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Evolution on contemporary timescales has recently been recognized as an important driver
for ecological change. It is now well established that evolutionary change can affect the
interactions between species within a few generations and that ecological interactions
may influence the outcome of evolution in return. This tight link between ecology and
evolution is of fundamental importance as it can determine the stability of populations
and communities, as well as the generation and maintenance of diversity within and
among populations. Although these eco-evolutionary dynamics and feedbacks have now
been demonstrated many times, we are still far away from understanding how often
they occur in nature. We summarize recent findings on eco-evolutionary dynamics, with a
focus on consumerresource interactions, from theory and empirical research. We identify
gaps in our knowledge and suggest future research directions to provide a mechanistic
understanding and predictive capability for community and ecosystem responses to
environmental change.
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INTRODUCTION

Since the realization that evolutionary processes can be rela-
tively fast, the traditional notion to consider evolutionary biology
and ecology as two independent fields has changed dramatically.
Although it is known that ecological change can drive evolution-
ary processes through natural selection, the interplay of ecology
and evolution as a dynamic interaction in both directions and
on contemporary timescales, has only recently been considered.
In ecology, populations are usually considered to be genetically
homogeneous and without variation in traits. Evolutionary pro-
cesses are traditionally considered to be too slow to interact
directly with ecological change. Initial theoretical models pre-
dicted the potential of rapid evolution to drive the entanglement
of evolutionary and ecological dynamics (Abrams and Matsuda,
1997). Now, increasingly more studies underline the idea that
populations can exhibit substantial genetic variation in traits
that affect population dynamics (Tessier et al., 2000; Lankau and
Strauss, 2007; Franks and Weis, 2008; Johnson, 2011; Yang et al.,
2012; Novy et al.,, 2013), and population dynamics can alter
the strength and direction of selection within a few generations
(Yoshida et al., 2003; Becks et al., 2010, 2012). This confirms
the paradigm that demographic and evolutionary changes are
ultimately entangled (Ford, 1949; Pimentel, 1961, 1968).

The importance of this tight interaction between ecological
and evolutionary change on one timescale has been emphasized in
several studies and recent review articles (Fussmann et al., 2007;
Pelletier et al., 2009), which has also been named the “newest syn-
thesis” (Schoener, 2011). However, we currently cannot tell how

changes in this interaction affect our ability to predict ecologi-
cal and evolutionary trajectories. Are there ecological processes
that are more likely to be affected by evolution within a few gen-
erations? And in return, are there ecological processes and species
interactions that are more likely to promote rapid evolution? How
widespread is the occurrence of a continuous feedback between
ecological and evolutionary change? At present we simply do not
know. We argue here that a key requirement to answer these
questions is to account for higher complexity with more biotic
interactions and different agents of selection. Integrating com-
munity ecology into the framework of eco-evolutionary dynamics
and vice versa allows accounting for time-lagged and cascading
effects across different trophic levels. We use simple consumer-
resource systems here for explaining the conceptual framework
of rapid evolution and eco-evolutionary dynamics before we dis-
cuss examples and consequences for more complex systems and
dynamics.

CONCEPTUAL FRAMEWORK

We use the term rapid evolution to describe changes in heri-
table trait distribution or allele frequency within a population
over a few generations (c.f. microevolution). This trait variation
may arise from the emergence of novel genotypes, gene flow and
genetic mixing. Our definition of rapid evolution also includes
selection on standing genetic variation in populations. Many of
the best examples of rapid evolution are indeed from popu-
lations with standing genetic variation, where populations can
rapidly evolve by changing genotype frequencies (lineage sorting)
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or by genetic mixing (Turcotte et al., 2011; Agrawal et al., 2012;
Cameron et al., 2013). With this definition, we are less strict than
those used by other authors. Thompson (1998) and Hairston et al.
(2005) define rapid evolution as a process that simultaneously
alters the ecological trajectory; however, this definition makes the
strong assumption that changes of the ecological dynamics can be
observed. Rapid evolutionary change can, however, also result in
simply maintaining a status quo by sustained directional selection
(Merili et al., 2001).

