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Inclusive fitness theory has been described as being limited to certain special cases of
social evolution. In particular some authors argue that the theory can only be applied to
social interactions having additive fitness effects, and involving only pairs of individuals.
This article takes an elegant formulation of non-additive public goods games from the
literature, and shows how the two main generalizations of Hamilton’s rule can be applied
to such games when group sizes are random. In doing so inclusive fitness theory is thus
applied to a very general class of social dilemmas, thereby providing further evidence for
its generality. Interestingly, one of the two predominant versions of Hamilton’s rule is found
to be mathematically easier to apply to the scenario considered, despite both necessarily
giving equivalent predictions.
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1. INTRODUCTION
Over the decades since its conception, inclusive fitness theory
has been the subject of much misunderstanding. Two particular
recurrent misunderstandings are considered in this article. First,
that inclusive fitness theory cannot deal with non-additive fitness
effects, which arise when the total fitness effect on social partners
of their combined behavior is more, or less, than a simple sum
of the fitness effects associated with those behaviors (e.g., van
Veelen, 2009; Nowak et al., 2010; Traulsen, 2010). Second, that
inclusive fitness theory can only deal with pairwise social interac-
tions (e.g., Nowak et al., 2010). Hamilton’s rule has, however, seen
two main generalizations. Both of these are due to D. C. Queller,
who originally extended Hamilton’s rule with an additional term
to account for non-additive fitnesses (Queller, 1985), and subse-
quently directly generalized Hamilton’s rule in its original form by
expressing fitnesses of types in terms of underlying genes rather
than in terms of phenotypes (Queller, 1992a). This article has
three main goals; first to generalize Queller’s rule (Queller, 1985),
following a hint in Queller (1992a), to deal with arbitrary inter-
action group sizes. Second, to apply both Queller’s rule (Queller,
1985) and the generalization of Hamilton’s rule (Queller, 1992a)
to non-additive public-goods games (Motro, 1991; Hauert et al.,
2006; Archetti and Scheuring, 2012) in groups of random size,
thereby showing how inclusive fitness theory is applicable to
pairwise additive interactions. Third and finally, to compare
the mathematical tractability of the two alternative methods of
incorporating non-additivity in inclusive fitness theory.

2. HAMILTON’S RULE
To re-introduce Hamilton’s rule I shall use the Price equation
approach to modeling selection of any kind (Price, 1970), and

apply it to a public-goods game. The Price equation shows
that the inter-generational response to selection on some trait,
assuming faithful transmission on average, is given by

�E(G) ∝ Cov(G, W), (1)

where G and W are random variables for, respectively, the value
of the trait in question and individual fecundity, and �E(G)
is the change in expected value of the trait within the popula-
tion from one generation to the next. Thus, the change in the
expected value of the trait due to selection is proportional to the
covariance between trait value and fecundity of individuals. Now
consider a model of fecundity in a “public-goods” game, in which
donators (G = 1) pay a cost c to contribute a benefit b which
is divided equally among the N members of their group, where
N is a random variable and so groups can be of different size.
Allowing variable group size will allow a more general result, and
address claims that inclusive fitness theory is only applicable to
pairwise interactions (van Veelen, 2009; Nowak et al., 2010) (this
assumption was also relaxed in Queller, 1992a; see also Marshall,
2010a, 2011; Gardner et al., 2011). In this public-goods game,
non-donators (G = 0) pay no cost, but receive a share of any
group benefits provided by donators in their group including
themselves. Note that donation and non-donation phenotypes
are unconditionally expressed. Then fecundity is

W = G′

N
B − GC, (2)

where G′ is the absolute frequency of donators in the group,
excluding G, B = b is the benefit of receiving aid, and
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C = c − b/N is the cost of providing it. Capital letters B and C
denote the benefit and cost required for Hamilton’s rule, while
lowercase b and c represent payoffs arising from interactions;
as is well known, the two are not necessarily the same (Grafen,
2006). Since benefits are shared by their donors, note that dona-
tion in a public goods game is personally beneficial, and hence
not altruistic, whenever b/N > c. If we substitute Equation (2)
into Equation (1), then solve for when donation receives posi-
tive selection, assuming C and B are uncorrelated with G and G′,
respectively, we obtain

