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INTRODUCTION

Atmosphere-Ocean General Circulation Models (AOGCMs) predict changes in the sea
ice environment and in atmospheric precipitations over larger areas of Antarctica. These
changes are expected to affect the population dynamics of seabirds and marine mammals,
but the extent of this influence is not clear. We investigated the future population
trajectories of the colony of Adélie penguins at Edmonson Point, in the Ross Sea, from
2010 to 2100. To do so, we incorporated the relationship between sea ice and demographic
parameters of the studied colony into a matrix population model. Specifically, we used
sea ice projections from AOGCMs and a proxy for snowfall precipitation. Simulations of
population persistence under future climate change scenarios showed that a reduction in
sea ice extent (SIE) and an increase in precipitation events during the breeding season
will drive the population to extinction. However, the population growth rate estimated by
the model was lower than the population growth rate observed during the last decades,
suggesting that recruits from other colonies maintain the observed population dynamics
at Edmonson Point. This local “rescue” effect is consistent with a metapopulation
dynamic for Adélie penguins in the Ross Sea, in which neighboring colonies might exhibit
contrasting population trends and different density-dependent effects. In the hypothesis
that connectivity with larger source colonies or that local recruitment would decrease, the
sink colony at Edmonson Point is predicted to disappear.

Keywords: climate change, environmental stochasticity, IPCC, matrix population models, metapopulation
dynamics, population growth, seabirds

decrease in SIE, SIC, and duration of the winter sea ice season

In the Southern Ocean, the disappearance of the sea ice habitat
associated with climate change threatens the viability of seabird
and marine mammal populations (Fraser et al., 1992; Jenouvrier
et al., 2005, 2009, 2012; Barbraud and Weimerskirch, 2006; Siniff
et al.,, 2008; Forcada and Trathan, 2009; Ainley et al., 2010;
Trivelpiece et al., 2011) because their life cycles and life-history
strategies evolved in response to a sea ice habitat that was stable
and predictable over large spatial and temporal scales (Forcada
et al., 2008). The Adélie penguin (Pygoscelis adeliae) is one of
the species that has been affected the most by changes in sea ice
extent (SIE) and sea ice concentration (SIC) linked to increased
air and sea temperature (Ainley, 2002; Ainley et al., 2010). This
species uses sea ice as a resting platform in the winter period
(Ainley, 2002). Sea ice is also the habitat for Adélie penguins’ prin-
cipal preys, such as the krill (Euphausia spp.) and the Antarctic
silverfish (Pleuragramma antarcticum).

Satellite data on sea ice characteristics are available for
Antarctic since late 1970s (Cavalieri et al., 2003). They show a

in the western Antarctic Peninsula region (Kwok and Comiso,
2002; Zwally et al., 2002; Stammerjohn et al., 2008, 2012) and an
increase in SIE and in the size of the Ross Sea polynya (an area of
permanent open water within the sea ice) in the Ross Sea sector
of the Southern Ocean (Parkinson, 2002; Zwally et al., 2002; see
also Ainley et al., 2010).

These changes in the sea ice habitat affected the Adélie pen-
guin populations (Ainley et al., 2010). Census of Adélie penguin
breeding populations began around 1950s (Croxall et al., 2002)
and showed a decrease in the size of Adélie penguin population
along the Western Antarctic Peninsula and the Scotia Sea region,
but an increase in the Ross Sea sector (Smith et al., 1999). The
negative trend of penguin populations in the Western Antarctic
Peninsula/Scotia Sea region has been thought to be a consequence
of the loss of sea ice habitat caused by the rapid increase of air and
sea temperature (Fraser et al., 1992; Smith et al., 1999; Ducklow
et al., 2007; Hinke et al., 2007; Forcada and Trathan, 2009; Lynch
et al., 2012). In addition to the negative effects of decreased SIE,
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penguin populations in the Western Antarctic Peninsula/Scotia
Sea region have also been affected by the increased snowfall and
water melt runoff (Trivelpiece and Fraser, 1996). The opposite
positive trend in the Ross Sea is presumably the consequence
of the increase in SIE and the size of the Ross Sea polynya
that supposedly facilitated access to breeding colonies on land
(Ainley et al., 2005, 2010). These contrasting trends in Adélie
penguin population dynamics at different geographic locations in
the Southern Ocean are explained by a habitat optimum model
(Fraser and Trivelpiece, 1996; Smith et al., 1999) that relates pop-
ulation growth to the frequency of years with extensive winter sea
ice. According to the model, either too much or too little winter
SIE and SIC negatively affect penguin population growth (Fraser
and Trivelpiece, 1996; Smith et al., 1999; Ainley et al., 2010).
Winter SIE affects survival rates (Wilson et al., 2001; Jenouvrier
et al., 2006; Ballerini et al., 2009; Emmerson and Southwell, 2011),
and summer sea ice conditions close to breeding colonies influ-
ence breeding success (Olmastroni et al., 2004a; Emmerson and
Southwell, 2008).

