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Phylogenetic inference can be improved by the development and use of better models
for inference given the data available, or by gathering more appropriate data given
the potential inferences to be made. Numerous studies have demonstrated the crucial
importance of selecting a best-fit model to conducting accurate phylogenetic inference
given a data set, explicitly revealing how model choice affects the results of phylogenetic
inferences. However, the importance of specifying a correct model of evolution for
predictions of the best data to be gathered has never been examined. Here, we extend
analyses of phylogenetic signal and noise that predict the potential to resolve nodes in
a phylogeny to incorporate all time-reversible Markov models of nucleotide substitution.
Extending previous results on the canonical four-taxon tree, our theory yields an analytical
method that uses estimates of the rates of evolution and the model of molecular evolution
to predict the distribution of signal, noise, and polytomy. We applied our methods to
a study of 29 taxa of the yeast genus Candida and allied members to predict the
power of five markers, COX2, ACT1, RPB1, RPB2, and D1/D2 LSU, to resolve a poorly
supported backbone node corresponding to a clade of haploid Candida species, as
well as 19 other nodes that are reasonably short and at least moderately deep in the
consensus tree. The use of simple, unrealistic models that did not take into account
transition/transversion rate differences led to some discrepancies in predictions, but
overall our results demonstrate that predictions of signal and noise in phylogenetics are
fairly robust to model specification.

Keywords: model selection, signal, noise, phylogenetic informativeness, phylogenetic inference, maximum
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INTRODUCTION
Phylogenetic inferences can be improved either by improving the
models applied to data, or by improving the quality of the data.
Enormous progress has been made in the development of real-
istic, powerful evolutionary models for phylogenetic inference,
and studies have demonstrated that using correct evolutionary
models on a same data set can be essential to making correct
inferences (e.g., Sullivan and Swofford, 1997; Kelsey et al., 1999;
Ripplinger and Sullivan, 2010). Nonetheless, still larger gains in
accuracy of inference could be obtained by optimal selection of
the data to be gathered to address the phylogenetic question at
hand (Goldman, 1998; Townsend et al., 2008; Tekle et al., 2010;
Fong and Fujita, 2011; Moeller and Townsend, 2011; Crawley
and Hilu, 2012; Horreo, 2012; Silva et al., 2012; Walker et al.,
2012; Granados Mendoza et al., 2013). Furthermore, given the
advance of next-generation sequencing methods, such as RAD
Sequencing (Baird et al., 2008) and anchored hybrid enrichment
(Lemmon et al., 2012), which allow generation of sequence data
from hundreds to thousands of putatively orthologous loci, it
is becoming increasingly important to either selectively generate
or selectively filter the immense data sets generated by next-
generation sequencing methods. Thus, inference can be based on

the most useful or least misleading loci for resolving the phy-
logeny at hand. However, it remains to be explored the degree to
which model selection impacts the determination of optimal loci
for phylogenetic inference.

Less accurate and even inconsistent inferences can result from
incorrect model assumptions (Felsenstein, 1978; Huelsenbeck
and Hillis, 1993; Penny et al., 1994; Bruno and Halpern, 1999;
but see Rzhetsky and Sitnikova, 1996; Yang, 1997; Posada and
Crandall, 2001). Typically, under-parameterization of models
will lead to underestimates of some high-magnitude compo-
nents of the evolutionary process (e.g., Huelsenbeck and Hillis,
1993; Gaut and Lewis, 1995; Sullivan and Swofford, 1997, 2001),
components that then become a source of homoplasy and mis-
leading inference. While the apparent fit of a model to the
data can always be improved by adding additional parameters,
over-parameterization without sufficient data can lead to large
stochastic errors and misestimation of individual parameters,
simultaneous with a higher computational demand (Rannala,
2002; Lemmon and Moriarty, 2004). To find a balance between
these issues, a variety of statistical approaches have been devel-
oped to select models for maximum likelihood (ML) analysis
and Bayesian estimation, such as the hierarchical likelihood-ratio
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test (hLRT; Frati et al., 1997; Sullivan et al., 1997; Posada and
Crandall, 1998), relative Akaike information (Akaike, 1973), rela-
tive Bayesian information (Schwarz, 1978), and Decision Theory
(Minin et al., 2003; Abdo et al., 2004). Multiple models are
often supported by different selection methods and alternatively
supported models often do lead to incongruent optimal tree
topologies.

Nevertheless, ML analysis with alternatively supported mod-
els rarely yields significantly different evolutionary inferences,
because different outcomes attributable to alternatively supported
models are mostly limited to nodes that are poorly resolved by
the data set under any model (Ripplinger and Sullivan, 2008).
Because the prospects for improvement of phylogenetic infer-
ence by use of optimal data are so promising, obtaining a bet-
ter idea of their robustness to model selection is paramount.
Recently, several analytical approaches to quantifying the phy-
logenetic power of molecular characters have been introduced.
Goldman (1998) pioneered an analytical method that uses the
Fisher information matrix to determine optimal evolutionary
rates and taxon-sampling strategies to maximize the information
to resolve a divergence in a phylogeny. Susko (2011) calculated via
large sequence-length approximations the probabilities of correct
phylogenetic reconstruction for ML estimation for a single poorly
resolved internode. For a proposed discrete data set, Townsend
et al. (2012) applied empirical estimates of site substitution rates
and an s-state Poisson model of molecular evolution (s ≥ 2) to
predict the probabilities of a data set leading to correct, incor-
rect, and polytomous resolution of a quartet-taxon phylogeny.
This analytical approach makes it possible to address the unre-
solved question of whether choice in model selection affects
predictions of phylogenetic informativeness. Not only does phy-
logenetic informativeness depend critically on estimates of the
rate of evolution of the characters to be applied to a phyloge-
netic problem (Graybeal, 1994; Naylor and Brown, 1998; Yang,
1998; Rokas and Holland, 2000; Townsend, 2007; Townsend and
Leuenberger, 2011; Townsend et al., 2012), but also the impact
of characters on inference would likely depend upon the model
of evolution to which they presumably adhere. To investigate this
question, we generalize the Townsend et al. (2012) phylogenetic
signal and noise analysis based on the s-state Poisson model, to
incorporate any time-reversible homogenous Markov model of
nucleotide substitution. This generalization allows the signal and
noise analysis to incorporate more realistic, higher parameter-
ized assumptions of molecular evolution than the s-state Poisson
model.

