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Integrating the insights derived from both phylogenetic and experimental approaches
offers a more complete understanding of evolutionary patterns and processes, yet it is
rarely a feature of investigations of the evolutionary significance of trait variation. We
combine these approaches to reinterpret the patterns and processes in the evolution of
female biased sexual size dimorphism in Nephilidae, a spider lineage characterized by the
most extreme sexual size dimorphism among terrestrial animals. We use a molecular
phylogeny to reconstruct the size evolution for each sex and reveal a case of “sexually
dimorphic gigantism”: both sexes steadily outgrow their ancestral sizes, but the female
and male slopes differ, and hence sexual size dimorphism steadily increases. A review
of the experimental evidence reveals a predominant net selection for large size in both
sexes, consistent with the phylogenetic pattern for females but not for males. Thus,
while sexual size dimorphism in spiders most likely originates and is maintained by
fecundity selection on females, it is unclear what selection pressures prevent males
from becoming as large as females. This integrated approach highlights the dangers of
inferring evolutionary significance from experimental studies that isolate the effects of
single selection pressures.

Keywords: male-male competition, animal contests, female gigantism, male dwarfism, sexual cannibalism,

Nephila spiders, Nephilidae

INTRODUCTION
Integrating insights from both phylogenetic and experimental
approaches offers a more complete understanding of evolutionary
patterns and processes, yet this is rarely a feature of investigations
into the evolutionary significance of trait variation (Weber and
Agrawal, 2012). The significance of this approach is that it reveals
whether micro-evolutionary processes identified through field
and laboratory experiments align with the macro-evolutionary
patterns suggested by phylogenetic analyses (e.g., Arnqvist and
Rowe, 2002). Such an approach requires broadly similar experi-
ments to have been conducted across a range of species, for which
there is also a robust phylogeny. Recent developments in sys-
tematics, together with the ease of sequencing, have significantly
improved our capacity to integrate these approaches (Weber and
Agrawal, 2012).

Sexual size dimorphism is particularly well suited to this kind
of integrated analysis because measures of the trait are consis-
tent between species and across experimental and comparative
studies. The nature and direction of sexual size dimorphism
reflects an intricate interplay of natural and sexual selection oper-
ating at various hierarchical levels (Darwin, 1871; Arak, 1988;
Eberhard, 1996; Blanckenhorn, 2000, 2005; Fricke et al., 2010;
Stillwell et al., 2010). Among invertebrates, for example, fecun-
dity selection may favor large female size, while sexual selection

through male-male competition may favor large male armaments
that must be supported by larger body size. Natural selection
might also act differently on each sex, placing upper or lower lim-
its to body size. The resulting sexual size dimorphism will reflect
differences in the strength of these selection components.

The spider family Nephilidae (Figure 1) has among the most
extreme examples of sexual dimorphism (Elgar, 1991, 1992;
Coddington et al., 1997; Kuntner et al., 2008); for example,
female Nephila pilipes are on average 125 times heavier than males
(Kuntner et al., 2012b). Such extreme female biased sexual size
dimorphism has attracted numerous experimental and correla-
tional studies to investigate the role of natural and sexual selection
on size evolution in this clade (Kuntner et al., 2013). These
studies have identified a number of potential fitness compo-
nents influencing male and female body size, including fecundity,
developmental rates, mate search, male-male competition, sperm
competition, and sexual cannibalism (reviews in Elgar, 1992;
Elgar and Schneider, 2004; Foellmer and Moya-Larano, 2007;
Schneider and Fromhage, 2010; Schneider and Andrade, 2011).
An earlier comparative study revealed no phylogenetic correlation
between male and female size in nephilid spiders, with a steady
evolution toward female gigantism but no clear trend for male size
(Kuntner and Coddington, 2009). However, this study had sev-
eral shortcomings: most notably, it derived from morphological
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FIGURE 1 | Female biased sexual size dimorphism in nephilid spiders: From left to right, small males on females in Herennia etruscilla, H.

multipuncta, Nephila inaurata, and N. pilipes.

and behavioral character data (Kuntner et al., 2008) that lack
a temporal perspective and branch length information, crucial
for comparative tests (Garland et al., 2005). Further, sexual size
dimorphism was one of the characters used for tree searches to
create the phylogeny, so analyses of the evolutionary patterns of
the trait are not independent of the underlying phylogeny.

We here review the nature and direction of selection pressures
identified by experimental studies and compare these patterns
against those revealed by contemporary phylogenetic analyses.
In particular we use a new molecular, species level phylogeny
of nephilid spiders that adds a time perspective and branch
length information to a revised topology (Kuntner et al., 2013).
Specifically, we test whether male and female size evolution is
decoupled and whether the evolutionary trends of male and
female size correspond with the selection pressures identified in
the experimental studies.