Global climate models developed by the Intergovernmental
Panel on Climate Change (IPCC; Meehl et al., 2007) predict a
decline of SIE and SIC all over Antarctica by the end of the cen-
tury, even in the Ross Sea where SIE has so far increased (Ainley
et al., 2010). Climate models also predict a robust increase in
snowfall precipitations in Antarctica in the coming century with
the possibility of intensification of extreme atmospheric events
(Meehl et al., 2007; Turner et al.,, 2009). The majority of the
studies on Adélie penguin population dynamics and sea ice are
based on census of total population size (cfr. Fraser et al., 1992;
Smith et al., 1999; Wilson et al., 2001; Ainley et al., 2005; Forcada
et al., 2006; Hinke et al., 2007). However, studying the whole life
cycle and the effects of a changing environment on vital rates
is essential to understand the mechanisms that allow birds to
respond to climate change (Adahl et al., 2006; Jenouvrier, 2013;
Oli, 2014).

Here, we used demographic data collected at the individ-
ual level during the breeding seasons 1994-2004 at the colony
of Edmonson Point, Central Victoria Land coast, Ross Sea
(Figure 1), to build a matrix population model (Caswell, 2001)
for the Adélie penguin. First, we compared the growth rate pro-
jected from the demographic model to the growth rate measured
from ground census. Then we used the model to project pop-
ulation growth using future projections of SIE obtained form
IPCC-class climate models (Jenouvrier, 2013). To investigate
cross-seasonal effects (Ward et al., 2005) we also built envi-
ronmental scenarios that are based on the assumed causation
between unusually harsh weather conditions at the breeding site
(Olmastroni et al., 2004a) and increased mortality in the fol-
lowing winter despite “good” sea ice conditions (Ballerini et al.,
2009).

MATERIALS AND METHODS

STUDY POPULATION AND DEMOGRAPHIC DATA

The colony of Edmonson Point (74°21" S-165°10" E) is situated
in the Wood Bay, a large embayment covered by fast ice (per-
sistent sea ice that keeps in place for several years), along the
Victoria Land cost in the Ross Sea (Figure 1). Edmonson Point
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FIGURE 1 | The Adélie penguin colony of Edmonson Point is located on
an ice-free area at 74° 20 S, 165° 08 E, along the Victoria Land coast,
Ross Sea, Antarctica.

has been a nesting site for Adélie penguins since 3000 BP (Baroni
and Orombelli, 1994). Today the colony is composed of several
(10-13) breeding groups (hereafter “subcolonies”) where popu-
lation size was assessed by ground counts in 13 seasons during
the period 1993-2009 (Olmastroni et al., 2000; Pezzo et al., 2007;
this study). From 1994 to 2004 two of the subcolonies have been
the focus of an intensive study of individual-based information
on marked animals and nests (Supplementary Material, Table Al;
Olmastroni et al., 2000). Each year, birds implanted with pas-
sive transponders (TIRIS tag) were reobserved in the study area
through an Automatic Penguin Monitoring System and through
manual observations (Olmastroni et al., 2000). Their capture his-
tories were used to get estimates of age- and time-dependent
survival probabilities for this population (Ballerini et al., 2009).
Nests were monitored daily from the beginning to the end of the
breeding season to calculate annual values of clutch size, hatching
success and creching success (Pezzo et al., 2007) according to the
CCAMLR Ecosystem Monitoring Program (cfr. SC-CCAMLR,
2004). Daily observations of breeding nests also allowed estima-
tion of the percentage of eggs and chick mortality due to weather
factors (Olmastroni et al., 2004a) and skua predation. The demo-
graphic parameters measured during the study period were used
to create a time-invariant and a time-dependent dataset used in
the demographic analyses.