After developing this theory, we apply it to an example
study, analyzing 29 taxa of the yeast genus Candida and allied
teleomorph genera using phylogenetic signal and noise analy-
sis based on 14 commonly used nucleotide substitution models
(Figure 1). The yeast genus Candida and allied teleomorph genera
belong to the order of Saccharomycetales. Members of the genus
Candida are ubiquitous in numerous natural and artificial habi-
tats (Kurtzman and Fell, 1998). Several species of Candida, such as
C. parapsilosis, C. tropicalis, and C. albicans, are among the most
common human pathogenic fungi. Relationships among differ-
ent genera or families of the Saccharomycetales have not yet been
fully resolved, especially for relationships along the backbone of

the trees. In a recent study of a six-gene yeast phylogeny with
a focus on medically important Candida species by Diezmann
et al. (2004), major clades were recognized with statistical sup-
port in the order, but several backbone nodes of the clade 2,
which included haploid Candida species such as C. guillermondii,
C. lusitaniae, Debaryomyces hansenii, and other Candida species
that are not invasive pathogens for humans, were not well sup-
ported. Similarly, in another five-gene yeast phylogeny study of
70 taxa of the genus Candida and allied sexually reproducing gen-
era (Tsui et al., 2008), the backbone node corresponding to the
clade of a similar set of haploid Candida taxa was not well sup-
ported. However, in a recent study using data selected from 706
orthologs for only 17 yeast species, the haploid Candida clade
was strongly supported by peptide sequences but not by coding
nucleotide sequences from the selected genes (Butler et al., 2009).
In our example study, we assay five markers: the second subunit of
the mitochondrial cytochrome oxidase gene (COX2), the largest
subunit (RPB1) and the second largest subunit (RPB2) of the
RNA polymerase II gene, the actin gene (ACT1), and the D1/D2
LSU rRNA gene, for their power to resolve a backbone node cor-
responding to a clade of haploid Candida species, which has been
poorly resolved in previous studies, as well as 19 other nodes fea-
turing a relatively short, deep internode in the consensus tree. By
comparing the five genes’ predicted probabilities of resolution for
the 20 assayed nodes based on all alternative models, we elucidate
the degree to which choice in model selection affects predictions
of phylogenetic signal and noise.

THEORY
As in Townsend et al. (2012), we model phylogenetic signal and
noise as accurate and inaccurate parsimony-informative sites for
resolution of a four-taxon tree. A site is considered parsimony-
informative for resolving the four-taxon tree if it exhibits an
AABB pattern of character states at the branch leaves, meaning
that at the given site, two of the branch leaves feature an identi-
cal character state (suggesting these two branches belong to the
same clade) while the other two branch leaves share a different
character state. The four-taxon tree has three possible tip-labeled
subtrees, all of which can be supported by an AABB pattern, but
only one of the three subtrees matches the actual four-taxon tree
topology (c.f. Figure 1 in Townsend et al., 2012). Any other pat-
tern yields no net contribution per site to phylogeny resolution
under maximum parsimony and very minimal impact per site
under ML analysis and Bayesian methods; thus any non-AABB
pattern is conservatively assumed to make no contribution away
from a polytomy by our approach.

Each Markov model of nucleotide substitution can be math-
ematically expressed as a four-by-four instantaneous rate matrix
Q, in which the element qij is the rate of change from nucleotide
base i to base j during an infinitesimal time period dt, where
j �= i. We use 1, 2, 3, and 4 in matrix indices to denote the
four nucleotide character states in the order of Thymine (T),
Cytosine (C), Adenine (A), and Guanine (G). To date almost all
of the nucleotide substitution models proposed in the literature
are time-reversible, meaning that the overall rate of change from
base i to base j in a given length of time is assumed to be the same
as that from base j to base i, i.e., πiqij = πjqji(j �= i). For the most
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FIGURE 1 | Relationship among 14 homogenous time-reversible

models of nucleotide substitution. Arrows indicate parameter
restrictions that reduce a more general, higher-parameterized model to a
more restricted, lower-parameterized one. For each case of distinct
substitution types corresponding to a pair of models, the model outside the
brackets allows unequal equilibrium base frequencies and the model inside
the brackets assumes equal equilibrium base frequencies. These models
are: JC (Jukes and Cantor, 1969), which is equivalent to the s-state Poisson
model for nucleotides (s = 4); K2P (Kimura 2-Parameter, a.k.a. K80; Kimura,
1980); TrNef (Tamura and Nei, 1993 model with equal base f requencies);
K3P (Kimura 3-Parameter, a.k.a. K81; Kimura, 1981); TIMef (TransItional
Model with equal base f requencies); TVMef (TransVersional Model with
equal base f requencies); SYM (SYMmetric, Zharkikh, 1994); F81
(Felsenstein, 1981); HKY (Hasegawa et al., 1985; Felsenstein described an
essentially identical model, F84, using a different parameterization—see
Kishino and Hasegawa, 1989; Felsenstein and Churchill, 1996; implemented
in the software DNADIST in PHYLIP—see Felsenstein, 1993); TrN (Tamura
and Nei, 1993); K3Puf (K3P model with unequal base f requencies, a.k.a.
K81uf); TIM (TransItional Model: rAC = rGT �= rAT = rCG �= rAG �= rCT);
TVM (TransVersional Model: rAG = rCT �= rAC �= rAT �= rCG �= rGT); and
GTR (General Time Reversible, Tavaré, 1986; Rodriguez et al., 1990).