(
Cov(G, G′/N)

Var(G)

)
E(B) − E(C) > 0, (3)

which is a version of Hamilton’s rule (Hamilton, 1964, 1970),
the classic result of inclusive fitness theory. In this version of
Hamilton’s rule relatedness (the covariance ratio in inequality
3) can be interpreted as a regression coefficient quantifying the
degree of association between an individual’s genetic trait, and
the relative frequency of donators in their group, excluding them-
selves. Costs and benefits of donation are averaged across the
population; in this case E(B) = b and E(C) = c − E(b/N). Note
that group size N appears in the relatedness coefficient, rather
than in the benefit B, since G′ and N are not generally inde-
pendent, and hence cannot easily be separated in the covariance
calculations.

It has been claimed that Hamilton’s rule gives valid predic-
tions only when fitnesses are additive (or when selection is weak)
(Traulsen, 2010; van Veelen, 2009; Nowak et al., 2010). In fact,
these are not new claims and they have been addressed previously
in the literature, as reviewed most recently in Marshall (2011),
Gardner et al. (2011). One approach, due to D. C. Queller, extends
Hamilton’s to deal with, among other refinements, non-additive
interactions (Queller, 1985). Queller’s original example of this
was presented using a “synergistic” term for interactions in pairs,
so fecundity becomes

W = G∗b − Gc + GG∗d, (4)

where G∗ is the genotype of the opponent (0 or 1 for non-donator
or donator, respectively, just as for G), and d is the deviation
from additivity, with d < 0 capturing diminishing returns from
donation, d > 0 capturing positively synergistic donation effects,
and d = 0 recovering additive donation. Equation (4) can be sub-
stituted into Equation (1) and re-arranged to give an extended
version of Hamilton’s rule (cf. Marshall, 2010b) showing that
donation is favored when(

Cov(G, G∗)

Var(G)

)
b − c + d

Cov(G, GG∗)

Var(G)
> 0, (5)

where the left-hand-side of the inequality is the original regres-
sion formulation of genetic relatedness (e.g., Hamilton, 1970),
and the right-hand side a modification of the familiar cost-benefit
ratio from Hamilton’s rule (Hamilton, 1964). However, as pointed
out by Queller himself (Queller, 1985), the synergistic term and
hence Queller’s rule will have to change according to the size of
interaction groups. Subsequently others have shown that if there

are no restrictions on the payoff matrix, even for interactions
with the same group size the rule could have to change from case
to case (van Veelen, 2011). Both these points seem to limit the
potential of such a rule as a general evolutionary principle, and
appear especially problematic for the public-goods game we con-
sidered above with variable group sizes. Queller’s rule has been
generalized for larger group sizes, and applied to social evolution
in bacteria (Smith et al., 2010). In the next section we shall see
an alternative, very simple, generalization of Queller’s rule that
avoids the problems just identified.

3. QUELLER’S RULE GENERALIZED
By extending the original treatment of non-additivity (Queller,
1985) outlined in the previous section, we can see that there
is in fact a general and concise inclusive-fitness rule for non-
additive interactions. To see this, we capture all deviations from
interaction additivity in a single random variable D, which
can depend on G and G′/N. This approach was mentioned
in passing by Queller, when describing a general approach to
dealing with correlated characters (Queller, 1992a). So fecun-
dity in our original public-goods game is now extended from
Equation (2) to be

W = G′

N
B − GC + D. (6)

Substituting Equation (6) into Equation (1) and rearranging into
a similar form to inequality (3) gives

(
Cov(G, G′/N)

Var(G)