Much of our mechanistic understanding of eco-evolutionary
dynamics is based on predator-prey systems comprising micro-
bial organisms. These enable multi-generational experiments in
the laboratory that can be directly compared to predictions made
by theoretical models. As an example of how rapid evolution and
ecological dynamics are entangled, we compare trait and pop-
ulation dynamics of a model predator-prey system. Theoretical
and empirical literature on the ecology of predator-prey inter-
actions is vast and these systems are the best-studied examples
for the tight link between ecological and evolutionary dynam-
ics on one timescale (Abrams and Matsuda, 1997; Reznick et al.,
2001; Yoshida et al., 2003; Becks et al., 2010, 2012). In classic
ecological predator-prey systems, the entire process of death and
birth is solely driven by the densities of the prey and predator,
which result in standard ecological one-quarter lag predator-prey
cycles (Figure 1A). However, when the prey population exhibits
diversity—whether from de novo mutation, gene flow or standing
genetic variation—within traits that affect its susceptibility to pre-
dation, the prey population can evolve rapidly in response. This
rapid evolutionary response can have major effects on the ecolog-
ical dynamics of the predator-prey system and result in a number
of different types of dynamics, including steady state, chaos, or
limit cycles. In these cases, it is not only the densities of preda-
tors and prey that drive the system dynamics, but also the changes
in trait distributions that directly affect birth and death rates
(Figure 1B). These eco-evolutionary dynamics, with a tight link
between ecological and rapid evolutionary change, are often com-
plex and interactions can go into both directions (Table 1): rapid
evolution affecting ecological dynamics, or ecological change
affecting rapid evolution.

In some cases, eco-evolutionary dynamics can result in a loop
where ecological and evolutionary change continuously feedback
into each other and produce for example almost out-of-phase
predator-prey population cycles (Figure 1C). This means that
there is a continuous change in the importance of predator and
prey densities (ecology) and of the trait distributions (evolu-
tion) affecting birth and death of predator and prey. These eco-
evolutionary feedbacks are a distinct subset of eco-evolutionary
dynamics in that they specifically refer to reciprocally interact-
ing ecological and evolutionary processes (Palkovacs and Post,
2008; Post and Palkovacs, 2009), rather than simply considering
the effects of ecology on evolution, or less often, the effects of
evolution on ecology. Eco-evolutionary feedbacks are character-
ized by fluctuating selection which leads to oscillating population
densities as different traits are favored at different time points
(Figure 1C). This maintains trait variation and can allow the
diversity of organisms that bear these traits to persist. Thus, one of
the most important consequences of eco-evolutionary feedbacks

is that the alteration of population and community dynamics
results in the maintenance of diversity.

In this review, we discuss examples that document how,
together, rapid evolution and ecological change result in eco-
evolutionary feedbacks or dynamics, and what implications these
feedbacks have on communities. We summarize recent findings
from field studies, experiments and theory with the aim to iden-
tify processes where the close interaction between ecological and
evolutionary dynamics can, within a few generations, play a major
role in determining the ecological and evolutionary trajectories.
We focus on recent research involving consumer-resource inter-
actions to identify important next steps that could help reveal
the conditions under which the tight link between rapid evolu-
tionary change and ecological dynamics matters for the stability
and persistence of communities, as well as for the maintenance of
diversity.