general time-reversible Markov process of nucleotide characters,
the General Time Reversible (GTR) model, the rate matrix can be
written as

Q = μ

⎡
⎢⎢⎣

∗ aπC bπA cπG

aπT ∗ dπA eπG

bπT dπC ∗ f πG

cπT eπC f πA ∗

⎤
⎥⎥⎦ , (1)

in which the diagonal elements (∗) are qii = −∑
j �=i qij such that

elements across each row sum to zero. The product of the mean
instantaneous substitution rate, μ, and a relative rate parameter,
a,b,c,d,e, or f, yields a rate parameter. The frequency parameters,
πT , πC , πA, and πG, represent the equilibrium frequencies of the
four nucleotide bases, thereby obeying πT + πC + πA + πG = 1.
Imposing further constraints on the model parameters reduces
Equation 1 from the GTR model to lower-parameterized models
(Table 1).

The average substitution rate per nucleotide character, λ, can
be expressed in terms of the rate and frequency parameters as

λ =
∑
i �=j

πiqij = 2μ(aπTπC + bπTπA + cπTπG + dπCπA

+ eπCπG + f πAπG). (2)

For a nucleotide site with a substitution rate λ and a branch of
length t, λt gives the expected number of substitutions accumu-
lated at the site between the two ends of the branch. Because
modeling of signal and noise probability functions depends on
the site substitution rate λ, the rate matrix needs to be written as
a function of λ, Q(λ), by solving Equation 2 for μ, yielding

μ = λ

2(aπTπC + bπTπA + cπTπG + dπCπA + eπCπG + f πAπG)
. (3)

Then μ from Equation 3 may be substituted into Equation 1. To
calculate the probabilities of character state changes over a branch
of a finite length, we need to calculate the matrix of substitution
probability P(λ, t), via Equation 4:

P(λ, t) = eQ(λ)t, (4)

in which the element pij(λ, t) represents the probability of change
from nucleotide base i to base j at a site with a substitution rate
λ over a branch of length t. To solve for pij(λ, t), we apply eigen
decomposition to the instantaneous rate matrix Q(λ):

Q(λ) = U�U−1, (5)

in which U is a four-by-four matrix whose i-th column is the
i-th eigenvector of Q(λ) and � is a four-by-four diagonal matrix
whose i-th diagonal element is the i-th eigenvalue of Q(λ). The
matrix exponential in Equation 4 can thus be evaluated as

P(λ, t) = eQ(λ)t = Ue�tU−1. (6)

For lower-parameterized models (i.e., JC, F81, K2P, HKY, TrNef,
TrN, and K3P models), analytical solutions exist for Equation 6
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Table 1 | Parameterization of 14 nucleotide substitution models.

Number of Models of equal Models of unequal

substitution equilibrium equilibrium

types base frequencies base frequencies

πT = πC = πA = πG = 1
4 πT �= πC �= πA �= πG

1 JC F81

a = f = b = e = c = d ; equal substitution rate

2 K2P HKY

a = f �= b = e = c = d ; transition and transversion

3 TrNef TrN

a �= f �= b = e = c = d ; 2 transitions and transversion

3 K3P K3Puf

a = f �= b = e �= c = d ; transition and 2 transversions

4 TIMef TIM

a �= f �= b = e �= c = d ; 2 transitions and 2 transversions

5 TVMef TVM

a = f �= b �= e �= c �= d ; transition and 4 transversions

6 SYM GTR

a �= f �= b �= e �= c �= d ; 6 unequal substitutions

(also see Yang, 1994). Regardless of model complexity, Equation 6
can also be evaluated numerically after substitution of estimated
values of the relative rate and base frequency parameters of any
given model.

We utilize the substitution probabilities calculated via
Equation 6, appropriate for any time-reversible Markov model of
nucleotide substitution, to quantify probabilities for the evolu-
tion of character states at a single site with a substitution rate of λ

across an ultrametric four-taxon tree with an internode of length
to and four subtending branches of equal length T (Figure 2).

We denote the ancestral character states at the two ends
of the internode as M and N and the character states at the
terminal leaves of the four branches as C1, C2, C3, and C4,
respectively, (Figure 2). The pattern of character states that is
consistent with the correct subtree, denoted as τ3, is C1 = C2,
C3 = C4, C1 �= C3. The rooting of the tree does not affect anal-
ysis outcomes for time-reversible models; consequently, we can
write out the potential evolutionary histories of character states
by arbitrarily starting from the ancestral character state M on
one end of the internode. M can be any of the four charac-
ter states, and the probability of each possible state occurring
there is given by its corresponding nucleotide base frequency
πM , where M = 1, 2, 3, or 4. Likewise, on the other end of the
internode, N can be any of the four states, and the probabil-
ity of observing each possible state at N from M is pMN(λ, to),
where N = 1, 2, 3, or 4. Moving along the four branches to
the terminal leaves, the probability of observing every possible

FIGURE 2 | The canonical phylogenetic quartet in an ultrametric form,

with an internode of length to and four subtending branches of equal

length T. The ancestral character states at the two ends of the internode
are denoted as M and N. The character states at the terminal leaves of the
four branches are denoted as C1, C2, C3, and C4. The pattern of character
states at a site consistent with the true topology of the four-taxon tree, τ3,
is C1 = C2, C3 = C4, C1 �= C3. A site pattern that matches C1 = C3,
C2 = C4, C1 �= C2 or C1 = C4, C2 = C3, C1 �= C2 is consistent with one of
the two possible incorrect subtrees of the four-taxon tree: τ1 or τ2,
respectively.

permutation of character states at the leaves conditional on M and
N is given by pMC1(λ, T)pMC2(λ, T)pNC3(λ, T)pNC4(λ, T), where
C1, C2, C3, C4 = 1, 2, 3, or 4.