)
E(B) − E(C) + βDG > 0, (7)

where βDG is the coefficient of a linear regression of D on
G, βDG = Cov(G, D)/Var(G), or in other words the extent to
which individual type predicts receipt of non-additive payoffs
(cf. Queller, 1992a), and similarly βG′/N,G is the coefficient of
the linear regression of G′/N on G, which is genetic related-
ness as described above. Thus, inclusive fitness theory still admits
a general rule dealing with non-additive interactions, regardless
of interaction structure, by considering the sign and magnitude
of the association between social traits and synergistic effects
encountered, as captured in a single regression coefficient. Note
that since D is a random variable, it could incorporate any
complexity in non-additive effects (cf. van Veelen, 2011) while
allowing inequality 7 to remain valid. Note also that this version
of Queller’s rule is derived in terms of genes for uncondition-
ally expressed traits, however an equivalent derivation in terms
of conditionally-expressed phenotypes is also possible (Queller,
1992a). In the case where focal individual’s genetic value (G)
is used as the predictors in the regression βDG, and gener-
ally, then regression theory guarantees that any residuals from
the regression model will be uncorrelated with that predictor;
this is important as it enables a quantitative genetics separa-
tion between selection coefficients and heritability coefficients
(Queller, 1992b; Birch and Marshall, 2014). The generality given
by the form of condition 7 comes at a cost however, if we
are interested in causal explanations for evolutionary change
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(Marshall, 2015). In particular, although partners’ genetic val-
ues are clearly causally-linked to receipt of non-additive fitness
effects, the regression coefficient βDG does not include G′/N as a
predictor.

As an example of the general applicability of Queller’s rule (7),
let us consider a formalization of the non-additive public-goods
game for arbitrary group size (Hauert et al., 2006); based on
earlier work (Motro, 1991) this formulation captures the major
classes of social interaction, from the additive donation game,
to the non-additive Prisoner’s Dilemma and Snowdrift games
(Hauert et al., 2006). In the notation of this letter, payoff for an
individual in a group is defined as

W =
b
(

1 − wG′
wG
)

N(1 − w)
− Gc, (8)

where w is a parameter controlling additivity, with w < 1 leading
to diminishing returns from additional donators, and w > 1 lead-
ing to positive synergistic effects when multiple donators interact.
Payoff additivity is recovered when w = 1, as shown by applica-
tion of l’Hôpital’s rule to Equation (8) to give expected costs and
benefits as occur in condition 3 (Marshall, 2015).

Let us add further detail to the non-additive model of Hauert
et al. (2006) by considering arbitrarily-sized groups, formed by
a process of aggregation. Specifically, let us consider groups that
aggregate around individuals according to a geometric process
with parameter a, so that an individual or group is joined by
another individual with probability a, and with probability 1 − a
the group does not grow further. Each new member of a group
could be one of two types, either donator or non-donator. Let
us introduce an assortment parameter α that gives the probabil-
ity that new members joining the group are of the same type as
the founder member, while with probability 1 − α they are drawn
according to the frequencies of the two types within the popula-
tion. Once groups are formed, all individuals either donate to the
public good or not according to their type, and the public good
produced is shared equally amongst all group members. To anal-
yse social evolution in this scenario we need to calculate all the
component parts of inequality (7); this is done in Appendix B.
Substituting these into inequality (7) gives conditions for dona-
tion to spread in the population under additive (w = 1) and
non-additive (w �= 1) interactions, as described in Appendix B.
Taking the additive case first, the condition for donation to receive
positive selection is

(
α(a − (a − 1) ln (1 − a))

a

)

b − (c + b(1 − a) ln (1 − a)/a) > 0. (9)

The first coefficient in inequality (9) is the genetic relatedness
coefficient of Hamilton’s rule, multiplied by the expected benefit
from donation E(B) = b. By inspection, this relatedness coef-
ficient is positive whenever α > 0 and 0 < a < 1, since it is
known that a/(a − 1) < ln (1 − a) for 0 < a < 1. This has a
natural interpretation, in that genetic relatedness in Hamilton’s
rule is positive for this scenario whenever there is a possibility

for finite groups larger than 1 to form (0 < a < 1), and there
is positive assortment between the type of founding members
and of joining members (α > 0). Note that this genetic related-
ness is that of the founder individual to the rest of the group.
Relatedness within groups formed by aggregation is not neces-
sarily the same between all members of the group. A general
calculation of relatedness within such groups is substantially
more complicated and is beyond the scope of the present article,
but for illustrative purposes the simpler calculation presented is
sufficient.