MATERIALS AND METHODS
COMPARATIVE METHODS
We use a recent, molecular nephilid phylogeny, inferred from over
4000 nucleotide characters, which proved robust in sensitivity
analyses that also included total evidence (combined molecular
and morphological datasets) (Kuntner et al., 2013). We pruned
this reference phylogeny for most outgroup taxa, retaining only
the “zygiellid” outgroup clade sister to nephilids, and for redun-
dant ingroup taxa. We then updated the datasets on male and
female size and sexual size dimorphism for novel evolutionary
reconstructions and coevolutionary analyses (Felsenstein, 1985)
on this tree.

The size data (Table S1) derive from Kuntner and Coddington
(2009), but with additional data for Phonognatha graeffei (male
mean 5.0 mm, n = 5; female mean 7.9 mm, n = 10) from
Dondale (1966), for Zygiella x-notata from Hormiga et al.
(2000), for Clitaetra thisbe male (2.57 mm, n = 1) from Dimitrov
et al. (2009), for Herennia oz female (11.6–13.6 mm, n = 2)
from Kuntner (2005), and for Nephilingis spp. (Kuntner and
Agnarsson, 2011): N. livida female 15.5–23.6 mm (n = 10),
male 3.1–4.9 mm (n = 10), N. borbonica: female 14.1–21.8 mm
(n = 4), 3.8–6.1 mm (n = 2), N. dodo: female total length
from 22.6–23.4 mm (n = 2), male total length from 4.6–6.6 mm
(n = 3). Following Kuntner and Coddington (2009), sexual size

dimorphism is expressed as the ratio of female to male average
body size.

We explored coevolutionary patterns of continuous variables
using phylogenetically independent contrasts (Felsenstein, 1985;
Garland et al., 1992) in the PDAP module of Mesquite version
2.75 (Maddison and Maddison, 2012). The size data passed the
PDAP test for data conformity, with the exception of male size
correlating with its SD using one tailed t-value. We therefore
used the inferred, untransformed branch lengths on the Bayesian
nephilid baseline phylogeny (Kuntner et al., 2013) in combina-
tion with two tailed t-values. Character evolution reconstructions
were visualized using squared change parsimony in Mesquite.
Values optimized at nodes were assigned to cladogenetic events
counting from the phylogenetic root (cladogenetic event = 0)
through internal nodes toward the terminal taxa in the phy-
logeny. The phylogeny postulated a total of 10 cladogenetic events
(Figure 2; 0–9). These are taken to roughly represent a tempo-
ral scale for the size evolution, corresponding to an evolutionary
history of 40–60 million years estimated for the family (Kuntner
et al., 2013).

EXPERIMENTAL STUDIES
We searched for original papers investigating the impact of male
and female body size variation on female fecundity, and male
mate searching, courtship, and mating behavior of any nephilid
taxon (Nephila and Nephilingis species) and relevant outgroups
(Phonognatha).

RESULTS AND DISCUSSION
COMPARATIVE PATTERNS
Male and female size changes were not phylogenetically correlated
[r2 = 0.05, t = 1.24, F(1, 27) = 1.5, 2-tailed P = 0.23; Figure 2].
The lack of correlation implies that sexual size dimorphism in
nephilids evolved as a response to selection pressures that dif-
fered between the sexes (Hormiga et al., 2000; Kuntner and
Coddington, 2009). These results, however, do not reveal the
direction of size change in each sex. The reconstruction of evo-
lutionary changes in female and male size from all phylogenetic
nodes (leading to all terminal taxa) showed a steady overall
increase in female size [r2 = 0.155, β = 1.35, F(1, 51) = 9.39, P =
0.004; Figure 3A], and a slight increase in male size over time
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FIGURE 2 | Reconstructed evolution of female (left) and male (right) mean sizes in nephilid spiders. The lack of correlation implies that sexual size
dimorphism evolves as a response of different selection pressures on females and males.