LIFE CYCLE AND MATRIX POPULATION MODEL

We combined the available survival (Ballerini et al., 2009) and
fecundity parameters (Pezzo et al., 2007) collected at the colony
of Edmonson Point into a closed, pre-breeding, age-structured
model for the Adélie penguin (Figure 2). The model considers
females only and the projection interval is from November at
year t to November at t + 1. Following Ballerini et al. (2009),
the model has five age classes. New individuals result from the
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combination of breeding propensity (bp), female fecundity (f)
and survival during the first year of life (s0). Fecundity (f) is
defined as the product of clutch size (cs), hatching success (hs) and
fledging success (fs). Age-at-first reproduction varies in the Adélie
penguin (Ainley, 2002), but precise estimates are not available
for penguins at Edmonson Point, where all breeding birds were
assumed to be 44 (Ballerini et al., 2009). Transitions between age-
classes are represented by a structured matrix population model,
A, that includes fecundity and survival estimates for each age class
considered (Caswell, 2001) as:

n(t+ 1) = A(¢) n(t) (1)

where n(t) is a vector with the number of birds for each age at
time f and the matrix A(#) projects the population from ¢ to ¢ + 1.
The population growth rate (\) was calculated as the dominant
eigenvalue of the matrix A, while the stable age distribution, w,
is the dominant right eigenvectors of A. In the initial population
vector n(1) the number of individuals in each age class was scaled
according to the stable age distribution w obtained from A with
average parameters over the study period.

FITNESS LANDSCAPE

The population growth rate () estimated by the matrix model
was lower than the population growth rate derived from ground
census (see Results). Previous studies indicated that the values of
breeding success (0.76 chicks/nest, Pezzo et al., 2007) and first-
year survival (0.34, Ballerini et al., 2009) estimated for the colony
of Edmonson Point are lower than in other penguin populations.
But while the value of breeding success is robust because obtained
from individually monitored nests and from ground census, first-
year survival might be underestimated (Ballerini et al., 2009).
First-year survival for the population of Edmonson Point was
estimated based on resightings of marked birds in the intensive
study area. While Adélie penguins have strong return rates to
their natal colony (Sheperd et al., 2005), it is possible that birds

bp*srcs*hs*crs*s0

2 (5 }—(
s1 s2 U s3
s4

FIGURE 2 | Adélie penguin life cycle graph. s; is the probability that an
individual in stage / survives from time t to time t + 1; bp is the probability,
conditional on survival, that an individual in stage / breeds; sr is the
assumed sex-ratio at birth; cs is clutch size; hs is the probability of an egg
to hatch; crs is the probability of a chick to survive until the creche stage.
The graph corresponds to the matrix population model (Equation 1) (see
Methods section).

marked as chicks in the intensive study area settled as breeders
in other subcolonies of Edmonson Point. A search for tagged
birds outside of the intensive study area helped identify only a
few breeders (Olmastroni, personal observation). Capture-mark-
recapture models used to estimate survival rates at the colony
of Edmonson Point (Ballerini et al., 2009) confound permanent
emigration with mortality. Thus, any bird breeding outside the
intensive study area will be considered as dead and negatively bias
the juvenile survival rate. To take into account this likely underes-
timation in survival rates in the first year (Ballerini et al., 2009),
we used the time-invariant dataset to perform a fitness landscape
analysis to identify the value of first-year survival that determines
a population growth rate (\) equal to 1. The analysis showed
that, all other parameters being constant, first-year survival sOc
should be 0.71 (Figure 3). This value, s0c = 0.71, was used to cor-
rect the formula for first-year survival (see Section Projections of
Population Growth).

STOCHASTIC SEA ICE FORECASTS

SIE and SIC are highly correlated and they can affect penguins
in several ways and at different spatial scales (see Ainley et al.,
2010). For the population of Adélie penguins of Edmonson Point,
breeding success is not correlated to large-scale sea ice variables
(Ballerini, 2007), while survival is correlated to SIE anomalies
(SIEA) during winter (June, July, August, and September) in the
Ross Sea (Ballerini et al., 2009). SIEA are proportional anomalies
in SIE, relative to the mean from 1979 to 2010 calculated over a
large sector of the Ross Sea (from 150 to 230°E). This includes
the ice edge area where Adélie penguins from Edmonson Point
are thought to overwinter in the Ross Sea (Wilson et al., 2001;
Ballerini et al., 2009; Ballard et al., 2010).

Observed SIE from 1979 to 2010 were obtained from passive
microwave satellite imagery provided by the National Snow and
Ice data Center, using the NASA team sea ice algorithm (Cavalieri
et al., 1996, http://nsidc.org/data). Forecasts of SIE from climate
models were extracted from 20 models available as part of the
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FIGURE 3 | Fitness landscape analysis. Population growth rate, &, as a
function of first-year survival, sOc.
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WCRP CMIP3 multi-model dataset from 1900 to 2100 (see Meehl
et al., 2007 and http://esg.lInl.gov/portal).