CONSUMER-RESOURCE INTERACTIONS
Eco-evolutionary feedbacks have been primarily investigated in
predator-prey communities, since the strong selection exerted by
predation drives evolution rapidly enough to enable synchrony of
evolutionary and ecological dynamics (Abrams, 2000). Abrams
and Matsuda (1997) used a model to show that when a prey
species evolves a defended genotype at a cost of a lower growth
rate, classic predator-prey dynamics exhibiting a typical quarter-
phase lag (Figure 1A) are shifted toward longer cycles, where
predator and total prey cycle out of phase (Figure 1C). These
out-of-phase cycles are indicative of eco-evolutionary feedbacks
and were first highlighted experimentally by Yoshida et al. (2003)
using plankton communities comprising the alga Chlorella vul-
garis and the rotifer Brachionus calyciflorus. The algal population
consisted of several genotypes differing in their degree of edibil-
ity, with a trade-off of lower growth rate for increased defense
(Yoshida et al., 2004). These dynamics have also been observed,
but in more detail, in a community with Chlamydomonas rein-
hardtii and the same rotifer species (Jones et al., 2009; Becks et
al., 2010, 2012). Key to this system is that the algal prey pop-
ulation consists of genetically variable individuals (Valiadi and
Becks unpublished data) with a trade-off between defense against
rotifer predation (by growing in colonies) and competitive abil-
ity for nutrients. Rapid evolution within the prey population,
as a response to predation (i.e., changes in the frequencies of
defended and undefended prey type), determines the dynamics
of the predator-prey system and whether or not the polymor-
phism of defended and undefended prey types is maintained.
These experiments confirmed the predictions of a mathematical
model (Figure 2) where the prey (algae) evolves a defense when
predation is intense but loses this defense (and gains competi-
tive ability) when the predators (rotifers) are scarce and prey are
abundant (Figures 2B,D). Rapid evolution of the prey results in
sustained oscillations of the community and trait dynamics, as
well as the maintenance of the initial trait diversity.
Eco-evolutionary feedbacks in predator-prey systems can give
rise to a number of different types of dynamics depending on food
web complexity, the efficiency, and cost of prey defense (Yoshida
et al., 2007; Jones et al., 2009; Tien and Ellner, 2012), and the
amount of functional variation initially present in the system
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FIGURE 1 | Conceptual framework for the effects of rapid evolution on
the quantitative dynamical behavior of a predator-prey system shown
as population dynamics (left) and the corresponding trait distribution
of a defense against the predator within the prey population (right).
(A) For a cyclical predatorprey system without evolution, the predator and
prey cycle with a phase shift of a quarter of a period. High prey densities
(time point 1) lead to growth of the predator population, which
simultaneously results in high death rates of the prey and decreasing prey
densities (time point 2). As an outcome of low prey densities, the predator
populations’ growth rate becomes negative (time point 3) and the resulting
low density of the predator allows the prey population to rapidly grow
again, as long as the predator population stays low (time point 4). As the
classical ecology case does not consider evolution and trait variation, the
trait distribution does not change over time with changes in prey and
predator densities (numbers in left and right columns are corresponding
time points). (B) The introduction of trait variation in the prey population by
the emergence of a new prey type that is defended against predation
stabilizes the dynamics from cycles to steady state dynamics. Introduction
of a new phenotype in the prey population, either through de novo
evolution or gene flow that, for example, reduces consumption by the
predator (i.e., a “defended” prey), could result in a change of the
quantitative dynamics of the system. A newly introduced defended prey
type has (time point 2), in the presence of the predator, a lower death rate
compared to the undefended prey and its frequency increases over time
through several predatorprey cycles (time point 3). Increasing defended

prey results in less efficient predation as well as reduced growth and
population sizes of the predator and the undefended prey goes extinct and
the predator-prey dynamics switch to steady state dynamics (time point 4).
Thus, the evolution in the prey population, shown as trait distribution in
the right column of Figure 1B, has a direct effect on the ecological
dynamics of predator and prey. (C) For the case where the defense level
against predation is very efficient but comes at a cost of a low
competitive ability, a full eco-evolutionary feedback can be observed. The
growth rates of the two prey types then depend on the density of the
prey, while the density of the predator and its ability to feed on the two
different preys determines the preys’ death rates. The relative impact of
the two processes continuously changes, driven by the changes in prey
and predator densities, which in turn are driven by changing frequencies of
the two prey types. Here, low rotifer densities select for undefended prey
(time point 2), which in return results in an increase in predator densities
(time point 3). With high predator densities, the defended prey increases
in frequency, driving the predator to low densities again (time point 4). As
a result, the overall dynamics of the predatorprey system differs drastically
from classical predatorprey dynamics: the system cycles, but cycles are
much longer than classic consumerresource cycles (Figure 1A) and almost
out of phase. This represents a full eco-evolutionary feedback loop where
evolutionary change (changes in the trait distribution, right column

Figure 1C) affects the ecological dynamics (density of the predator), which
in return drives the evolutionary change (the circle in the right column is
closed) (Palkovacs and Post, 2008; Post and Palkovacs, 2009).
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Table 1| Sample of recent (2010-2014) studies on eco-evolutionary dynamics.