Considering the non-additive case next, as shown in Appendix
B selection for donation occurs when (having moved to the
equivalent, for altruism, r > c/b form of Hamilton’s rule)

α(a − (a − 1) ln (1 − a))

a
>

c + b(1 − a) ln (1 − a)/a

b

− g − 1

a(1 − g)

(
aα + (a − 1 + α(1 − a)) ln (1 − a)

−

(a − 1)

⎛
⎜⎜⎜⎝

w ln[1 + a(α(1 − w) + g(α − 1)(w − 1) − 1)]
α(1 − w) + g(α − 1)(w − 1) − 1

− ln[1 + a(g(α − 1)(w − 1) − 1)]
g(α − 1)(w − 1) − 1

⎞
⎟⎟⎟⎠

(w − 1)

)
. (10)

By comparison with inequality 9, condition (10) is seen to be
an extension of Hamilton’s rule for the additive scenario, with
the last term corresponding to (a simplification of) the syn-
ergistic term of Queller’s generalized rule, that captures the
deviation from payoff additivity occurring in this particular
model [−βDG/E(B) in inequality 7]. Thus, the generalization
of Queller’s rule (7) is shown to be applicable to a very gen-
eral class of social interactions, non-additive public-goods games
with random group sizes; such interactions are of great biolog-
ical relevance, since social behavior in groups of unpredictable
size occurs very frequently, such as in the formation of stalk
and fruiting body by Dictyostelium (Strassmann et al., 2000) or
the production of siderophores by bacteria (West and Buckling,
2003), and diminishing returns from or synergy of social behav-
ior are likely to be much more common than strictly additive
interactions.

4. HAMILTON’S RULE GENERALIZED
Although, as demonstrated above, Queller’s rule can be applied
to non-additive interactions in groups of more than two, to some
it may seem insufficiently “inclusive fitness-like,” since it intro-
duces an additional parameter beyond the original relatedness,
cost and benefit of Hamilton’s rule. However, Hamilton’s rule
can also incorporate non-additive interactions directly, without
needing to be extended beyond these three fundamental parame-
ters. This point was first made in Queller (1992a), which noted
that Hamilton’s rule fails to be accurate when applied to non-
additive interactions only when payoffs are expressed in terms of
phenotypes, rather than the underlying genotypes. The solution
is to construct a model of fecundity in terms of the under-
lying genotypes, using what Queller referred to as the “genic”
model. This is achieved by deriving the costs and benefits in
Hamilton’s rule by, respectively, a partial regression of fecundity
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on an individual’s genotype, and on those of their social partners
(Queller, 1992a; Gardner et al., 2007, 2011). This yields an elegant
version of Hamilton’s rule with all its parameters being regression
coefficients,

βWG.G′/N + β(G′/N)GβW(G′/N).G > 0, (11)

where βXY .Z is the partial regression of X on Y , holding Z constant
(Queller, 1992a). Thus, the coefficients βWG.G′/N and βW(G′/N).G

correspond, respectively, to the cost to the actor of donation (−c
in Hamilton’s original formulation) and the benefit to the recip-
ient of donation (b in Hamilton’s original formulation) (Queller,
1992a).