AOGCMs differ in their ability to reproduce sea ice conditions
in Antarctica (Lefebvre and Goosse, 2008; Ainley et al., 2010).
Thus, from an initial set of 20 climate models, we selected those
for which the statistical properties of the distribution of SIEA out-
put agree well with the observations from 1979 to 2010, in terms
of both the median and the standard deviation of the SIEA dis-
tribution following the approach developed by Jenouvrier et al.
(2012).

The comparison of the statistical properties of the distribu-
tion of SIEA was performed for the months of June, July, August,
and September. For each month, we first compared the medians,
selecting model m if

Ql <Xm =< Q3 (2)

where X, is the median of the SIEA output of model m and Q,
and Qj are the first and third quartile of the distribution of obser-
vations. Second we compared the standard deviation of SIEA,
selecting model m if

0.5% 5 < Sxem < 0.5%s,, (3)

where sy, and sy, are the standard deviation of SIEA from the cli-
mate model m and from observations, respectively. Five models
were selected for which Equations (2) and (3) applied for the 4
months. Then, we used the monthly data to create a single aver-
age value for winter SIEA and compared this value with average
winter values from observations with Equations (2) and (3). The
five models selected in the first phase were selected also in the
second phase (Supplementary Material, Table A3).

The selected climate models were then forced with a middle
range emissions scenario (SRES A1B, IPCC, 2000). This sce-
nario assumes a future socio-economic development depending
on fossil and non-fossil energy sources in balanced proportions.
Under this scenario, the CO; level doubles by 2100, from 360 to
720 ppm.

To generate stochastic SIEA forecasts, we first obtained output
for SIEA in the winter period. From this output, we computed
smoothed means x(t) and smoothed covariance matrices C(t),
using a Gaussian kernel smoother with smoothing parameter
h = 2. We then generated stochastic SIEA vectors by drawing x()
as an iid sample from a normal distribution with mean x(t) and
covariance matrix C(t).

PROJECTIONS OF POPULATION GROWTH

We used stochastic sea ice forecasts from the IPCC models that
were selected to force the survival rates in the Adélie penguin
population model. Survival probabilities were expressed as a
function of SIEA in the Ross Sea using the functional relationship
determined for this population by Ballerini et al. (2009):

Phi_age = invlogit (alpha_age + beta_age* SIEA
+beta_age* SIEA?) (4)

Where Phi_age is the survival rate for the five age classes in the
population model in Figure 2, while alpha_age and beta_age are

the age-specific coefficients of the relationship between survival
and sea ice determined with mark-recapture models (Ballerini
etal., 2009). We took into account the systematic bias in first-year
survival by setting:

Phi_age0 = invlogit (alpha_age0 + beta_age0* SIEA
+beta_age 0% SIEA?) + s0c — 0.34 (5)

where sOc = 0.71 is the value of first-year survival derived from
the fitness landscape analysis and 0.34 is the value of first-year
survival, s0, from the time-invariant dataset.

We projected the population under three scenarios. The first
scenario considers stochastic SIE forecasts from five IPCC models
to generate a sequence of demographic rates from 2010 to 2100
in the projection matrix. The initial population vector was built
with the average equilibrium population structure from the time-
invariant population model. To evaluate uncertainties in climate,
we used 200 stochastic forecasts from each of the five AOGCMs.
The other two scenarios include SIE forecasts but also account for
an increased frequency of extreme atmospheric events during the
breeding season. In 2002/03, unusual strong winds and snowfall
resulted in longer foraging trips during the guard stages and lead
to reduced survival rates for breeders. This catastrophic breeding
season was proposed to be responsible for an additional 7% in
the adult mortality during the winter 2003 (Ballerini et al., 2009).
Therefore, we included these extreme events by randomly sam-
pling a matrix where adult survival, s4, expressed as a function
of stochastic sea ice forecasts is then depressed by 7%. We con-
sidered a frequency of one catastrophic event every 14 years (as
observed during the study period) for Scenario 2 and a frequency
of one every other year (hypothetical scenario of an increasing
frequency) for Scenario 3.