Level of
organization

References

Type of study

Type of interaction/ecological driver

Organism(s)

ECOLOGY DRIVES RAPID EVOLUTION

Agrawal et al., 2012 Community
Burton et al., 2010 Community
Kelehear et al., 2012 Community
Swain, 2011 Population
Thériault et al., 2011 Population
Turley et al., 2013 Community

RAPID EVOLUTION DRIVES ECOLOGY

Agrawal et al., 2013 Community
Bassar et al., 2010 Ecosystem
Cameron et al., 2013 Population

Coulson et al., 2011 Population

Friman et al., 2014 Community
Hairston et al., 2005; Population,
Ellner et al., 2011 Community
Terhorst et al., 2010 Community
Turcotte et al., 2011 Population

Walsh et al., 2012 Ecosystem

ECO-EVOLUTIONARY FEEDBACKS
Becks et al., 2010, 2012 Community

Eliner and Becks, 2011 Community
Farkas et al., 2013 Community
Hanski, 2011 Ecosystem
Sanchez and Gore, Population
2013

Turcotte et al., 2011 Population
Yamamichi et al., 2011 Community

Experiment (field
manipulation)
Theory
Experiment
Experiment
(long-term study)
Theory
Experiment
(long-term, field

manipulation)

Field experiment

Experiment
Experiment
Theory and Field
data

Experiment

Theory

Experiment
Experiment
Experiment
Theory and
Experiment
Theory

Field observations
and Theory

Field observations

Theory and
Experiment

Experiment

Theory

Consumerresource, plant-herbivore

Three-trait trade-off model, range
expansion, biological invasion
Host-parasite, range expansion

Over-harvesting, exploitation

Eco-genetic modeling,
fisheries-induced rapid evolution
Plant-herbivore

Plant-herbivore

Predatorprey and ecosystem
structure and function

Rapid evolution driven by
density-dependent competition
Environmental change on life history
and population dynamics
Predatorprey and competition

Predatorprey, environmental change

Predatorprey

Rapid evolution on population growth
Predatorprey and ecosystem function

Predatorprey

Predatorprey

Eco-evolutionary feedback in
consumer-resource community in
spatial context

Eco-evolutionary dynamics in
metapopulations

Eco-evolutionary feedback between
allele frequency of cooperative gene
and population size
Eco-evolutionary feedback loop
between evolution and population
density

Predatorprey

Common evening primrose
(Oenothera biennis), Insects
Model species

Nematode lungworm (Rhabdias
pseudosphaerocephala), Cane toad
(Rhinella marina)

Fish (e.g., Atlantic cod, Gadus
morhua)

Brook charr (Salvelinus fontinalis)

Sorrel plant (Rumex acetosa),
Common rabbit (Oryctolagus
cuniculus)

Evening primrose (Oenothera biennis),
Seed predator moth (Mompha
brevivittella)

Trinidadian guppies (Poecilia reticulata)

Soil mite (Sancassania berlesei)
Wolf (Canis lupus)

Bacteria (Pseudomonas fluorescens),
Protist (Tetrahymena thermophile)
Theoretical (based on Abrams and
Matsuda), Medium ground finch
(Geospiza fortis), Freshwater copepod
(Onychodiaptomus sanguineus)
Mosquito larvae (Wyeomyia smithii),
Protozoa (Colpoda sp.)

Green peach aphid (Myzus persicae)
Zooplankton (Daphnia dentifera),
Phytoplankton community

Chlorophyte alga (Chlamydomonas
reinhardtii), Rotifer (Brachionus
calyciflorus)

Based on chlorophyte alga
(Chlamydomonas reinhardtii), Rotifer
(Brachionus calyciflorus)

Stick insect (Timema cristinae), Plants
(Adenostoma fasciculatum,
Ceanothus spinosus)

Glanville fritillary butterfly (Melitaea
cinxia)

Microbial yeast, Saccharomyces
cerevisiae

Green peach aphid (Myzus persicae)
Inspired by chlorophyte alga

(Scenedesmus and Desmodesmus),
Rotifers
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FIGURE 2 | Details of eco-evolutionary feedback dynamics in a
predator-prey system from model predictions and experiments (after
Becks et al.,, 2010, 2012). (A) Scaled population sizes of the predator,
the total prey, defended, and undefended prey; total prey: solid green
line, red dashed line: predator, blue long-dashed line: undefended prey,
black dash-dotted line: defended prey. (B) Frequency of the undefended

Scaled predator densities

prey as a function of predator densities and the major ecological and
evolutionary drivers at different time points. The inevitable lag in
response to selection and changes in population densities create then
the long out of phase cycles. (C,D) are experimental data from a
rotifer-algae system. For visualization reasons, only the fitted lines are
shown.