[r2 = 0.191, β = 0.233, F(1, 41) = 11.58, P = 0.001; Figure 3A].
These slopes are significantly different [ANCOVA: sex by cladoge-
netic event, F(1, 100) = 6.09, P = 0.015]. The evolutionary result
is a trend toward overall increase of sexual size dimorphism over
time (Figure 3B). Since parts of the phylogeny may conceivably
exhibit different trends in size evolution, we also reconstructed
the evolution of female and male size on a selected cladogenetic
route leading to extreme female gigantism, that is on a phyloge-
netic backbone leading from the nephilid root to Nephila komaci,
the largest known nephilid (Kuntner and Coddington, 2009).
This reconstruction showed that over evolutionary time, there
was a strong steady increase in female size [r2 = 0.943, β = 2.351,
F(1, 9) = 133.05, P < 0.001; Figure 3C] and a less pronounced
increase in male size [r2 = 0.656, β = 0.344, F(1, 9) = 15.24,
P = 0.005; Figure 3C]. Again, these slopes are significantly dif-
ferent [ANCOVA: sex by cladogenetic event, F(1, 16) = 81.74,
P < 0.001]. From the root to the tip of the giant Nephila clade,
sexual size dimorphism shows a significant evolutionary increase
[r2 = 0.466, β = 0.218, F(1, 9) = 6.973, P = 0.03; Figure 3D].

EXPERIMENTAL EVIDENCE
Experimental and observational studies on Nephila suggest that
selection should generally favor larger than ancestral size for both

sexes (Table 1). However, there is little consistency in these pat-
terns across different Nephila species. Contrary to conventional
wisdom, evidence for fecundity selection is demonstrated in only
three of six species, despite the phylogenetic evidence for strong
selection on female size. Intriguingly, the phylogenetic analy-
sis reveals an evolutionary decline in size in the three species
(N. edulis, N. plumipes and N. fenestrata) for which there is
no evidence of fecundity selection, and either no change (N.
clavipes, N. senegalensis) or an increase (N. pilipes) in size in
those species for which there is evidence of fecundity selec-
tion. It would be worth testing this trend in other nephilids for
which we lack any evidence for the strength of fecundity selec-
tion. For example, one would predict strong fecundity selection
in those species that have made the most contribution to the
general increase in female size (Figure 2): N. sexpunctata, N.
antipodiana, N. inaurata, and the clade with African giants (N.
turneri, N. komaci, N. sumptuosa). On the other hand, we pre-
dict relaxed fecundity selection in species/clades that show female
size decrease (Figure 2): N. clavata, N. constricta, and in Clitaetra
species.

The evidence for males is even more equivocal: five of six
species show a large size advantage in male-male competition, but
whether this translates into greater paternity is unclear because
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FIGURE 3 | Reconstructed evolutionary changes in female and male

size and sexual size dimorphism. The phylogeny postulates 10
cladogenetic events (on x axis) that together correspond to an
evolutionary history of 40–60 million years estimated for the family
(Kuntner et al., 2013). Nephilid size evolution (A) takes all phylogenetic
nodes leading to all terminal taxa across the nephilid phylogeny

resulting in a non-significant overall increase of sexual size dimorphism
over time (B). Size evolution reconstructed from the nephilid root to
the largest known nephilid, Nephila komaci shows a strong steady
increase in female size and a slight increase in male size over
cladogenetic time (C) resulting in a significant evolutionary increase of
sexual size dimorphism (D).

two of four studies reveal an advantage of small size under sperm
competition. Further, experimental studies in which both pre-
and post-insemination selection pressures can act together over a
longer time revealed no comparative advantage for small or large
males (Schneider and Elgar, 2005; Elgar and Jones, 2008). Finally,
only one of two studies that investigated mate search revealed a
large size advantage, and studies of two species indicated that large
males were more likely to avoid sexual cannibalism.

SYNTHESIS
The conventional phylogenetic view of the origin of female biased
sexual size dimorphism in spiders is through an evolutionary
increase in female size, an evolutionary decrease in male size,
or both (Coddington et al., 1997; Hormiga et al., 2000). Our
phylogenetic analysis reveals an increase in the size of both
female and male nephilids. This result, together with the evi-
dence from experimental studies, does not support the view that
sexual size dimorphism in this clade is an outcome of male dwarf-
ing (Vollrath, 1998; Danielson-Francois et al., 2012). Rather, it
reflects a pattern of sexually decoupled size evolution (Kuntner
and Coddington, 2009), not through male evolutionary stasis
(Hormiga et al., 2000; Kuntner and Coddington, 2009), but with
male and female body size increasing at different rates. This
new macro-evolutionary pattern may be described as sexually
dimorphic gigantism.

The disparity between the macro-evolutionary patterns,
revealed by our phylogenetic analysis, and the micro-evolutionary
processes identified by experimental studies is instructive. For
example, the large size advantage in competitive interactions
between males identified in five of six species of Nephila is consis-
tent with numerous studies of taxonomically diverse species that
are not characterized by extreme sexual size dimorphism (Hardy
and Briffa, 2013). But the Nephila data simply do not align with
either the natural history of this clade (extreme sexual size dimor-
phism), or the macro-evolutionary patterns (a significantly more
modest increase in male size compared with female size). Perhaps
these experimental results are evolutionarily trivial because they
focus on single components of selection that have little impact
on macro-evolutionary processes. Indeed, experiments that com-
bined pre- and post- insemination selection pressures revealed no
relationship between male size and paternity share (Schneider and
Elgar, 2005; Elgar and Jones, 2008).