RESULTS

PENGUIN POPULATION GROWTH AT EDMONSON POINT: EVALUATION
OF THE DEMOGRAPHIC MODEL

In the period 1993-2009, the Adélie penguin colony at Edmonson
Point increased in size passing from 1473 to 2712 breeding pairs
(Supplementary Material, Table A2). During the period 1994—
2004 the relative size of the subcolonies that compose the colony
of Edmonson Point varied strongly, some breeding groups dis-
appeared while others increased in size. In the two subcolonies
intensively studied, the number of breeding pairs decreased, rang-
ing from 390 occupied nests in 1994 to 249 occupied nest in
2004 (Figure 4A). This corresponds to 3.1% annual decline in
observed population size in the local study area. The long-term
population growth rate (\) calculated from the time-invariant
population model indicates a 6.3% annual decline of the study
population, thus predicting an annual reduction in population
size that is twice as much as the observed growth rate (from
ground census). The \ from the time-dependent matrix model
underestimates annual population growth every year with the
exception of the year from the breeding season 2000 to breeding
season 2001 (Figure 4B).

STOCHASTIC SEA ICE FORECASTS AND POPULATION PROJECTIONS
Most AOGCMs projected declines in the total Antarctic SIE in
the Ross Sea for the period 1979-2010 (Supplementary Material,
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breeding population (solid circles) and by the matrix population model season 1995.

Figure Al), contrary to the observed trend (Stammerjohn et al.,
2012). However, simulated and observed trends are generally
consistent with natural variability and trend discrepancies may
not necessarily indicate a model bias, especially within a short
time window (Mahlstein et al., 2013; Hobbs et al., 2014).
Among the 20 AOGCMs, five were retained for which the
median and the standard deviation of the simulated SIEA dis-
tribution agreed with observations (Figure5; Supplementary
Material, Table A3, Figures Al, A2). The retained models are
cccma-cgem3-1-t63, giss-aom, inmem3-0, miroc3-2-hires and
gfdl_cm2_0. The last two models were also retained by Ainley
et al. (2010), who predicted changes in penguin sea ice habitat
around all Antarctica using several key climate variables (wind
stress, Antarctic Circumpolar strength and boundary, seasonal
cycle of sea ice around Antarctica and annual mean ice thickness).
Differently from the first three models, these two models, miroc3-
2-hires and gfdl_cm2_0, predict a transient increase in SIE in the
Ross Sea, possibly linked to the ozone hole, before SIE decreases
(Ainley et al., 2010).

The five AOGCMs that were retained were used to get stochas-
tic SIE forecasts in the Ross Sea, which in turn were used to drive
survival probability in the population projections (population
projections for all the AOGCMs, including the ones that were not
selected, are available in the Supplementary Material, Figure A2).
All population projections from the retained AOGCM:s predicted
a dramatic decline of the breeding population down to extinction
(Figures 6, 7; Table 1). However, there are differences in the speed
of decline among the five AOGCMs. Model ccma-cgem3-1-t63

predicts the fastest decline, with fewer than 300 breeding pairs
in 30 years whereas model inmcm3-0 predicts a probability of
extinction of only 0.12 after 30 years (Table 1). Model giss-aom
predicts an extinction probability equal to 1 after 39 years. The
two models selected also by Ainley et al. (2010), model miroc3-2-
hires and model gfdl_cm2_0, project a probability of extinction
equal to 1 after 37 and 41 years, respectively.

When the proxy for extreme atmospheric events is included
in the simulations, extinction will occur sooner (Figures 7B,C;
Table 1). A catastrophic event every other year would dramat-
ically increase the probability of extinction, which is equal to
1 in 2024 with models cccms-cgm3-1-t63 and giss-aom. Model
inmcm3-0 predicts the slowest decline of the population under
a scenario of one catastrophic event every 14 years but it still
predicts a probability of extinction of 1 after 29 years.

DISCUSSION

By linking a population model to climate change projections, we
projected that the Adélie penguin population at Edmonson Point
will be functionally extinct within 40 years. Based on a qualita-
tive analysis of penguin response to climate change projected by a
set of AOGCMs, Ainley et al. (2010) predicted that 75% of Adélie
penguin colonies (70% of breeding population) north of 70°S are
projected to decrease or disappear when global temperature will
have increased by 2°C above pre-industrial levels (2025-2052).
Edmonson Point is located far south (74°21’S) and although our
results are worrisome for the persistence of Adélie penguins, we
have to acknowledge that the population seems to be part of a
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FIGURE 5 | Comparison of Ross Sea sea ice extent values derived from satellite observations (red line) and Ross Sea sea ice values derived from the
AOGCMs that were retained (blue line). Models miroc3-2-hires and gfdl_cm2_0 were two of the four best models for the Ross Sea in Ainley et al. (2010).

metapopulation in which local breeding areas are connected by
dispersal of breeding individuals (Ainley et al., 1995; Sheperd
et al., 2005). Whether or not the metapopulation will persist is,
as-yet, unknown.

