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The geography of speciation is one of the most contentious topics at the frontier

between ecology and evolution. Here, building on previous hypotheses, I propose that

ecological constraints on species co-existence mediate the likelihood of speciation, via

a trade-off between competitive and dispersal abilities. Habitat stability, as found in

the tropics, selects for the evolution of stronger competitive abilities. Since resource

investment in competitive and dispersal abilities should trade off, high competition in

stable habitats reduces species dispersal ability, decreasing effective population sizes.

In smaller local populations, higher fixation rates of molecular substitutions increases the

likelihood of speciation. Species diversity triggers more speciation by further increasing

the spatial structuring of populations and decreasing effective population sizes. Resource

specialization also trades-off with dispersal ability and could account for speciation at

higher trophic levels. Biotic interactions may promote parapatric speciation and generate

spatial patterns in diversity such as the latitudinal diversity gradient. I discuss evidence

for this mechanism and emphasize the need for studies coupling ecology and speciation

theory within landscapes across latitude.

Keywords: molecular evolution, latitude diversity gradient, biotic interactions, competition, dispersal, population

size

Introduction

The extraordinary diversity of species on earth provides infinite motivation to unravel the
underlying ecological and evolutionary rules. Evidences that biodiversity is linked to spatial
features suggest that speciation mechanisms cannot be understood outside of their geographical
context (Levin, 1993). The most famous example of spatial gradient in species diversity is
the latitudinal biodiversity gradient that already puzzled Darwin (1859) and Wallace (1878).
The current global distribution of biodiversity follows a strongly negative gradient from the
tropics to the poles across multiple taxonomic groups (Mittelbach et al., 2007). The association
between species spatial distribution and diversification is also reflected in the fossil record, where
geographic range size is negatively related to speciation (Jablonski and Roy, 2003) and extinction
rates (Jablonski, 2007). Classic examples of exceptional events of speciation, including Darwin’s
finches (Grant and Grant, 2011), Anolis lizards (Losos, 1998) or African cichlids (Schliewen
et al., 1994; Barluenga et al., 2006), took place in confined spatial areas such as islands or lakes.
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Together, this suggests that the rate of species diversification is
strongly linked to the spatial distribution and connectivity of
meta-populations. However, the role played by this aspect of
the speciation process in shaping diversity patterns has generally
been neglected (Kisel and Barraclough, 2010).

Gavrilets (2014) highlighted the need to integrate models of
community ecology with those developed in speciation theory
in order to better understand the processes of speciation.
Community ecology and speciation biology share the common
interest of understanding what generates clines in species
diversity and many theoretical similarities exists between the
fields (e.g., the neutral biodiversity theory, Hubbell, 2001). In
particular, the link between the latitudinal diversity gradient, the
diversity of biotic interactions and the likelihood of speciation
is a long-standing idea (Dobzhansky, 1950; MacArthur, 1969).
Dobzhansky proposed that predictable tropical climate should
select for greater specialization and species diversity. Since
differences in either the intensity of speciation or extinction
could ultimately account for the latitudinal cline in biodiversity
(Weir and Schluter, 2007), a higher frequency of divergent
selection along ecological axes in the tropics (Mittelbach et al.,
2007), was proposed to trigger frequent events of ecological
speciation (Schluter, 2009). Nevertheless, for speciation to occur,
a geographically defined group of individuals must diverge from
others and accumulate genetic and/or phenotypic differences that
distinguish it as a new species (Levin, 1993).

In contrast to the view that speciation is the direct outcome
of competition for resources, a trade-off between dispersal
and competition/specialization may enhance speciation by
affecting effective population size. Fedorov (1966) remarked
that tropical forests are shaped by a multitude of contiguous
populations of closely related species and postulated that the
role of genetic drift prevails over that of natural selection in
shaping new species. Here, building on Fedorov’s observations,
I propose the hypothesis of a possible direct link between biotic
interactions, connectivity among populations, and speciation
that may ultimately explain the higher diversity in the tropics
(Mittelbach et al., 2007). I argue that under stable conditions,
biotic interactions promote speciation via a trade-off between
investments in competitive efficiency and dispersal abilities.
While the metabolic theory of molecular evolution, which
postulates a link between temperature-dependant metabolic rate
and speciation, has received recent attention (Allen et al., 2006;
Gillooly and Allen, 2007; Stegen et al., 2009; Dowle et al., 2013),
the role of neutral parapatric speciation due to lower dispersal
in the tropics has remained little explored. Five decades after
the publication of Federov’s observations and based on new
molecular evidences (e.g., Lasso et al., 2011), I hypothesize
that the ecological trade-off between resource use efficiency and
dispersal abilities promotes higher speciation rates in the tropics.