Phylogenetic signal leads to the true topology τ3, which
demonstrates the synapomorphic pattern of character states,
C1 = C2, C3 = C4, C1 �= C3. Phylogenetic signal arises if a char-
acter state change has occurred during the deep short internode
(i.e., M �= N) and the signal is preserved if zero subsequent char-
acter state change has occurred on the subtending lineages to
obscure the ancestral character states (i.e., C1 = C2 = M, C3 =
C4 = N). In the meantime, noise due to homoplasy can also
lead to the pattern of character states that is consistent with
τ3, through character state changes along subtending lineages
that randomize the character states to the desired pattern at the
branch terminal leaves regardless of the presence of signal over the
internode (c.f. Figure 1 in Townsend et al., 2012). Therefore, the
probability of a site supporting the true topology τ3 with intern-
ode length to and length of subtending branches T due to either
signal or homoplasy, is equal to the sum of probabilities associ-
ated with these two scenarios that both lead to the synapomorphic
pattern of C1 = C2, C3 = C4, C1 �= C3:

y(λ; to, T)

=
4∑

M=1

4∑
N=1

4∑
C1=C2=1

∑
C3=C4 �=C1

πMpMN(λ, to)pMC1(λ, T)pMC2

(λ, T)pNC3(λ, T)pNC4(λ, T). (7)

A homoplasious site pattern of character states that is consis-
tent with either of the two incorrect quartet topologies, τ1 and
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τ2, matches C1 = C3, C2 = C4, C1 �= C2, or C1 = C4, C2 = C3,
C1 �= C2, respectively, (Figure 2). Both patterns are a result of
homoplasy along the subtending branches that randomize the
character states regardless of the presence of signal over the
internode. The probabilities of a site supporting either of the
incorrect topologies (τ1 and τ2) with the defined internode and
branch lengths can be evaluated as the sum of probabilities asso-
ciated with all possible scenarios of character state changes that
lead to the respective homoplasious pattern, C1 = C3, C2 = C4,
C1 �= C2, or C1 = C4, C2 = C3, C1 �= C2:

x1(λ; to, T)

=
4∑

M=1

4∑
N=1

4∑
C1=C3=1

∑
C2=C4 �=C1

πMpMN(λ, to)pMC1

(λ, T)pMC2(λ, T)pNC3(λ, T)pNC4(λ, T), (8)

x2(λ; to, T)

=
4∑

M=1

4∑
N=1

4∑
C1=C4=1

∑
C2=C3 �=C1

πMpMN(λ, to)pMC1

(λ, T)pMC2(λ, T)pNC3(λ, T)pNC4(λ, T). (9)

The probability of a site supporting any pattern that is not con-
sistent with τ1, τ2, or τ3 (i.e., any non-AABB pattern) is given by

z(λ; to, T) = 1 − y(λ; to, T) − x1(λ; to, T) − x2(λ; to, T). (10)

Following Townsend et al. (2012), we consider n nucleotide sites,
each with its own distinct rate of substitution λi, 1 ≤ i ≤ n. For
this set of sites, Equations 7–10 calculate the probabilities of
each nucleotide site i supporting the correct topology (y), the
two incorrect topologies (x1 and x2), and polytomy (z) for an
ultrametric four-taxon tree with branch lengths to and T based
on any time-reversible Markov model of nucleotide substitu-
tion. The greater the number of sites that support the correct
topology there are compared to the numbers of sites that sup-
port either of the incorrect topologies, the more likely the whole
set of sites will lead to correct resolution of the four-taxon tree.
The probabilities of the whole set of n sites leading to correct,
incorrect, and polytomous resolution of the four-taxon tree can
then be evaluated either by building a histogram of potential lev-
els of resolution by repeated serial Monte Carlo across sites (c.f.
Townsend et al., 2012), or by use of an accurate analytical approxi-
mation that yields essentially identical results (Equations 11–13 of
Townsend et al., 2012; c.f. Appendix II of Townsend et al., 2012).
Compared to the Monte Carlo approach, the analytical approx-
imation demands a significantly less amount of computation
power and has no stochastic element to its result.

MATERIALS AND METHODS
The existing COX2, RPB1, RPB2, ACT1, and D1/D2 LSU
sequences of Schizosaccharomyces pombe and Zygoascus helleni-
cus (chosen as the outgroups; Diezmann et al., 2004) and 29
taxa of the yeast genus Candida and allied teleomorph genera
were downloaded from GenBank (Data Sheet 1). The sequence

alignments of the five markers were generated from SATé (Liu
et al., 2009) and used for all subsequent analyses without manual
adjustment except necessary trimming of the highly gapped ends
and indels using MacClade 4.0 (Maddison and Maddison, 2000).
The best-fit nucleotide substitution models for the five gene
sequences were selected with the Akaike information criterion
(AIC) measure and four gamma categories via ModelGenerator
v0.85 (Keane et al., 2006). The search for the best-fit model was
limited to the 14 models in Figure 1 without and with �, I,
and I +�.