METAPOPULATION DYNAMICS

Adélie penguin breeding populations all over Antarctica are orga-
nized in cluster of colonies, each cluster constituting a metapop-
ulation with large source colonies contributing immigrants to
smaller sink colonies (Ainley et al., 1995; Ainley, 2002). Dispersal
rates are low among adults (1% during average years to 3.5%
under extreme environmental in southern Ross Sea, Dugger et al.,
2010) while dispersal among new breeders depends on stochastic
events (Sheperd et al., 2005; La Rue et al., 2013). The Terranova
Bay metapopulation is composed of two large colonies, Adélie
Cove and Inexpressible Island (with 11 234 and 24 450 breeding
pairs, respectively, Lyver et al., 2014) and of the smaller colony
of Edmonson Point (Ainley et al., 2005). Data on migratory
rates between these colonies do not exist. However, the demo-
graphic data from Edmonson Point suggest that this colony is
not a closed system (Ainley et al., 2005) and that immigration
might be crucial in determining its population dynamics. Adélie
penguins show a high fidelity to the breeding site and we specu-
late that the Edmonson Point population is composed of a pool
of established breeders that come back to breed at the colony
year after year, and of a pool of new breeders that immigrate

from nearby colonies each year. New breeders would come from
the larger colonies of the Terranova Bay metapopulation where
space for breeding is limited and/or where summer competition
for food can be high (Ainley et al., 2004). It is possible that the
colony of Edmonson Point is sustained also by birds from colonies
further south in the Ross Sea. In the breeding season 2014, in
fact, five birds marked with flipper bands at Cape Royds and
Cape Bird, Ross Island, were observed breeding at Edmonson
Point (Olmastroni, personal observation). Immigration of new
breeders from nearby colonies could explain why the colony of
Edmonson Point increased in size during the study period (Lyver
et al., 2014; this work) even if breeding success and first-year sur-
vival were low in comparison to other locations in the Ross Sea
(Pezzo et al., 2007) and not enough to sustain population growth.

Sink populations are usually situated in low quality habitats
(Pulliam, 1988). Extensive fast ice (about 20 km) rests in place in
front of Edmonson Point almost every year (Olmastroni et al.,
personal observation), thus making it energetically more costly
for penguins to search for food, as they are obliged to walk instead
of swimming to reach their foraging grounds (Clarke et al., 1998;
Olmastroni, 2002). Longer foraging trips might cause lower deliv-
ery rates of food to chicks, thus negatively impacting the breeding
success (Clarke et al., 2002; Olmastroni et al., 2004b). Delivery
rates to chicks might also be limited by food competition with
Adélies from the other colonies of the Terranova Bay metapop-
ulation and with emperor penguins from the nearby colony of
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FIGURE 6 | Projections of the Adélie penguin population at Edmonson Point based on stochastic sea ice extent anomalies forecasts from five
AOGCMs. For each AOGCM, the median population trajectory (thick red line) and the 95% envelope (gray area), from 200 stochastic simulations are shown.

Cape Washington (almost 12 000 breeding pairs, Barber-Meyer
et al., 2007; but see Ainley et al., 1995). Finally, breeding success
is strongly limited at Edmonson Point by predation of eggs and
chicks by the South polar skua (Catharacta maccormicki). With
a ratio skua pairs/penguins pairs of 1:20, the highest recorded
along the Victoria Land coast (Pezzo et al., 2001), about 52% of
eggs and chicks are predated each year (Olmastroni and Pezzo,
unpublished data, average over 5 years).

The population growth rate calculated from the matrix pop-
ulation model is negative almost every year, indicating that the
colony is not self-sustaining. While adult survival measured at
Edmonson Point (Ballerini et al., 2009) is in the range of vari-
ability of other Adélie penguin populations that are not declining
(cfr. Jenouvrier et al., 2006; Lescroél et al., 2009; Emmerson and
Southwell, 2011), apparent juvenile survival (Ballerini et al., 2009;
Emmerson and Southwell, 2011) and breeding success are lower
than in other populations (Ainley, 2002 and studies herein; Pezzo
et al., 2007). For these reasons, we speculate that the colony of
Edmonson Point is a sink population sustained by neighboring
colonies, and that the estimates of juvenile survival might be
biased. Indeed, dispersal may be limited among adults but may
be higher among juveniles (La Rue et al., 2013). Therefore, to
project population response, we corrected for this systematic bias
by tuning our population model so that the growth rate projected
during the observation period matches a stable population (see
fitness landscape analysis). Model tuning is a common strategy
in climate modeling, so that the properties of climate models are
adjusted in various ways to best match the known state of the

Earth’s climate system. Typically, the tuning is performed over
uncertain and non-observable parameters related to processes not
explicitly represented in the models (Mauritsen et al., 2012).