(Becks et al., 2010). Yoshida et al. (2007) used algae-rotifer and
bacteria-phage communities to demonstrate how cryptic cycles
can occur when there is rapid evolution in prey defense traits,
but the cost of this defense is not high enough to force signif-
icant competition among prey genotypes. Instead of observing
population cycles in both the predator and prey, only the preda-
tor cycled while the algal population appeared to remain constant.
This was because the rapid evolutionary cycling of prey genotypes
within the population allowed for essentially constant total prey
number, even while the predator population fluctuated. Again,
this allows trait variation in the prey population to be main-
tained. Conversely, low levels of prey defense result in steady state
dynamics instead of an eco-evolutionary feedback, because in this
case, effective defense drives the predator to low levels, but not
low enough to allow coexistence of the undefended prey type
(Jones et al., 2009). As a consequence of the steady-state dynamics
between the predator and prey, prey diversity is not maintained.
Studies of consumer-resource systems considering rapid evo-
lution in both the predator and prey have revealed more complex
evolutionary and population dynamics than those only consid-
ering rapid evolution in the prey populations (Jones et al., 2009;

Tirok et al., 2011). A most striking outcome is that time periods
of cycling predator and prey alternate with time periods of inter-
mittency. Important to this dynamic is that during the latter time
periods, trait variation is maintained and the next burst of cycles
is not the result of new mutations, but rather of temporal changes
in the dominance of different prey and predator types. Similar
complex eco-evolutionary feedbacks were observed in a predator-
prey food chain that was extended to include an intermediate
predator (Ellner and Becks, 2011). Allowing for evolution of a
costly defense against neither, one or both predators, the authors
found that the increased number of interactions did not mask, but
rather accentuated the eco-evolutionary dynamics. Long out-of-
phase cycles and even chaotic dynamics were observed; with both
resulting in the maintenance of the initial diversity in prey defense
traits. Many studies have discovered rapid, adaptive evolution in
prey populations exposed to novel or increased predation but
they usually do not follow the consequences for predator-prey
dynamics or potential for a full eco-evolutionary feedback. For
example, a protozoan prey evolved a defense against predation by
mosquito larvae by growing faster but to a smaller cell size, result-
ing in a change in the predator effect size within a few generations
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(Terhorst et al., 2010). In this study, the reduced effect size of
the predator does consequently change the predator’s grazing rate
and thus the strength of selection. However, whether this might
change the direction of selection (from prey being defended to
being competitive) and consequently change the evolutionary
trajectory was not tested.

These examples emphasize the significance of rapid evolu-
tion and eco-evolutionary feedbacks in consumer-resource sys-
tems, within the context of community alterations, like invasions
and expansions (Facon et al.,, 2006; Kinnison and Hairston,
2007; Burton et al., 2010; Jones and Gomulkiewicz, 2012). They
also illustrate that the relative importance of variation within
and among different traits might differ over time depending
on the ecological dynamics. It is this dynamic, reciprocal, and
often time-lagged cascading interaction between the ecologi-
cal and evolutionary processes that makes its understanding so
challenging.