One single data set which consisted of the 31 taxa and 3617
characters was prepared with five partitions from alignments of
the five markers (597 characters from COX2, 574 from RPB1,
936 from RPB2, 979 from ACT1, and 531 from D1/D2 LSU; Data
Sheet 2) and was deposited in TreeBase under the accession num-
ber S14200. Bayesian phylogenetic analysis of the five-gene data
set was performed via MrBayes 3.1.2 (Ronquist and Huelsenbeck,
2003) using the Metropolis-coupled Markov chain Monte Carlo
method under the optimal model for each gene partition selected
by ModelGenerator, by running four chains with 2,000,000 gen-
erations. At every 100th generation trees were sampled, and the
first 1000 trees sampled prior to the likelihoods converging to
stable values were discarded as burn-ins. A 50% majority con-
sensus tree was computed with the remaining Bayesian trees, and
significantly supported nodes were defined to exhibit a Bayesian
posterior probability (BPP) ≥ 0.95.

A chronogram for the combined five-gene data set was
obtained based on the consensus tree topology across the con-
verged Bayesian posterior computed by MrBayes 3.1.2. S. Pombe
and Z. hellenicus were removed from the consensus tree, leav-
ing a tree with a basal trichotomy. This species phylogeny was
calibrated by constraining the new basal split to a minimum
age of 160 Myr and a maximum age of 180 Myr (cf. Miranda
et al., 2006). Divergence times were estimated by penalized like-
lihood with a truncated Newton algorithm in r8s version 1.71
(Sanderson, 2006), setting the r8s smoothing parameter to 4.1, a
value obtained by following the r8s program manual instructions
(available at http://loco.biosci.arizona.edu/r8s/).

Rates of substitution for each individual site in the five-gene
data set were independently estimated based on each of the
14 alternative models in Figure 1 by submitting the sequence
alignment with the obtained chronogram to PhyDesign (López-
Giráldez and Townsend, 2011), to execute ML estimation of
nucleotide substitution rates via HyPhy (Pond et al., 2005).
ModelGenerator v0.85 was executed to supply the values of rel-
ative rate and frequency parameters for each of the five markers
based on each of the models. The node corresponding to the hap-
loid Candida clade and 19 other nodes featuring a relatively short,
deep internode in the chronogram were selected to be assayed for
signal and noise analysis, and the internode length to and sub-
tending branch length T of each of the 20 assayed nodes were
abstracted from the chronogram.

For each assayed node, four representative taxa were selected
so that each internode corresponded to a four-taxon problem
in which the lengths of the four subtending branches of the
internode were as close to one another as possible. In cases
where the four subtending branches of a given node had unequal

www.frontiersin.org April 2014 | Volume 2 | Article 11 | 5

http://loco.biosci.arizona.edu/r8s/
http://www.frontiersin.org
http://www.frontiersin.org/Phylogenetics,_Phylogenomics,_and_Systematics/archive


Su et al. Models, phylogenetic signal, and noise

lengths, T was approximated as the length of the shortest of
the four subtending branches. This approximation was justified
based on the observation that in all of the assayed nodes, the
subtending branches were all similar in length and significantly
longer than the internode. Using the estimated site substitu-
tion rates for the five gene sequence alignments based on the
14 models and the length measures of the 20 assayed nodes,
the probabilities of each of the five markers providing incor-
rect, polytomous, and correct resolution of each of the 20 nodes
based on the 14 alternative models were calculated via the ana-
lytical method for signal and noise analysis (via Equations 7–10
per nucleotide site and Equations 11–13 of Townsend et al.,
2012 per data set). These calculations were implemented via
Wolfram Mathematica 7 (Wolfram Research, Inc.). The Wolfram
Mathematica 7 implementation of the signal and noise analysis
calculations is available for download with instructions from the
PhyDesign website (López-Giráldez and Townsend, 2011; http://
phydesign.townsend.yale.edu/).

RESULTS
The best-fit models selected by AIC were TVM +� for COX2;
GTR + I +� for RPB1, RPB2, and ACT1; and GTR +� for D1/D2
LSU. In the computed consensus tree (Figure 3), the backbone
node corresponding to the haploid Candida clade was poorly sup-
ported (BPP = 0.72). Of the other 19 assayed nodes, all except
one (BPP = 0.57) were significantly supported (Data Sheet 3).
Subtending branch lengths (Data Sheet 4) were extracted from the
obtained chronogram based on the consensus tree (Data Sheet 3).

To prioritize different markers for resolving a given node, it
is necessary to compare their probabilities of incorrect resolu-
tion, polytomy, and correct resolution simultaneously to make
the optimal marker selection based on the specific experimen-
tal design goal at hand. Here we assumed that the GTR model
predicts the correct ranking of the five markers’ powers for resolv-
ing a given node, because the best-fit model selected by AIC was
the GTR model for four of the five markers, and the TVM model
selected for COX2 is highly similar to the GTR model in terms of
parameterization complexity. Based on the GTR model, the prob-
abilities of correct resolution, polytomy, and incorrect resolution
were similar across the five markers for the backbone node corre-
sponding to the haploid Candida clade; among the five markers,
RPB2, which had the highest probability of correct resolution
and the lowest probability of incorrect resolution for the node
(Figure 4), was the optimal marker.

To efficiently report the results for all of the 20 assayed nodes,
comparisons of only the probabilities of correct resolution were
presented, because the probabilities of incorrect resolution were
similar across the five markers for any given node (e.g., Figure 4).
Within every assayed marker, signal and noise analysis based
on the 14 alternative models predicted highly consistent prob-
abilities of the marker correctly resolving the haploid Candida
clade, albeit with several modest deviations (Figure 5). For RPB1,
RPB2, ACT1, and D1/D2 LSU, the JC and F81 models predicted
higher probabilities of correct nodal resolution than those pre-
dicted when analyzed with the other 12 models. For COX2, the
probabilities of correct nodal resolution predicted by the JC, K2P,
and TrNef models were considerably higher than those by the

other eleven models (Figure 5). Exactly the same overall trends
and deviations were observed from signal and noise analysis of the
other 19 nodes, regardless of whether the node was significantly
supported or not.

