referred to as the Luotie Project), utilizing comprehensive 
geological data and tunneling parameters from its TBM1. First, 
feature parameters were selected by integrating data-driven 
and knowledge-driven criteria according to data characteristics 
and prediction targets. The raw data were then cleaned using 
box plots and partitioned into training (70%), testing (20%), 
and validation (10%) sets. Subsequently, three data imbalance 
mitigation strategies were applied to construct surrounding rock 
classification models using XGBoost, RF, CatBoost, and LightGBM 
algorithms. This research enables rapid, efficient, and intelligent 
perception of surrounding rock grades, guiding shield drivers to 
make parameter adjustments, ensuring safer and more efficient 
tunneling. 

2 Luotie Project

2.1 Description of the project

This study is based on the Luotie Project, a component of 
the Shenzhen section of the Pearl River Delta Water Resources 
Allocation Project. The project has a total water delivery 
capacity of 2.6 million m3/day, with a main tunnel spanning 
21.68 km. The target study section is TBM Construction Section 1, 
starting and ending at chainage K0+486.74 to K5+108.64. 
This section employs a dual-mode TBM (designated TBM1) 
with a diameter of 6,730 mm. Key technical specifications are 
summarized in Table 1. 

2.2 Data sources and composition

In the Luotie Project, four TBMs are deployed concurrently, 
with TBM1 operating in a heterogeneous geological formation 
predominantly composed of quartz gneiss and sandstone, and 
characterized by significant groundwater presence. The alignment 
and longitudinal geological profile of TBM1 are presented in 
Figure 1. The dataset for this study includes tunneling parameters 
and geological records derived from the completed excavation 
segments of TBM1. The tunneling parameters were recorded at 
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FIGURE 1
Construction alignment and geological profile of TBM1 in the luotie project.

a frequency of 1 Hz, and the distribution of surrounding rock 
grades along the tunnel is depicted in Figure 2. As shown, the 
majority of the tunnel encounters SR-IV (Surrounding Rock 
Grade IV), which constitutes 50.3% (774 segments) of the 
total excavation. This is followed by SR-III (Surrounding Rock 
Grade III), representing 34.5% (532 segments), while SR-V 
(Surrounding Rock Grade V) is the least encountered, comprising 
only 15.2% (234 segments). This distribution highlights that the 
tunnel primarily traverses SR-IV, followed by SR-III, with SR-V 
occurring in a smaller portion of the excavation. Subsequent model 
development and analysis were based exclusively on the tunneling 
parameters collected from these segments. 

3 Data processing

3.1 Data cleaning

Invalid data were removed from the collected tunneling 
parameters by retaining only non-zero entries, i.e., any data row 
containing a zero value in any parameter was deleted according to 
the criterion defined in Equation 1. After preliminary data cleaning, 
boxplots were used for secondary outlier removal. A boxplot 
eliminates abnormal data based on the median, lower quartile 
(Q1), upper quartile (Q3), maximum value (Q3+1.5 (Q3-Q1)), 
and minimum value (Q1-1.5 (Q3-Q1)). In this study, the stable 
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FIGURE 2
Percentage of different surrounding rock grades.

excavation phase was specifically extracted to analyze tunneling 
parameter variations. Notably, even during stable excavation, 
manual operational decisions introduce fluctuations in two critical 
parameters—thrust and rotation speed—which subsequently 
affect other operational indicators. To address this challenge, a 
refined segmentation method for the stable excavation phase 
was implemented using a stopping criterion method (Breiman, 
2001), as defined in Equation 2. The processed distributions of 
four key tunneling parameters are shown in Figure 3, where 
distinct unimodal distributions under different surrounding 
rock grades demonstrate the effectiveness of the data cleaning 
methodology.

f(F) · f(T) · f(N) · f(v) = 0 (1)

Pk(t): = 1000 · (
∑t

t0=t−k+1
E(t0)

k · mint
t0+k−1

E(t0)
− 1) (2)

 