Condition 11 is a fully general version of Hamilton’s rule
for a public goods game. It does, however, have some potential
shortcomings. First, there is no guarantee that the separation con-
dition, which predicts when a decomposition of response to selec-
tion into selection and heritability coefficients can be achieved,
will be satisfied (Queller, 1992a,b). Second, non-additive fitness
effects are split between social partners (e.g., Gardner et al., 2011),
which may raise issues in some eyes over the proper causal attri-
bution of fitness effects. Leaving aside these issues, to illustrate
the generality of inequality (11) we can apply it to the particular
non-additive public-goods scenario with random group sizes pre-
sented above, just as it has already been applied to non-additive
pairwise interactions (Gardner et al., 2007, 2011). This is achieved
by taking a linear model of fecundity (Queller, 1992a; Gardner
et al., 2007, 2011)

Ŵ = E(W) + βWG·G′/N (G − E(G))

+βW(G′/N)·G
(
G′/N − E

(
G′/N

))
. (12)

Note that using a linear model of fecundity does not assume that
the relationship between fecundity and the genotypes of self and
social partners is itself linear (Okasha, 2006; Gardner et al., 2011).
Now, to derive the correct cost and benefit for Hamilton’s rule,
even in the presence of non-additive effects, we determine the par-
tial regression coefficients that minimize the error of the model in
predicting actual fecundities, with error defined as the sum of the
squared residuals as for standard linear regression (Gardner et al.,
2007, 2011). Thus, the error to be minimized is

E

((
Ŵ − W

)2
)

(13)

Expression (13) is instantiated for the public-goods scenario
described above in Appendix C. Unfortunately, a closed-form
solution, and hence differentiation and minimization, of this
appears to be intractable, as described in that same Appendix.
Fortunately an alternative approach can be taken, calculating
the partial regression coefficients directly from variances and
covariances of the relevant random variables (e.g., Gardner et al.,
2011). This is done in online Supplementary Material. The result-
ing partial regression expressions for cost and for benefit are
very large and complicated, and hence are shown only in online
Supplementary Material. However, substituting these and the
regression definition of relatedness into condition 11 leads to the

same answer as the Queller’s rule approach (condition 10), as
shown in online Supplementary Material.

5. DISCUSSION
This letter has shown how two inclusive-fitness-based rules
for analysing social evolution can be applied to a model of
non-additive public goods interactions in groups of varying and
arbitrary size. This is useful on two counts. First, it has been
observed that social interactions in groups of variable size have
neglected by theorists, and that variance in group size needs to be
taken account of in analysing social interactions within genetically
unrelated groups (Peña, 2012). Second, the analyses presented
here address criticisms that inclusive fitness cannot actually deal
with non-additive interactions or interactions in groups larger
than two which, although previously shown to be incorrect (as
reviewed in Marshall, 2011 and Gardner et al., 2011) have recently
resurfaced (Traulsen, 2010; van Veelen, 2009; Nowak et al., 2010).
It has also been claimed that such rules must change from case
to case (van Veelen, 2011), that these rules fail to separate “pop-
ulation structure” (i.e., relatedness, and trait frequencies) from
“fitness effects” (i.e., costs and benefits of donation) (van Veelen,
2009), and that therefore inclusive fitness theory is of limited
applicability (Nowak et al., 2011). The results of this letter illus-
trate how the generalized rules for social evolution need not
change from case to case in anything other than their details;
this is no different to how the details of any selective rule change
according to the scenario they are applied to, whether that be the
group-selection rule that donation spreads when between-group
selection exceeds within-group selection, or even the general evo-
lutionary rule that a trait spreads in a population when it is
positively associated with reproduction. Regarding the separation
of details of the population from the fitness effects of costs and
benefits, it has been pointed out elsewhere that this is a gen-
eral feature of models of frequency-dependent selection, rather
than being peculiar to rules derived from inclusive fitness theory
(Marshall, 2011).