NATURAL COMMUNITIES

The great challenge now facing evolutionary ecologists is to apply
what we have shown by models and laboratory experiments to
the natural world. This is far from trivial in complex ecosys-
tems, especially considering that the same dynamics are often a
result of very different processes. The main findings from the
rotifer-algae chemostat systems, i.e., that genetic variation can
alter ecological dynamics, have now been corroborated by field
and mesocosm studies using the Trinidadian guppy Poecilia retic-
ulata. In this model system, varying levels of predation underlie
the rapid evolution of morphological (e.g., body size), life history
(e.g., age at sexual maturity), and behavioral (e.g., anti-predator)
traits in the prey (Magurran et al., 1992; Reznick et al., 1996,
1997, 2001; Kemp et al., 2009). In addition to linking the rapid
evolutionary change with the varying levels of predation, it has
been shown that the differentially adapted guppies make differ-
ent use of resources, which can have cascading effects throughout
the entire ecosystem. For example, Bassar et al. (Bassar et al.,
2010; Ellner et al., 2011) found that guppy evolution indirectly
affects decomposition rates and levels of benthic organic matter,
while other ecosystem processes such as gross primary produc-
tion and total nitrogen flux were only affected by ecological
changes (i.e., intraspecific density). Similar results were obtained
in another mesocosm study using the stickleback Gasterosteus
aculeatus, to test for divergent effects on ecosystem function by
fish with differentially-adapted foraging strategies (Harmon et
al., 2009). Diversification into specialized benthic and limnetic
feeders had profound effects on algae biomass and productivity
by creating a positive feedback between dissolved organic car-
bon and algal productivity. Both studies showed the consequences
of rapid evolution for several, often cascading, ecological and
ecosystem processes. However, they do not allow for making fur-
ther predictions on how ecological and evolutionary dynamics
might change after the initial/short-term effect (in both cases,
the mesocosm experiments lasted less than one fish genera-
tion). It is this long-term effect and the potential feedback that
should be of our utmost interest for future studies as it can have
far-reaching consequences for community dynamics and genetic
diversity.

A series of studies comparing lakes with either landlocked
or anadromous alewife (Alosa pseudoharengus) populations show
how the ecological and evolutionary dynamics of communities
and ecosystems might be dramatically altered by an initial ecolog-
ical change. Landlocked alewives exert a constantly high grazing
pressure on the zooplankton population throughout the year.
Over time, the zooplankton population in these lakes evolved to
be smaller and grow slower (Palkovacs and Post, 2008; Post et al.,
2008; Walsh and Post, 2011). The changes in zooplankton had
further evolutionary consequences for the alewives as they are
suggested to have rapidly evolved smaller gape width and gill-
raker spacing (Palkovacs et al., 2008; Palkovacs and Post, 2009).
At the same time, these modifications in zooplankton and alewife
populations increased phytoplankton biomass and lowered net
primary production (Post et al., 2008; Walsh et al., 2012). A
lower net primary production could have a large effect on ecosys-
tem structure and energy flow; and could also, in theory, lead to
a full eco-evolutionary feedback on the zooplankton dynamics.
Conversely, anadromous alewife populations do not exert a con-
stantly high grazing pressure throughout the year and thus, have
not undergone the same evolutionary and ecological changes as
the landlocked alewife populations.

The experimental systems discussed here reveal the difficulties
and limitations in performing these types of studies in natural
populations, where interactions may be masked, amplified or just
be difficult to disentangle from a range of other ecosystem pro-
cesses (see also Strauss, 2014). In addition, the above-described
cascading effects across different trophic levels will need sev-
eral generations despite rapid evolution. At the same time, these
studies also demonstrate the pressing need to understand these
often simultaneous and intertwined ecological and evolutionary
dynamics. For example, primary production in lakes is of high
interest, i.e., its importance for carbon sequestration, inland fish-
eries, community shifts to favor harmful algal blooms, and the
sustainability of drinking water reservoirs.

S0 WHAT?

We propose that to fully understand eco-evolutionary dynam-
ics and feedbacks in communities, it is essential to quantify the
ecological and evolutionary dynamics, including the heritability
of the traits involved and their effects on species interactions,
e.g., level of defense, competitive ability or susceptibility, and
resistance. Most studies, so far, have focused on single or two-
species systems and typically one evolving trait. Studies including
more interacting species (Ellner and Becks, 2011) or evolving
traits (Burton et al., 2010) illustrate that the potential for eco-
evolutionary feedbacks does not diminish when including more
complexity (Urban et al., 2008; Tirok and Gaedke, 2010; Tirok
et al., 2011). There is also a need to identify traits that are
most likely to evolve rapidly and affect ecological interactions
(Geber and Griffen, 2003; Thompson, 2009). In addition, little
is known about how the rate of evolutionary change depends
on the strength of selection and how selection strength alters the
potential and shape of eco-evolutionary dynamics. This might be
particularly interesting for the conditions leading to a feedback.
With increasing number and types of interactions, the direction
and strength of selection will change and the resulting dynamics
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will be limited by intrinsic evolutionary (Burton et al., 2010;
Schiffers et al., 2013) and energetic constraints (Wirtz, 2011). In
addition, more work is needed on the consequences of indirectly
selected traits (Walsh, 2012). This requires integrating population
genetic models and theory into the framework of rapid evolution
to facilitate a quantitative understanding of the general mecha-
nisms underlying rates of evolution, how trade-offs evolve and
how this shapes eco-evolutionary feedbacks.