3.2 Feature parameter selection and 
dataset spliting

Pearson correlation analysis was first conducted to assess 
the linear relationships between all tunneling parameters and 
surrounding rock classification. The objective of this analysis was 
to quantify the strength of correlation between each parameter 
and the surrounding rock grade, facilitating the identification of 
the most relevant features. Based on the results of this analysis, 
and employing a hybrid “knowledge-driven” and “data-driven” 
approach, eight critical feature parameters were selected: Thrust, 
Rotation Speed (RS), Torque, Penetration Rate (PR), 1# Middle 
Shield Retracting Gripper Shoe Pressure (1#SSP), 2# Middle Shield 
Retracting Gripper Shoe Pressure (2#SSP), Foam Pressure (1#FP), 
and Surrounding Rock Classification (SR). The Pearson correlation 
coefficients for these parameters are presented in Figure 4. Notably, 
the absolute correlation coefficients for the other seven features 
with surrounding rock grade were all greater than 0.15, indicating 

a significant linear relationship. In contrast, Thrust exhibited a 
correlation coefficient of only 0.05, reflecting a weak association 
with surrounding rock grade. However, given that Thrust is a critical 
control parameter in TBM tunneling, it was retained in the final 
set of features. Following data cleaning and feature selection, the 
dataset was partitioned into training, testing, and validation sets 
in a 7:2:1 ratio. The partitioning process involved categorizing the 
data samples by surrounding rock grade (III, IV, V), and then, 
within each grade group, randomly selecting 70% of the data for the 
training set, 20% for the testing set, and the remaining 10% for the 
validation set. 

3.3 Model training methods

Based on the selected feature parameters and processed data, 
modeling is performed using the following three methods:

Method (1): Using raw data with default hyperparameters and 
no additional processing; Method (2): Applying hyperparameter 
optimization to the data; Method (3): Combining hyperparameter 
optimization with SMOTE for data processing. The SMOTE 
oversampling method was specifically employed to address 
severe data imbalance issues across Grades III, IV, and V 
surrounding rocks.

Surrounding rock grade classification models were developed 
using XGBoost, CatBoost, RF, and LightGBM algorithms based on 
these three modeling methods. Model performance was evaluated 
using key metrics—Precision, Recall, and F1_score—to assess the 
effectiveness of each strategy. The formulas for these metrics are 
defined in Equations 3–5.

PRE = TP
TP+ FP

(3)

REC = TP
TP+ FN

(4)

F1 =
2× PRE×REC

PRE×REC
(5)

In the equations, TP denotes the number of true positive samples 
(correctly predicted positive instances), FP represents false positive 
samples (negative instances incorrectly predicted as positive), and 
FN indicates false negative samples (positive instances incorrectly 
predicted as negative). 

4 Machine learning algorithms

4.1 eXtreme gradient boosting (XGBoost)

The Extreme Gradient Boosting (XGBoost) algorithm, 
proposed by Chen and Guestrin et al. (Zhang et al., 2022), is 
a composite algorithm formed by combining base functions 
and weights to achieve superior data fitting. It belongs to the 
category of Gradient Boosting Decision Tree (GBDT). The core 
principle of GBDT lies in combining multiple weak learners 
(decision trees) to form a stronger predictive model. During 
training, GBDT iteratively adds new decision trees to correct 
errors from previous models until convergence or reaching 
predefined iteration limits [Prokhorenkova et al. (2017) and 
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FIGURE 3
Kernel Density Curves of Different Feature Parameters under Corresponding surrounding rock Grades: (a) Thrust; (b)Torque; (c) Penetration rate; (d)
Rotation speed.

35]. Unlike traditional GBDT, XGBoost enhances the objective 
loss function by incorporating regularization terms. To address 
challenges in calculating derivatives for certain loss functions, 
XGBoost approximates the loss function using a second-
order Taylor expansion, improving computational precision. 
Additionally, XGBoost employs shrinkage strategies and feature 
subsampling to prevent overfitting and introduces a sparsity-
aware algorithm to handle missing data. It also supports greedy 
algorithms and approximate learning for node splitting in 
tree models.

Due to its efficiency in processing large-scale data and 
complex models, as well as its robustness against overfitting, 
XGBoost has gained widespread attention and application since its 
inception. 