It is of interest to conclude by considering the success of the
two inclusive-fitness rules as applied to the scenario considered
here. While both yield the same answer in this social evolution-
ary scenario the first of these, Queller’s generalized extension of
Hamilton’s rule (Queller, 1992a) proves mathematically much
easier to work with. In contrast, Hamilton’s rule with fitness
effects correctly defined in terms of genes rather than phenotypes
(Queller, 1992a; Gardner et al., 2007, 2011) gives mathemati-
cally much more complicated expressions for the cost and benefit
terms, and for still more complicated social scenarios it is rea-
sonable to expect that it may prove mathematically intractable,
while an approach using Queller’s rule is still afforded. It is cru-
cially important to note, however, that such a breakdown would
not mean that Hamilton’s rule is not a valid evolutionary princi-
ple for such a scenario, and therefore is not a general evolutionary
principle; rather it would reflect the relative power of the mathe-
matical techniques we can apply to such analyses. However, the
results of this article do illustrate that an approach based on
extending Hamilton’s rule to deal separately with non-additive
interaction effects can prove easier to apply, at least in some social
scenarios.
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APPENDIX A
METHODS
Simplifications and solutions were performed with the sym-
bolic algebra functions Simplify and FullSimplify of
Mathematica version 8.0.0.0 from Wolfram Research (see online
Supplementary Material).

APPENDIX B
QUELLER’S RULE FOR A NON-ADDITIVE PUBLIC-GOODS GAME
Hauert et al. present an elegant formalization of non-additive
public-goods games with arbitrary group size (Hauert et al.,
2006). In the notation of this article, payoff for an individual in
a group is defined by Equation (8).

We wish to express the deviation from payoff additivity in
Equation (8) in terms of a single random variable D, as used
in Equation (6), thereby separating additive from non-additive
effects. This can be done by solving for equivalence between
Equations (8) and (6), i.e., by solving

b(1 − wG + G′
)

N(1 − w)
− Gc = G′

N
B − GC + D (14)

for D, with B = b and C = c − b/N as described in the main text.
Now we model the process of group aggregation described

in the main text. The (co)variances we need to calcu-
late are Var(G), Cov(G, G′/N), and Cov(G, D). In general,
Cov(X, Y) = E(XY) − E(X)E(Y). The expectations we require
for Cov(G, G′/N) can be calculated from the definitions of the
geometric and binomial distribution as

E(G)E

(
G′

N

)
= g

∞∑
n = 0

(
(1 − a)an)

⎛
⎜⎜⎝

g
n∑

i = 0
i
(n

i

)
(g(1 − α) + α)i((1 − g)(1 − α))n − i

n + 1

+ (1 − g)

n∑
i = 0

i
(n

i

)
(g(1 − α))i((1 − g)(1 − α) + α)n − i

n + 1

⎞
⎟⎟⎠,(15)

and

E

(
G

G′

N

)
= g

∞∑
n = 0

(
(1 − a)an)

n∑
i = 0

i
(n

i

)
(g(1 − α) + α)i((1 − g)(1 − α))n − i

n + 1
, (16)

while

E(G2) = g, (17)

and

E(G)2 = g2. (18)

To calculate average cost of donation in the additive case

E(C) = c − E

(
b

N

)
(19)

we also require the expectation of the reciprocal of group size

E

(
1

N

)
= − (1 − a) ln (1 − a)

a
. (20)

Substituting these into inequality (3) yields [provided Var(G) �=
0, i.e., 0 < g < 1] the condition for donation to receive positive
selection in an additive public-goods game, inequality 9 in the
main text. Simplifications were performed with the symbolic alge-
bra functions of Mathematica (Wolfram Research), as described
in the Appendix; see online Supplementary Material.

Moving on to the non-additive public-goods game, as well
as Cov(G, G′/N) and Var(G), from the generalized version of
Queller’s rule (7) we now need to calculate

Cov(G, D) = b

1 − w

(
Cov

(
G,

1

N

)
− Cov

(
G,

wGwG′

N

))

− b

(
Cov

(
G,

G

N

)
+ Cov

(
G,

G′

N

))
. (21)

The first covariance in the rhs is zero, since G and N are inde-
pendent in this scenario. Also, since G and N are independent,
Cov(G, G/N) simplifies to Var(G)E(1/N). The expectations for
the last covariance are given above in Equations (15) and (16).
The relevant expectations for Cov(G, wGwG′