Eco-evolutionary dynamics and feedbacks are of high impor-
tance for many other ecological and evolutionary processes and
should thus be integrated into theory and studies in the fields.
One such field in particular that has already gained much
attention and begun to incorporate rapid evolution and/or eco-
evolutionary dynamics into their studies on the evolution of
life-history traits is overharvesting, e.g., fisheries—induced evo-
lution (Conover and Munch, 2002; Swain, 2011; Thériault et al.,
2011). However, there are still a number of research fields that
have, so far, neglected rapid evolution but should directly benefit
from integrating eco-evolutionary dynamics. Rapid evolution is,
for example, rarely considered in population genetic theory and
analysis, although rapid evolution and its simultaneous interac-
tion with ecological dynamics can have dramatic effects on the
strength and direction of selection. Overlooked, so far, in the field
of population genetics is that these changes in strength and direc-
tion of selection are fast, i.e., within a few generations. The field
of population genetics usually assumes large and constant popu-
lation sizes. However, as previously discussed, the simultaneous
occurrence of evolutionary and ecological change on one time
scale typically results in fluctuations of population sizes by several
orders of magnitude. As an example, the direction and strength
of selection on a prey population changes with predator den-
sities; high grazing pressure selects for defense against grazing,
while times of low grazing pressure select for increased compet-
itive abilities among the prey (Figure 1). The general underlying
population genetic mechanisms, and perhaps more importantly,
the consequences for our thinking of population genetics and
analysis, are still unknown. At the same time, it is likely that by
including population genetics into the studies of eco-evolutionary
dynamics, we will learn more about the mechanisms that create
and maintain intraspecific diversity.

Rapid evolution in consumer-resource systems can also play
a crucial role during biological invasions and range expansions
or shifts (Kubisch et al., 2014). During such events, rapid evo-
lution in response to novel selection pressures can affect the
population dynamics, which can, in turn, further feed back on
the evolutionary processes. Burton et al. point out that the rate
at which a population can spread through space depends on
its reproductive rate, density dependence and dispersal ability
(Burton et al., 2010); they developed a model to show how,
during range expansion, these three traits can trade off against
each other. Their simulations revealed that while dispersal and
reproduction are selected for on the expanding front of the intro-
duced species, traits associated with fitness at equilibrium density
(competitive ability) significantly decline. This changes, however,
when considering different types of biotic interactions of intro-
duced species (predator-prey, mutualism, or competition) (Jones
and Gomulkiewicz, 2012). In these cases, Jones et al. argue that

the establishment of an invading species depends, not only on
the interaction type, but also largely upon the genetic variation
within the native population, and therefore its potential for an
evolutionary response to that invader. While rapid evolution of
the invader always facilitates establishment, the success of that
establishment is largely affected when allowing for rapid evo-
lution simultaneously in both invading and native populations,
and when considering the initial genetic variation within those
interacting populations.

Another important research field that could benefit greatly
from incorporating rapid evolution is climate change biology.
Climate change alters existing species interactions that are
embedded within a food web. Ample studies have demonstrated
that temperature shifts might result in mismatches in, for
example, phenology (Stenseth and Mysterud, 2002; Edwards
and Richardson, 2004; Jones and Cresswell, 2010; Ovaskainen
et al., 2013) or between consumer and resource (Harrington
et al., 1999; O’Connor et al., 2009; Van der Putten et al., 2010;
Woodward et al., 2010), and we have already discussed the role
rapid evolution can play in altering population and community
dynamics. Moya-Larano et al. (2012) introduce a new framework
that allows testing for evolutionary and ecological consequences,
and their interactions, in food webs in response to warming.
Using individual based models (IBMs) of food webs with
trait variation for temperature dependent and independent
traits, they found that an increase in temperature could lead
to trophic cascades, which eventually results in a higher prob-
ability of extinction for some trophic levels. In a recent study
Northfield and Ives (2013) analyzed the effects of warming on
co-evolutionary dynamics of interacting species. They found that
depending on the type of interaction, coevolution could result
in feedback loops that might dampen the effects of warming.
However, the feedback between ecological and (co)evolutionary
change might also result in amplifying the effects of temperature
change. In all, the results show how climate change may have pro-
found eco-evolutionary effects, which may also affect the future
persistence and functioning of food webs and the community of
species that structure them.