Stability Selects for High Competitive and
Low Dispersal Abilities

Brown and Gibson (1983) rightly stated that “ultimately, all
general patterns of diversity must be attributed to physical causes,

either historical perturbations or contemporary variation in the
physical environment.” In particular, the shaping of species
lineages should be linked to the long-term physical history of
habitats (Pellissier et al., 2014). Greater stability over geological
time periods has long been proposed to promote biodiversity,
mostly because the risk of extinction diminishes (Darwin,
1859; Wallace, 1878). Reconstructions of ancient climate indeed
indicate that the tropics remained climatically more stable than
higher latitudes, and thus should have retained the most ancient
lineages (Dynesius and Jansson, 2000). Accordingly, most extant
clades have tropical origins, where basal clades in phylogenies
are distributed at lower latitudes (Wiens and Donoghue, 2004).
While stability obviously prevents species extinction, evidences
indicate that speciation is also faster in the tropics (Weir and
Schluter, 2007), but the mechanism is poorly described. A self-
sustaining mechanism should provide an explanation for the
origin of species diversity in stable habitats.

In ecology, stable habitats are traditionally associated with
species possessing a particular life history (MacArthur and
Wilson, 1967; Grime, 1977). In Grime’s C-S-R triangle theory,
stable habitats support C species, which optimize competitive
abilities (Grime, 1977). Vegetation climax after ecological
successions provide the best examples for the link between
increasing stability and competition (Horn, 1974). As vegetation
becomes well established in response to persistent climatic
conditions, species compete for space, light and nutrients and
only those that are most efficient can persist (Horn, 1974;
Tilman, 1985). Stable habitats have also been associated with
K species along the r-K gradient of MacArthur and Wilson
(1967). In a stable environment, species densities are close to the
carrying capacity (K) and species invest more in fewer offspring,
increasing the probability of survival to a long adulthood
(MacArthur and Wilson, 1967). Ecological successions have
counterparts at an evolutionary scale. Examples of “evolutionary
successions” have been described in island systems (Böhle et al.,
1996; Panero et al., 1999). Darwin (1859) noted that most tree
species make poor long-distance dispersers due to the large
size of their seeds and, as a result, new islands are more
often colonized by herbaceous species rather than trees. Under
competition for resources, herbaceous clades colonizing islands
rapidly evolve more competitive traits such as woodiness and
tree-like morphologies (Böhle et al., 1996; Panero et al., 1999).
Stable environments are associated with species evolutionary
trajectory toward higher level of competitive abilities.

Competitive abilities generally trade-off with dispersal
abilities, referring to either dispersal distance or dispersal
frequency (McPeek and Holt, 1992; Ehrlén and Groenendael,
1998; Turnbull et al., 1999; Cadotte et al., 2006). In general, plant
species that are better competitors do not exhibit adaptations
for long distance dispersal (Ehrlén and Groenendael, 1998).
Accordingly, in habitats with stronger competition for light,
species with poor dispersal capacities are more prevalent (Ozinga
et al., 2004). The evolution of competitive traits over dispersal
abilities under varying degrees of stability can be illustrated by
simple metapopulation models adapted from Levins and Culver
(1971). Given competition between two species where species
1 is a superior competitor to species 2 defined by the following
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equations,

dp1
dt

= d1p1
(

1− p1
)

− ep1
dp2
dt

= d2p2
(

1− p2 − p1
)

− ep2

where p is the proportion of occupied sites, d the dispersal ability
to reach unoccupied sites, and e an external factor of extinction,
which is inversely proportional to environmental stability. The
globally stable equilibrium point is given by:

p1
∗
= 1− e/d1

p2
∗
= 1− p1 − e/d2

The relative proportion of sites occupied by each species depends
on the degree of perturbation relative to the species dispersal
ability. In conditions of intermediate stability, both species
survive if d2 >d1. Ecologically, intermediate level of perturbation
maintains the highest level of diversity (Roxburgh et al., 2004). In
contrast, stability is expected to promote the dominance of the
most competitive species, so that without perturbation (e = 0),
only the most competitive species p1survives. Therefore, in stable
conditions, only the best competitors are expected to co-exist.
While a strategy based on dispersal is disadvantaged, stability
selects for the evolution of competitive abilities (Calcagno et al.,
2006).

Lower dispersal abilities impact the gene flow among
individuals in a landscape. Wright (1946) pointed out the link
between limited dispersal and reduced effective population size
(Ne): “It is shown that in the absence of disturbing factors,
short range dispersal [. . . ] leads to considerable differentiation
not only among small subdivisions but also of large ones.”
Limited dispersal leads to a less connected network of gene
flow between populations and thus causes a decrease in effective
population size. According to Wright’s model with limited
dispersal, isolation-by-distance reduces effective population size,
even for species that are spread across a wide landscape. The
resulting neighborhood effective population size is lower than
the census size and related to species dispersal abilities by the
following equation:

Ne = 4πσd
2D

where D is the density of pairs contributing to the reproduction
and σd the standard deviation of dispersal distance representing
the dispersal kernel (Wright, 1946). This model linking effective
population size and dispersal is in line with the positive
correlation between the observed range sizes of species and
their dispersal abilities (Gaston, 1998). Together, ecological and
evolutionary demographic theories suggest a direct connection
between stability, competition, lower dispersal, and decreased
effective population size (Figure 1).