/N) are

E(G)E

(
wGwG′

N

)
= g

∞∑
n = 0

(
(1 − a)an)

⎛
⎜⎜⎜⎝

g
n∑

i = 0

(n
i

)
(g(1 − α) + α)i((1 − α)(1 − g))n − iwi + 1

n + 1

+
(1 − g)

n∑
i = 0

(n
i

)
(g(1 − α))i((1 − g)(1 − α) + α)n − iwi

n + 1

⎞
⎟⎟⎟⎠(22)

and

E

(
G

wGwG′

N

)
= g

∞∑
n = 0

(
an(1 − a)

)
(

n∑
i = 0

(n
i

)
((1 − α)g + α)i((1 − α)(1 − g))n − iwi + 1

)
n + 1

. (23)

Substituting all of the above into inequality (7) and simplifying
yields the condition for donation to receive positive selection,
inequality (10) in the main text.
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APPENDIX C
HAMILTON’S RULE FOR A NON-ADDITIVE PUBLIC-GOODS GAME
As described in the main text, Hamilton’s rule can also be directly
applied to non-additive interactions, by correctly defining costs
and benefits in terms of the partial regression coefficients mini-
mizing the error of a linear model of fitness Equations (12, 13).
For the particular scenario described in the main text, Equation
(13) becomes

E((Ŵ − W)2) =
∞∑

n = 0

(
(1 − a)an)×

(
g

n∑
i = 0

(
n

i

)
(g(1 − α) + α)i((1 − g)(1 − α))n−i×

(
E(W) + βWG.G′/N (1 − g) + βW(G′/N).G(

i

n + 1
− E

(
G′

N

))
+ c − b(1 − wi+1)

(n + 1)(1 − w)

)2

+

(1 − g)
n∑

i = 0

(
n

i

)
(g(1 − α))i((1 − g)(1 − α) + α)n−i ×

(
E(W) + βWG.G′/N (0 − g) + βW(G′/N).G

(
i

n + 1
− E

(
G′

N

))
− b(1 − wi)

(n + 1)(1 − w)

)2
⎞
⎠ , (24)

where

E(W) =
∞∑

n = 0

(
(1 − a)an)

(
g

n∑
i = 0

(
n

i

)
(g(1 − α) + α)i((1 − g)(1 − α))n − i

(
b(1 − wi + 1)

(n + 1)(1 − w)
− c

)

+ (1 − g)
n∑

i = 0

(
n

i

)
(g(1 − α))i((1 − g)(1 − α) + α)n − i

(
b(1 − wi)

)
(n + 1)(1 − w)

)
(25)

The standard procedure for linear regression is to differenti-
ate an expression such as Equation (24) wrt to the partial
regression coefficients, so that the minimizing values for them
can be found, or to derive the regression coefficients directly
from covariances and variances of the random variables con-
cerned. Unfortunately since simplification to a closed-form solu-
tion of Equation (24) appears intractable (using the meth-
ods described in Appendix A no solution was found within a
reasonable amount of time—30 min on a 2GHz 64-bit Intel
Core i5-equipped laptop—indicating either that the simplifica-
tion is not possible or, if it is possible that the process and
result of simplification are almost certainly much more com-
plicated than the equivalent simplification for Queller’s rule
[resulting in Equation (10)], the former approach does not
seem feasible in this particular case. Instead we use the fact
that the partial regression coefficients of Equation (12) can
be calculated directly from (co)variances (e.g., Gardner et al.,
2011) as

βWG.G′/N = βWG − βW(G′/N)β(G′/N)G

1 − ρ2
G(G′/N)

, (26)

and

βW(G′/N).G = βW(G′/N) − βWGβG(G′/N)

1 − ρ2
G(G′/N)

. (27)

The above definitions are calculated in the online Supplementary
Material for the non-additive public goods scenario in the main
text, and substituted into condition 11 to give the same condition
for selection of donation as that derived using the Queller’s rule
approach (10).
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