POPULATION PROJECTIONS

The population of Edmonson Point is projected to decline at a
rapid rate, especially if extreme snow events are accounted for.
The population is projected to be functionally extinct as soon as
13 years and as late as 40 years, depending on the climate models
used to project SIE and on the frequency of simulated extreme
weather events at breeding.

Differences among models in the SIE simulation outputs are
due to uncertainties in the representation of climate processes
within the models (Lefebvre and Goosse, 2008; Turner et al.,
2013). In order to account for this structural uncertainty, we
selected a model subset by comparing climatological aspects of
the simulated SIEA to the observed climatology in term of median
and standard deviation of the SIEA distributions during the study
period (Jenouvrier et al., 2012; Jenouvrier, 2013; Jenouvrier et al.,
2014). Because the climate variable included in our population
model is SIEA and our aim is to project population trajecto-
ries given future SIEA projections, we believe this is a robust
approach.

When using SIE forecasts from the five AOGCMs, all simula-
tions of population dynamics predict extinction of the population
of Edmonson Point in the next 40 years. However, different
climate models imply different future sea-ice projections. For
example, model miroc3-2-hires and model gfdl_cm2_0 predict a
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temporary increase in SIE in the Ross Sea in the next decades,
although a general decrease in the long run. A temporary increase
in winter sea ice implies a displacement further north of the
ice edge, which is thought to negatively impact juvenile survival
over the winter period by reducing the access to food resources
(Wilson et al., 2001). For a similar reason, extreme winter SIE is
also associated with reduced adult survival (Ballerini et al., 2009).
All AOGCMs agree in predicting a decline of SIE by the mid
of this century (Ainley et al., 2010). Reduced SIE means a dis-
placement toward the south of the ice edge, possibly at latitudes
where there is no light in the winter. This can impact over-winter
survival by increasing competition for the narrow suitable win-
ter habitat with enough light for penguins to successfully forage
(Ballard et al., 2010).

Adélie penguins from Edmonson Point most likely share the
same wintering grounds as birds from the other colonies along
Victoria Land (Wilson et al., 2001; Ballard et al., 2010). Since
survival in the Adélie penguin is affected by winter SIE and
SIC (Wilson et al., 2001; Jenouvrier et al., 2006; Ballerini et al.,
2009), it is likely that changes in SIE will affect survival rates
of penguins from Adélie Cove and Inexpressible Island too. If
this hypothesis is true, survival rates of penguins from other
colonies will likely decline because sea ice is projected to shrink
everywhere in Antarctica (Ainley et al., 2010). This can affect
the immigration fluxes toward Edmonson Point and the persis-
tence of the metapopulation in the Ross Sea. Future work entails
projecting Adélie penguin population responses throughout the

entire species range, by including dispersal scenarios and different
functional relationships between climate and demography along
a latitudinal gradient (Jenouvrier et al., 2014).

The responses of seabird populations to large-scale environ-
mental changes will depend on the sensitivity of their demo-
graphic parameters to the physical processes and on how the
changes in demographic parameters are expressed at the popu-
lation level (Adahl et al., 2006). Since survival has a strong impact
on population growth, the expected reduction in SIE and increase
in snowfall are likely to negatively impact the population dynam-
ics of Edmonson Point. According to the matrix population
model, these changes in the physical environment will determine
an increase in the speed of decline of the population of Edmonson
Point. The ability of Adélie penguins to respond to global envi-
ronmental changes will depend on their ability to modulate the
breeding strategy in the summer and on the availability of suitable
habitat in the winter (cfr. Ainley et al., 2010).