4.2 Random Forest (RF)

Random Forest (RF), proposed by Breiman in 2001 
(Hancock and Khoshgoftaar, 2020), is an ensemble learning 
method based on decision tree algorithms. The RF model 
employs a Bagging aggregation strategy, utilizing bootstrapping 

(a random sampling method with replacement) for data 
sampling. These techniques effectively mitigate overfitting 
risks during model construction. By integrating the 
results of multiple base estimators, RF achieves superior 
predictive performance compared to single-estimator models, 
demonstrating enhanced generalization capability and robustness. 
Additionally, the model reduces classification errors in 
imbalanced datasets and exhibits high training efficiency. 
Consequently, it has been widely applied to both regression and 
classification problems (Bentéjac et al., 2021). 

4.3 Categorical boosting (CatBoost)

The CatBoost algorithm, proposed by Prokhorenkova et al. 
(2017), Ke et al. (2017), Shen et al. (2025a), is an advanced 
gradient boosting decision tree (GBDT) algorithm. Building upon 
GBDT, CatBoost introduces two key enhancements: adaptive 
learning rates and categorical feature processing, which enable 
superior performance in both classification and regression 
tasks. The adaptive learning rate optimizes the contribution of 
decision trees in each iteration, thereby improving overall model 
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FIGURE 4
Pearson correlation analysis results of tunneling parameters.

accuracy. Its calculation method is detailed in Equations 6, 7. 
Categorical feature processing employs the Ordered Target 
Statistics encoding technique to convert categorical features into 
numerical representations. This method applies hash encoding 
to categorical values and maps the resulting hash values to 
numerical equivalents, effectively capturing the influence of
categorical features.

Compared to XGBoost, CatBoost exhibits the following 
advantages. 

1. Higher Model Accuracy: CatBoost often achieves high 
precision without requiring extensive hyperparameter tuning.

2. Faster Training Speed: Outperforms XGBoost in training 
efficiency.

3. Superior Prediction Speed: Delivers significantly faster 
inference times than XGBoost.

4. Lower Memory Consumption: Requires less memory usage on 
computational hardware.

5. Native Categorical Feature Support: Unlike XGBoost, which 
relies on OneHot encoding for categorical features, CatBoost 
directly handles string-type categorical features without 
preprocessing.

ηt =
1
√1+ t

(6)

αt =
∑t

i=1
ηi

t
(7)

In the equations, t denotes the iteration number, ηt  represents 
the learning rate at the tth iteration, and αt  is the average learning 
rate from the previous iteration.
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FIGURE 5
Evaluation metrics for intelligent diagnostic models: (a) Precision; (b)
Recall; (c) F1_score.

4.4 Light Gradient Boosting Machine 
(LightGBM)

Light Gradient Boosting Machine (LightGBM), proposed by 
Ke et al. (2017), Shen et al. (2025b), is an efficient framework 
for implementing GBDT algorithms. Compared to XGBoost, 
LightGBM significantly reduces time complexity by converting 
sample-wise traversal into bin-wise calculations via the histogram 
algorithm (optimizing from sample-level to bin-level traversal). 
Additionally, LightGBM employs Gradient-based One-Side 

Sampling (GOSS), which retains samples with large gradients 
while randomly selecting a subset of low-gradient samples, 
thereby reducing computational load while maintaining gradient 
distribution stability. Furthermore, its leaf-wise growth strategy 
prioritizes splitting leaf nodes that yield the greatest loss 
reduction during the tree-building process, generating deeper 
asymmetric tree structures to minimize redundant computations. 
LightGBM also combines optimized feature parallelism and 
data parallelism methods to accelerate training and introduces 
the Exclusive Feature Bundling (EFB) algorithm, which merges 
sparse and mutually exclusive features into single composite 
features to reduce dimensionality and memory consumption. 
These innovations enable LightGBM to achieve high efficiency 
and low resource utilization when processing large-scale, high-
dimensional data. 