For all of the 20 assayed nodes, the GTR model ranked the five
markers in the same order of RPB2 (highest probability of cor-
rect resolution), ACT1, COX2, RPB1, and D1/D2 LSU (lowest).
For every single assayed node (e.g., Figure 5), half or more of the
14 models predicted the correct ranking of the five markers and
at least 10 models predicted the correct optimal marker, RPB2.
Moreover, only the JC, F81, K2P, and TrNef models ever failed to
predict the correct optimal marker to resolve one of the assayed
nodes, while the other ten more complex models never failed to
predict the optimal marker for any of the 20 assayed nodes.

By comparing the parameter values of the 14 models estimated
for the five markers (Data Sheet 5), we observed that within each
marker, there was an exact match between the models whose pre-
dicted probabilities of correct nodal resolution were inconsistent
with those by the other models and the models whose estimated
rate or frequency parameter values deviated significantly from
those of the other models. In RPB1, RPB2, ACT1, and D1/D2
LSU, a shared salient feature of the underlying evolutionary
processes is that transitions happened much faster than transver-
sions. In particular, the transition between T and C occurred at
the fastest rate among all substitutions. For example, based on
GTR, the optimal model for these four markers, rTC/rTG was 9.1
for ACT1, 4.9 for RPB1, 4.5 for RPB2, and 3.2 for D1/D2 LSU
(Data Sheet 5). Because the JC and F81 models restrict all sub-
stitutions to occur at the same rate, these two models failed to
account for the high transition/transversion bias that the other
models accounted for with regard to these four markers. In COX2,
the sole mitochondrial gene analyzed, the distinct characteristic of
the underlying evolutionary process was that the equilibrium fre-
quencies of T and A were much higher than those of C and G. For
example, in the best-fit TVM model for COX2, πT = 0.34, πC =
0.16, πA = 0.32, and πG = 0.18 (Data Sheet 5). The JC, K2P, and
TrNef models, which constrain base frequencies to equality, failed
to account for the much higher T and A frequencies in COX2.
Meanwhile, the K3P, TIMef, TVM, and SYM models, which also
assume equal base frequencies, fit the COX2 marker increasingly
better by allowing a progressively higher value of rTA to compen-
sate these models’ inability to account for the higher frequencies
of T and A. In contrast, because the JC, K2P, and TrNef models
are further restricted to assume equal transversion rates, the three
models could not compensate for their poor fit to the high T and
A frequencies by raising the transversion rate between T and A.

DISCUSSION
We have extended the Townsend et al. (2012) phylogenetic sig-
nal and noise analysis by incorporating all time-reversible Markov
models of nucleotide substitution into the prediction of the
power of a data set for resolving a quartet-taxon phylogeny. By
implementing diverse models of molecular evolution, we have
enhanced the precision of signal and noise analysis. If an opti-
mal model for a given data set can be established with confidence,
the probability distribution of signal, noise, and polytomy for
a node of phylogenetic interest that can be achieved from the
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FIGURE 3 | The consensus tree topology obtained from the Bayesian analysis of the combined five-gene data set. Numbers at nodes represent Bayesian
posterior probabilities. The internode marked with a bold, italic “X” corresponds to the poorly resolved backbone node of the haploid Candida clade (BPP = 0.72).

data set can now be calculated using the most realistic esti-
mates of the optimal model parameters for the data set. It has
been shown by an empirical study of a previous method of
phylogenetic informativeness based on a Poisson model that, for

real and simulated data, predictions from the method correlate
with tree distances between true and estimated trees and with
bootstrap probabilities (López-Giráldez et al., 2013). Given this
study’s finding that better-fit (typically more complex) models
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FIGURE 4 | Stacked probabilities of correct resolution (bottom, light

green), polytomy (middle, blue), and incorrect resolution (top, dark

red) of the backbone node of the haploid Candida clade based on the

GTR model, for five markers.

FIGURE 5 | Probabilities of correct resolution for the backbone node of

the haploid Candida clade for RPB2 (diamond), ACT1 (square), COX2

(triangle), RPB1 (cross), and D1/D2 LSU (star) calculated for each of

the the 14 alternative models.

yield more accurate predictions of which loci are most informa-
tive, the generalization to more complex models developed herein
is thus expected to further enhance performance. Additionally,
signal and noise analysis based on even the most complex time-
reversible model of nucleotide substitution, the GTR model, can
be implemented almost as easily and rapidly as analysis based on
the simplest models. The generalized signal and noise analysis
thus yields a highly convenient tool of model-based phylogenetic
informativeness analysis.

Our results suggest that there are not major discrepancies
between predictions by signal and noise analysis based on dif-
ferent models. In the example study of representative Candida
species and allied members using COX2, RPB1, RPB2, ACT1,
and D1/D2 LSU, we found that the prediction of the five mark-
ers’ probabilities of correct resolution for 20 assayed nodes was
fairly robust to 14 alternative models commonly used in model-
based phylogenetic studies. However, the results did suggest that
deviations in relative predicted probabilities of correct nodal

resolution could result from assuming the simplest models that
poorly capture the underlying evolutionary process—in particu-
lar, transition/transversion bias and base frequency composition.
If there are particularly high- or low-magnitude variables in the
underlying evolutionary process, the lowest-parameterized mod-
els, namely the JC, F81, K2P, and TrNef models, tend to fit the
data set poorly because these models’ restricted settings are often
unable to account for heterogeneity of rates in the Q matrix
or for heterogeneity of base composition. Consequently, signal
and noise analysis applied with these precariously simple mod-
els tends to predict a ranking that can deviate moderately from
the correct ranking of the utility of the assayed markers. Overall,
if there are grounds for supporting one model over another for
a gene, due to the result of a model selection test on preliminary
data or on a sister clade, it is advisable to eliminate overly sim-
ple models that are unlikely to reflect the evolutionary process
for the data to be gathered. Nevertheless, our results suggested
that predictions of signal and noise analysis are highly robust
across models that incorporate transition/transversion bias and
heterogeneity of base composition. Robustness to most models
exhibited by the generalized signal and noise analysis is reassuring
in that it would be challenging to confidently assert a model for
data that has yet to be gathered, although preliminary data, data
from the closest genome-sequenced species, or data from sister
clades can help to do so.