The plastic responses of Adélie penguins to the their changing
environment are being increasingly studied (Lynch et al., 2012; La
Rue et al., 2013; Dugger et al., 2014; Lescroél et al., 2014). While
it has been found that Adélie penguins can adapt their foraging
efficiency to abrupt changes in SIC during the summer period
(Lescroél et al., 2014), it is less clear how much they can modify
their breeding phenology and breeding strategy (Barbraud and
Weimerskirch, 2006; Dugger et al., 2010, 2014; Lynch et al., 2012).
Adélie penguins are long-range migrant species that evolved their
breeding strategy in response to an environment that varied over
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Table 1 | Probability of extinction of the Adélie penguin population of
Edmonson Point at time t = 10, 20, 30, and 40 years after 2010, for
five AOGCMs and three environmental scenarios.

AOGCMs

cccma-cgem3- giss-aom inmem3-0 miroc3- gfdl_cm2_0

1-t63 2-hires
PROB EXTINCTION t = 10
Scenario 1 0.81 0.26 0.01 0.03 0.27
Scenario 2 0.82 0.29 0.M 0.18 0.38
Scenario 3 0.99 0.91 0.81 0.89 0.95
PROB EXTINCTION TIME t = 20
Scenario 1 0.93 0.86 0.01 0.06 0.94
Scenario 2 0.97 0.93 0.13 0.28 0.98
Scenario 3 1 1 0.97 0.99 1
PROBAB EXTINCTION TIME t = 30
Scenario 1 1 0.98 0.12 0.9 0.96
Scenario 2 1 1 0.32 0.96 0.98
Scenario 3 1 1 1 1 1
PROBAB EXTINCTION TIME t = 40
Scenario 1 1 1 1 1 0.99
Scenario 2 1 1 1 1 1
Scenario 3 1 1 1 1 1

Scenario, stochastic sea ice; scenario 2 = stochastic sea ice + proxy snowfall
every 14 years, scenario 3 = stochastic sea ice + proxy snowfall every other
year (see the Methods Section for more details).

much longer geological time scales than the current temporal
scale of climate change (Fraser and Trivelpiece, 1996; Emslie
et al., 2007; Forcada et al., 2008; Thatje et al., 2008; Li et al.,
2014). AOGCMs predict an increased probability of extreme
atmospheric events (Ainley et al., 2010), such as the heavy snow-
storm that caused extensive mortality of eggs and chicks in 2003
(Olmastroni et al., 2004a). The possibility of microevolutionary
adaptive responses (Sheperd et al., 2005) is probably limited in
species with a long generation time (Rosenheim and Tabashnik,
1991) such as the Adélie penguin. In these species, the maximiza-
tion of fitness is likely to rely on phenotypic plasticity or short-
term individual responses to the environment (Forcada et al.,
2008). If the frequency of “catastrophic” climatic events at Adélie
penguin breeding sites increases and happens in a time interval
equal to the generation time, there will not be a generation with
a high fitness and the population will go extinct (Forcada et al.,
2008; Melbourne and Hastings, 2008). So the responses of Adélie
penguins to changing environment will depend, in part, on their
ability to change their breeding phenology and breeding strategy.

Possible future changes in the Ross Sea food web (Smith et al.,
2007, 2014), could potentially exacerbate the direct effects of
changes in habitat availability on the viability of Adélie pen-
guins populations. The principal prey species for Adélie penguins,
krill and Antarctic silverfish, depend on the sea ice for suc-
cessful completion of their life cycles. Disappearance of prey
species in response to reduced sea ice habitat is thought to
be one of the causes of reduction of penguin populations in
the western Antarctic Peninsula region (Schofield et al., 2010;
Trivelpiece et al., 2011; Sailley et al., 2013). Understanding the
effects of climate change is further complicated by alterations to

the Antarctic food web due to harvesting activities (Trivelpiece
et al., 2011; Lyver et al., 2014). Lyver et al. (2014) suggest that
the rapid increase in population size in the southern colonies of
the Ross Sea since 2001 was, at least in part, due to competitive
release of Antarctic silverfish following the commercial removal
of the Antarctic toothfish (Dissostichus mawsoni).

As a conclusion, we detected and quantified the actual and
future decrease of a small Adélie penguin colony that is probably
part of a larger metapopulation. We concluded that this colony is
a sink population, not limited by breeding sites availability but by
inter-specific processes such as high predation. This population is
sustained by immigration from larger colonies of the metapop-
ulation. A decreasing trend of such sink population might be
seen as a “spy light” indicating a possible future decrease of the
whole metapopulation, including the source colonies. Causes of
this potential general decline have to be investigated both among
global drivers affecting adult survival, such as sea ice condi-
tions over large areas, and among local drivers, such as stochastic
weather events, greatly affecting breeding success.
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