CONCLUSION

Research on eco-evolutionary dynamics and feedbacks has
already uncovered their potential complexity and importance in
community dynamics, but the field is still in its infancy. Looking
at the variety of ways ecological and evolutionary processes are
entangled (Table 1), it is plain to see that ecology or evolution
cannot be understood in the absence of the other. Our main
(not novel) conclusion is that ecological and evolutionary dynam-
ics are intertwined in complex ways. Even when not explicitly
shown, rapid evolution almost always has the ability to change
community dynamics by altering ecological interactions within
these communities. At the same time, community dynamics have
a high potential to modify evolutionary trajectories by alter-
ing the strength or direction of selection (Figures 1, 2; Table 1).
Clearly, eco-evolutionary feedbacks are important as they can
maintain diversity within a closed system that is not affected by
external ecological processes (Hanski, 2012). This diversity might
then serve as a resource for further evolutionary processes, such
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as diversification and speciation. Studies demonstrating rapid
evolution are mainly from populations exposed to strong and
steady directional selection, e.g., after introducing or removing
a predator (e.g., Olsen et al., 2004; Araki and Schmid, 2010), or
from systems with fluctuating selection, where species interac-
tions frequently alter the direction of selection (e.g., Duffy and
Sivars-Becker, 2007; Palkovacs et al., 2009; Becks et al., 2010, 2012;
Turcotte et al., 2011). Spatial dynamics including range expansion
and invasion, as well as local adaptation of communities, have also
proven to have a large potential for eco-evolutionary dynamics
and feedbacks (Reznick et al., 2001; Hanski and Saccheri, 2006;
Kerr et al., 2006; Dlugosch and Parker, 2008; Bassar et al., 2010;
Kelehear et al., 2012).

Another conclusion that we can draw is that, depending on
the assumptions and conditions, every outcome for community
dynamics and the direction of adaptive evolution seems to be
possible. Integrating multiple interactions into eco-evolutionary
feedbacks can result in multiple possible outcomes. This poses a
huge challenge for the experimentalist and thus, likely requires
an approach with a strong theoretical background. Some theory-
based studies predict that rapid evolution does not always play a
role (Jones and Gomulkiewicz, 2012) or only plays a role under
certain assumptions (e.g., in the form of a trade-off curve Jones
and Ellner, 2007; Jones et al., 2009). Therefore, more modeling
and theory-driven studies will be necessary to help identify those
conditions under which rapid evolution drives further ecolog-
ical and evolutionary change, in addition to identifying which
interactions, besides consumer-resource, are most relevant. These
types of studies, including experimental ones, will also be impor-
tant for better understanding how indirect species interactions
facilitate or inhibit cascading effects of eco-evolutionary dynam-
ics and feedbacks. Currently, there is a poor understanding of the
consequences of eco-evolutionary dynamics for indirect ecologi-
cal effects, such as apparent competition or trophic cascades (but
see Bassar et al., 2010; Walsh et al., 2012). It is also important
to know whether eco-evolutionary feedbacks in nature with-
hold in the presence of external ecological pressures. Additional
experimental studies analysing eco-evolutionary feedbacks and
eco-evolutionary dynamics, in general, are needed to critically
assess their role in maintaining diversity within and among pop-
ulations. However, a key requirement for this is that we achieve a
better mechanistic understanding of the effects of evolution on
ecology. It is, essential for predicting how ecological and evo-
lutionary properties, e.g., stability and dynamics of populations
and communities, as well as intra-and interspecific diversity, are
maintained. A strong understanding of these processes in nature
is imperative since eco-evolutionary feedbacks may be of essence
to the maintenance of biodiversity and the potential for further
adaptive change.
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