Considering the importance of model selection to phyloge-
netic inference (e.g., Sullivan and Swofford, 1997; Kelsey et al.,
1999; Ripplinger and Sullivan, 2010), it is instructive to speculate
regarding this perhaps surprisingly modest impact of evolution-
ary models on predictions of signal and noise analysis. In phy-
logenetic inference problems, it is frequently crucial to select the
optimal—frequently the most complex—molecular evolutionary
models, because the state identities at ancestral nodes are highly
constrained by the state identities at the tips of divergent lineages;
thus inference of topology at ancestral nodes is sensitive to which
evolutionary model is assumed (Sullivan and Joyce, 2005). In con-
trast, phylogenetic informativeness analysis provides predictions
of the utility of data that has not yet been gathered, and operates
without constraint by the unknown state identities at the tips of
divergent lineages. Phylogenetic informativeness depends instead
on how likely synapomorphic and homoplasious site patterns
may arise and maintain along the tree branches.

Thus, the substitution rate of a character is the most important
factor predicting the likelihood of synapomorphy and homoplasy
(e.g., Swofford et al., 1996; Goldman, 1998; Yang, 1998; Shpak
and Churchill, 2000; Bininda-Emonds et al., 2001; Sanderson and
Shaffer, 2002; Lin and Danforth, 2004; Danforth et al., 2005;
Mueller, 2006; Townsend, 2007; Jian et al., 2008; Regier et al.,
2008). The model only has a significant impact on informative-
ness in cases where extreme actual values of model parameters
lead to inaccurate estimation of average rate when analyzed under
a simpler model. The substitution rate of a character given by
Equation 2 is a weighted average of the frequency and rate
parameters in a molecular evolutionary model. In other words,
among the more complex models, differences in signal and noise
estimation are unlikely to arise because the effect of some param-

eters assuming higher values is very likely countered by the effect
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of other parameters assuming lower values. Therefore, although
specifying different evolutionary models will lead to differences in
the individual parameter values, the average rate of substitution
is not expected to drastically differ for most character sets with
realistic parameter values. Consequently, predictions based on
phylogenetic signal and noise analysis, which are chiefly depen-
dent on the rate of evolution, do not tend to experience significant
changes when selecting among the diversity of more complex
evolutionary models.

We may gain a further intuitive understanding of the impact
of model selection on phylogenetic informativeness analysis by
examining how more complex evolutionary models modify the
space of character states. In Townsend et al. (2012), the proba-
bility functions of support for the correct subtree and incorrect
subtrees per site were based on character state spaces consisting
of exactly s character states under the Poisson model of molecu-
lar evolution, where s ≥ 2 (c.f. Equations 4–7 in Townsend et al.,
2012). Signal and noise probability modeling based on different
numbers of character states leads to different probability func-
tions (c.f. Figure 2 in Townsend et al., 2012). Plotting the ratio
of the probability of support for the correct subtree to support
for an incorrect subtree demonstrates that larger character state
spaces have a higher ratio of support for the correct subtree to
an incorrect subtree (Figure 6). This analysis demonstrates that a
nontrivial increase of the character state space leads to a higher
prediction of the power of a given data set for resolving the node
of interest.

How, then, does specifying more complex molecular evolu-
tion models relate to the character state space? Consider how
the “effective” character state space changes when the K2P model
replaces the JC model to describe the same data. In the JC model,
the four nucleotide states occur at equal frequencies and convert
to each other at identical rates. The character state space thus
consists of exactly four states that have equal scope to impact
to the evolutionary process. Now, for the K2P model, consider
an extreme case where transitions occur at a fast or ordinary
rate, while transversions occur at a negligible rate. With negligible
transversions, a purine cannot convert to a pyrimidine and vice

FIGURE 6 | Ratio of the probability of support for the correct topology

to the probability of support for either incorrect topology over time T,

for a site with a substitution rate λ = 1 and an internode length

t0 = 0.1, from Equations 4 and 5 in Townsend et al. (2012). The
probability ratio curves are depicted for state spaces of 2, 3, 4, 5, and 20
states, respectively, from bottom to top.

versa. Only transitions between purines or between pyrimidines
can occur. Effectively, this character state space under the extreme
K2P model consists of two dominating separate subspaces of A
and G and of C and T. Because no intrinsic factors distinguish
these two subspaces, the character state space for the K2P model
is effectively reduced to two by this extreme parameterization.
Generally, for more realistic transversion rates, the effect of intro-
ducing the K2P model will not be as severe as in the extreme case
considered. But in all nondegenerate parameterizations, the effect
of using the K2P model instead of the JC model for the same data
set remains a slight decrease of the effective character state space.