5 Predictive models and results

5.1 Surrounding rock classification model

Surrounding rock classification models were developed using 
XGBoost, CatBoost, RF, and LightGBM algorithms. First, eight 
TBM tunneling parameters—Thrust, Rotation Speed (RS), Torque, 
Penetration Rate (PR), 1#SSP, 2#SSP, 1#FP, and SR—were selected 
through a hybrid “data-driven” and “knowledge-driven” approach. 
The data were cleaned according to Equation 1 and denoised using 
boxplots. The preprocessed dataset was partitioned into training, 
testing, and validation sets at a 7:2:1 ratio. Three imbalanced data 
processing methods were applied, with the input parameters being 
the eight selected TBM tunneling parameters and the output being 
the surrounding rock grades (III, IV, V), labeled as 3, 4, and 5, 
respectively.

Before model training, the training set was standardized using
Equation 8. The Optuna hyperparameter optimizer was employed 
for automated hyperparameter tuning, with the optimization cycle 
set to 100 iterations, yielding final hyperparameters for models based 
on the three imbalanced data processing methods. Training was 
then conducted using these optimized hyperparameters. Finally, the 
trained models were validated using the testing set to obtain the final 
surrounding rock classification results.

xnew =
x− μ

σ
(8)

In the equation, xnew represents the standardized data, x denotes 
the raw data, μ is the mean of the sample data, and σ is the standard 
deviation of the sample data. 

5.2 Model performance evaluation

Surrounding rock classification models under three data 
processing methods were established using XGBoost, CatBoost, 
RF, and LightGBM ensemble learning algorithms. The prediction 
results of these models were evaluated using three key metrics: 
Precision, Recall, and F1_score, as shown in Figure 5. The 
optimal hyperparameters obtained via Optuna optimization 
are summarized in Table 2. The results indicate: Method (1) 
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TABLE 2  The hyperparameter optimization results of the intelligent diagnostic model.

Model type XGBoost RF CatBoost LightGBM

Unbalanced data handing
methods (2)

n_estimators: 1855
max_depth: 9
learning_rate: 0.0468
subsample: 0.8663
colsample_bytree: 0.8882
gamma: 0.5033
min_child_weight: 5
reg_alpha: 0.1713
reg_lambda: 2.6573

n_estimators: 1,559
max_depth: 18
min_samples_split: 3
min_samples_leaf : 3

iterations: 1,142
depth: 4
learning_rate: 5.38e-2
l2_leaf_reg : 0.0188
bagging_temperature: 0.2057
random_strength: 2.3258
border_count: 252

n_estimators: 1,241
max_depth: 0
learning_rate: 0.1681
subsample: 0.7184
colsample_bytree: 0.9625
num_leaves: 55
min_child_samples: 35
reg_alpha:0.0187
reg_lambda: 1.1492

Unbalanced data handing
methods (3)

n_estimators: 455
max_depth: 18
learning_rate: 8.36e-3
subsample: 0.9832
colsample_bytree: 0.9238
gamma: 0.3049
min_child_weight: 9
reg_alpha: 1.003e-4
reg_lambda: 1.181e-4

n_estimators: 1,023
max_depth: 11
min_samples_split: 3
min_samples_leaf : 3

iterations: 542
depth: 6
learning_rate: 2.63e-2
l2_leaf_reg : 0.0610
bagging_temperature: 0.5349
random_strength: 3.6250
border_count: 35

n_estimators: 1,511
max_depth: 14
learning_rate: 9.30e-3
subsample: 0.9086
colsample_bytree: 0.8780
num_leaves: 130
min_child_samples: 4
reg_alpha:0.0024
reg_lambda: 5.2011

FIGURE 6
Classification prediction results with default raw parameters: (a) XGBoost; (b) RF; (c) CatBoost; (d) LightGBM.
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FIGURE 7
Classification prediction results with hyperparameter optimization: (a) XGBoost; (b) RF; (c) CatBoost; (d) LightGBM.

(raw data only): All four models exhibited poor performance. 
The RF model performed worst for Grade V surrounding rock 
(Precision:0.67, Recall:0.53, F1:0.89). Method (2) (hyperparameter 
optimization): Significant accuracy improvements were achieved 
compared to Method (1). The CatBoost model satisfied all evaluation 
criteria, indicating reliable predictions, while RF and XGBoost 
models still underperformed. Method (3) (hyperparameter 
optimization + SMOTE): All models showed further accuracy 
gains, with the CatBoost model achieving the best prediction 
performance.