Our understanding of sexual size dimorphism has converged
on the equilibrium model (Blanckenhorn, 2000), suggesting that
a combination of selection pressures is expected to operate on spi-
der males (Foellmer and Moya-Larano, 2007). Combined, they
must push male size down, hence the detected genetic decoupling
of male and female size evolution in nephilid spiders. If the sizes
were genetically linked in both sexes, as is the default in animals
(spiders not being an exception, see Uhl et al., 2004), the slopes
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would not significantly differ and the independent contrasts test
would not show independence, as observed here. The question
future studies should be posing, then, is what maintains small
male size and thus high sexual size dimorphism? In other words,
in spite of the macro-evolutionary trends to increase in size, why
are the males not giants, as are the females? Extreme sexual size
dimorphism is not typical of species of orb-weaving spiders with
large females: there is modest sexual size dimorphism in the orb-
weaver genus Eriophora, in which adult females are of similar
size to Nephila (Elgar, 1991). Thus, future experimental studies
might profitably focus on selection pressures that could disfavor
large male body size, including those that may arise through con-
flict with female interests, dispersal between webs and long-term
survival.

Several authors have suggested that small male size is favored
in response to sexual cannibalism (Elgar, 1991), protandry
(Danielson-Francois et al., 2012; Elwood and Prenter, 2013), or
gravity (Moya-Larano et al., 2002, 2009; Corcobado et al., 2010),
but these ideas have attracted either little attention or no empir-
ical support (Table 1; see also Prenter et al., 2010). Perhaps the
low variance in male mating success that frequently character-
izes the mating system of these spiders limits the opportunity for
selection on male size. In many nephilid species, male genitalia
are damaged during mating, leaving the male incapable of further
mating and his broken remnants acting as a total or partial mating
plug (Kuntner et al., 2009, 2012a). The exceptions may provide
insights: both males and females of N. edulis mate multiply, and
single interaction experimental studies reveal both large (Elgar
et al., 2003b) and small (Schneider et al., 2000) male size advan-
tages that are counter-balanced over the longer term (Schneider
and Elgar, 2005; Elgar and Jones, 2008). Sexual dimorphism is
extremely variable in this species, with some males roughly an
order of magnitude larger than other males (Elgar et al., 2003b).
Perhaps multiple mating by both sexes in this species provides
a greater opportunity for selection to act on male size variation.
Intriguingly, N. senegalensis, N. inaurata and N. clavipes have sim-
ilar variation in male size (Higgins et al., 2011), and it would be
interesting to investigate the impact of male size on male mating
success over the longer term (following Elgar and Jones, 2008) in
these species.

OUTLOOK
Our study highlights the benefits of integrating insights derived
from phylogenetic, comparative and experimental research. Like
many studies of phenotypic traits, investigations into the evo-
lutionary significance of sexual size dimorphism in spiders
have utilized two methodological approaches, one phylogenetic,
the other experimental, with each progressing largely inde-
pendently. In isolation, phylogenetic and comparative analyses
only reveal macro-evolutionary patterns of phenotypic evolu-
tion, while experimental studies only highlight population level
processes responsible for trait maintenance. Such an insight is
not new (Coddington, 1988, 1990), but our capacity to align
these approaches is only recently becoming possible (Weber and
Agrawal, 2012). For fully integrative studies, experimental and
comparative agendas need to define common goals and prior-
ities. Our survey showed that for investigations of sexual size

dimorphism in orb-web spiders, comparative data remain insuf-
ficient; experimental work suffers from a lack of selection differ-
entials; and we need far greater taxonomic coverage than selective
studies on a handful of model species (see also Zuk et al., 2014).

Despite these shortcomings, the present study shows how
a more complex picture of sexual size dimorphism emerges
when phylogenetic and experimental evidence are integrated.
Selection favors large size in both males and females, but fecun-
dity selection is stronger than the net selection for large male
size (Blanckenhorn, 2000; Stillwell et al., 2010). At the scale of
40–60 million years of evolution (Kuntner et al., 2013), the size
increases—genetically uncoupled between the sexes—result in a
peculiar case of sexually dimorphic gigantism. New phylogenetic
and experimental evidence will likely provide useful insights, but
integrating these approaches is crucial.
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