This extreme example illustrates the general effect of speci-
fying more complex Markov models on the effective character
state space. Given any fixed data set, extreme parameter values are
more possible in models with more parameters. As a result, those
character states that are involved in substitutions occurring as a
consequence of particularly high model parameters will begin to
form subspaces that dominate the character state space for each
character. Other character states undergoing substitutions with
low model parameters, representing shifts away from one dom-
inant, high-rate-change character state subspace to another, will
still occur, but their overall frequencies will be lower. As a result,
when the molecular evolutionary model grows in complexity, cer-
tain character state subspaces, by virtue of their association with
higher model parameter values, will dominate the evolution of the
character and thus effectively reduce the character state space in
the short term. In most realistic data sets, there is always a degree
of heterogeneity in model parameter values when described by an
optimal model. Therefore, specifying the simplest models, such
as the JC, K2P, and F81 models, can fail to sufficiently account
for the heterogeneity in the evolutionary process and thus lead
to a nontrivial increase of the effective character state space. In
these cases, it is necessary to assume a model of sufficient com-
plexity to account for the heterogeneity in model parameters, to
decrease the effective character state space to its actual size, and to
thereby accurately predict the utility of the site for phylogenetic
inference. Thus, specifying increasingly more complex evolution-
ary models is predicted to lead to decreasingly small impacts on
the predictions of signal and noise analysis.

This prediction was verified by empirical observations from
the Candida species study. In RPB1, RPB2, ACT1, and D1/D2
LSU, both the JC and F81 models were inadequate to account
for the high transition/transversion bias in the underlying evo-
lutionary processes and thus caused a nontrivial and inaccurate
increase of the “effective” character state space. As a result, prob-
abilities of correct nodal resolution predicted by the two models
were consistently higher than those by the other 12 more complex
models that could account for the transition/transversion bias. In
the case of COX2, significant heterogeneity in base equilibrium
frequencies meant that specifying the JC, K2P, and TrNef models,
which all assume equal frequencies, also led to a nontrivial and
inaccurate increase of the “effective” character state space, thus
consistently leading to higher predictions of probabilities of cor-
rect nodal resolution. Although the K3P, TIM, TVM, and SYM
models also assume equal base frequencies, these more param-
eterized models were able to progressively compensate for this
inaccuracy in terms of the effective character state space, giving
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way to estimates of an higher transversion rate between T and
A, thereby achieving an effective state space closer to the actual
size. Correspondingly, these four models predicted probabilities
of correct nodal resolution that were relatively more consistent
with probabilities predicted by models of unequal base frequen-
cies. In all five markers, probabilities of correct nodal resolution
predicted by the ten models more complex than the JC, F81, K2P,
and TrNef models were highly consistent.

Our results suggest that sequence evolving in accordance with
simpler models at informative rates will tend to exhibit a slightly
higher probability of correct resolution than sequence evolving
in accordance with more complex models. However, it does not
mean that simply applying simpler models to inference analysis
will yield greater actual phylogenetic utility. Simpler models can
often predict a higher probability of correct resolution because
simpler models tend to average out heterogeneity of rate (by
mutation class, or by site). Therefore, if the loci are evolving at
rates that are at least moderately appropriate for the problem at
hand, using a simple model tends to push the inferred rates closer
to the average, (coincidentally) ideal rate, and increase predicted
informativeness. However, when a more complex model would
be a better fit, this increase is, of course, unrealizable in practice;
or to the extent that it is realizable, it will be inaccurate or convey
inappropriately high support.

Lastly, the signal and noise analysis of representative Candida
species and allied members offers several insights for resolving the
haploid Candida clade. Due to extremely reduced single-cellular
morphology and highly divergent and adaptive ecology, yeasts
have been a problematic group that relies on molecular data for
understanding their evolutionary histories, which are critical in
contending with many yeast pathogens. Because of their medi-
cal and industrial importance and generally small genome size,
many Candida species have been sequenced for genome data (e.g.,
Butler et al., 2009). However, more data would not necessarily
guarantee a fully resolved phylogeny for these yeast species, as
demonstrated in Butler et al. (2009). Furthermore, there are more
than 350 Candida species in the Saccharomycetales (Kirk et al.,
2008), and it will remain some time before genome data can be
gathered for most of them. It should be noted that as regards to
our chronogram, lacking a fossil record, the estimation of abso-
lute divergence times for yeast species is difficult (Taylor and
Berbee, 2006). Most diversification events sampled in this study
are likely earlier than the splits among Saccharomyes species that
are thought to have evolved about 20 million years ago with a
level of nucleotide divergence similar to that found between birds
and human (Dujon, 2006). However, an accurate time scale is
irrelevant to the conclusions obtained here, all of which can be
exactly replicated on a purely relative time scale (e.g., Moeller and
Townsend, 2011). Other sources of heterogeneity include the long
evolutionary history potentially accompanied with inconsistent
substitution rates of different gene sets that could be associ-
ated with unique ecological shifts such as association with hosts
(Kurtzman and Robnett, 2003; Scannell et al., 2011). The emer-
gence and maintenance of haploid lineages via what appears to
be long-term asexual reproduction in some Candida species is
associated with shifting rates of evolution (Ben-Ari et al., 2005;
Webster and Hurst, 2012), contributing additional complexity to

the solution of the yeast phylogeny. Results of signal and noise
analysis on the five assayed markers under alternative models
disclosed some issues behind the unresolved phylogeny of the
haploid Candida clade and pointed out an efficient approach
toward future phylogenetic experimental design on this group
of fungi. We demonstrated that signal and noise analysis ranked
the five assayed markers in the order of RPB2 (most informa-
tive), ACT1, COX2, RPB1, and D1/D2 LSU (least informative)
for resolving the evolution events at the time when the haploid
clade split from the diploid pathogens. The current five-gene data
did not provide enough information to resolve the relationship
between the haploid clade and its sibling pathogens. The hap-
loid Candida clade might thus be best resolved by focusing on
data collection for the more informative markers such as RPB2.
In the future, it could be especially worthwhile to apply signal
and noise analysis across numerous loci obtained from diverse
genome sequences to identify markers even more informative
than RPB2 for the historic epoch in question, and to resolve the
haploid Candida clade.
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