Performance analysis revealed varying degrees of classification 
confusion among all models using raw data, as demonstrated 
by the confusion matrix of the validation set in Figure 6. The 
RF model exhibited a misclassification rate of 1.92% (1/52) 
between Grades III and V, with cross-grade misclassifications 
observed. The misclassification rate between Grades IV and 
V reached 10.71% (6/56). The XGBoost and LightGBM 
models showed improved performance, reducing the IV-
V misclassification rates to 7.14% (4/56) and 7.27% (4/55), 
respectively. The CatBoost model outperformed others, achieving 

a IV-V misclassification rate of 3.57% (2/56), with prediction 
accuracies of 100% for Grade III, 100% for Grade IV, and 
86% for Grade V. These results confirm that the CatBoost 
model delivers the best predictive performance under raw data
conditions.

After hyperparameter optimization, the confusion matrices 
of different models on the validation set are shown in Figure 7. 
The results indicate: RF and XGBoost models exhibited 
no misclassification between Grades III and V, while the 
misclassification rate between Grades IV and V decreased 
to 7.14% (4/56). LightGBM model further reduced the IV-V 
misclassification rate to 3.57% (2/56). CatBoost model achieved 
zero misclassification with 100% prediction accuracy for Grades III, 
IV, and V, demonstrating its superior effectiveness.

When combining SMOTE with hyperparameter optimization, 
the classification prediction results of the validation set confusion 
matrix are shown in Figure 8. The results demonstrate: The XGBoost 
model achieved further improvement, reducing the misclassification 
rate between Grades IV and V to 5.36% (3/56). The RF and 
LightGBM models increased the prediction accuracy for Grade V to
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FIGURE 8
Classification prediction results with SMOTE and hyperparameter optimization: (a) XGBoost; (b) RF; (c) CatBoost; (d) LightGBM.

FIGURE 9
Convergence curve of CatBoost model.
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93.3% (14/15) with no cross-grade misclassifications. These results 
indicate that SMOTE-enhanced hyperparameter optimization 
further improves model accuracy. The CatBoost model, which 
already achieved excellent performance with hyperparameter 
optimization alone, showed negligible differences after SMOTE 
integration.

Therefore, through comprehensive consideration of prediction 
accuracy, the CatBoost model integrated with SMOTE and 
hyperparameter optimization was selected as the optimal intelligent 
diagnostic model in this study. Without further validating the 
performance curves of the CatBoost model, its convergence curve 
was plotted as shown in Figure 9. The results indicate that the model 
exhibits only slight overfitting, and its overall performance remains 
acceptable. 

6 Conclusion

TBM tunneling efficiency and construction safety are 
highly dependent on real-time perception of surrounding rock 
conditions and parameter optimization. This study, based on 
TBM construction data from the Luotie Project, established 
intelligent diagnostic models for surrounding rock classification 
using XGBoost, RF, CatBoost, and LightGBM algorithms. These 
models integrate feature selection methods combining data-driven 
and knowledge-driven approaches, along with three data processing 
techniques. Model performance was evaluated using three key 
metrics: Precision, Recall, and F1_score. The conclusions are
as follows. 

1. Feature-selected tunneling parameters from TBM1 in 
the Luotie Project were processed using three methods 
to develop surrounding rock classification models. The 
CatBoost model with SMOTE-enhanced hyperparameter 
optimization achieved the highest prediction accuracy
(average 99%).

2. The RF model using raw data exhibited a 1.92% (1/52) 
misclassification rate between Grades III and V, involving 
cross-grade errors. Other models (XGBoost, CatBoost, 
LightGBM) and the hyperparameter-optimized RF model 
with SMOTE eliminated cross-grade misclassifications, 
demonstrating perfect differentiation between Grades 
III and V. This confirms that SMOTE-enhanced 
hyperparameter optimization significantly improves
prediction accuracy.

3. The CatBoost model achieved optimal prediction 
accuracy with hyperparameter optimization alone, showing 
negligible performance differences when combined with 
SMOTE. Both approaches satisfied all key evaluation
criteria.
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