Population Size, Nearly-neutral
Substitutions and Speciation

A decrease in population size causes an increase in the rate of
non-neutral substitutions (Ohta, 1992; Lanfear et al., 2014), and

also in the rate of neutral substitution under specific geometric
(e.g., non-circular meta-population distribution, Allen et al.,
2015), or demographic conditions (e.g., overlapping generations,
Balloux and Lehmann, 2012). As predicted by the nearly neutral
theory ofmolecular evolution (Ohta, 1992), a decrease in effective
population size (Ne) leads to easier fixation of nearly-neutral
mutations (Ohta, 1992; Lanfear et al., 2014). The probability µf
that the allele will be fixed in the population was first derived
by Kimura (1957) and depends upon the effective Ne and census
population sizes N and the strength of selection s as:

µf =
2sNe/N

1− e−4sNe

In the case of small effective population size, the coefficient
of selection s is balanced by drift. As the effective population
size decreases, the influence of drift increases, resulting in a
higher ratio of non-synonymous to synonymous substitutions
(dN/dS) (Kryazhimskiy and Plotkin, 2008). In particular, the
probability of fixation of slightly deleterious mutations increases
rapidly and approaches the neutral value (Ohta, 1992). Tachida
and Iizuka (1991) further suggested that smaller population size
might also increase the probability of fixation of slightly beneficial
mutations, in comparison with the case of extensive dispersal
within a large population. Selection can thus be stronger in small
than in large populations (Ohta, 1992), but this depends on
how the rate of migration scales with population size (Gavrilets
and Gibson, 2002). As theoretically expected, accelerated rates
of non-synonymous molecular substitution are typically found
in geographically restricted populations, such as on islands
(Johnson and Seger, 2001; Woolfit and Bromham, 2005).

In stable habitats, species should invest in competitive rather
than dispersal traits, and reduced effective population size should
increase intra-specific genetic structure (Wright, 1946; Ohta,
1992). The link between dispersal and genetic differentiation
among lineages found in coral reef fishes (Riginos et al., 2014)
or plants (Hardy et al., 2006; Duminil et al., 2007; Theim
et al., 2014) suggests a direct link between dispersal, effective
population size, and genetic structure. Furthermore, assuming
a trade-off between competitive and dispersal abilities, intra-
specific non-synonymous substitutions should correlate with
traits representing syndromes of a K strategy. Accordingly, plant
height showed a positive correlation with the ratio of non-
synonymous to synonymous substitutions (dN/dS) across 138
families of flowering plants (Lanfear et al., 2013; Bromham et al.,
2015), while longevity was a strong predictor of this ratio in
animals (Romiguier et al., 2014). Similarly, large mammals and
birds have a higher rate of amino acid substitutions in proteins
(Popadin et al., 2007; Weber et al., 2014). In mammals, the
subdivision of a species into sub-populations, such as in the
case of competition for territories, promotes both high rates of
speciation and chromosomal evolution consistent with an effect
of small population size (Bush et al., 1977). Thus, as expected
from a link between competitive abilities and effective population
size, species displaying traits related to competition have a greater
rate of non-neutral substitutions triggering protein evolution
(Popadin et al., 2007; Lanfear et al., 2014; Romiguier et al., 2014;
Weber et al., 2014).
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FIGURE 1 | Schematic representation of the mechanism of

speciation in a stable habitat. Habitat stability as found in the

tropics selects for the evolution of stronger competitive abilities (C).

Since resource investment in competition and dispersal (d) should

trade off, inferior dispersal in competitive species implies a decrease in

effective population size (Ne). In smaller populations, higher fixation

rate of molecular substitutions (µ) increases the likelihood of speciation

events. Higher diversity further promotes diversity since the presence

of more species increases spatial structuring of populations, favoring

genetic differentiation, and speciation.

Organisms prioritizing competitive over dispersal abilities
can become geographically isolated more easily, which should
enhance speciation (Mayr, 1963). For marine fishes the
association between genetic structure, dispersal and species
richness suggests that reduction in gene flow can promote
speciation (Riginos et al., 2014). Kisel and Barraclough (2010)
found that both dispersal and gene flow in terrestrial taxa
were good predictors of speciation rates. Furthermore, small
ranged species are over-represented in global biodiversity, which
may indicate that speciation via dispersal limitation and small
population size is an important mechanism in nature (Gaston,
1998). Under limited dispersal, speciationmay arise from gradual
separation of sub-populations as molecular substitutions become
fixed locally (Figure 1). Prezygotic or postzygotic isolating
barriers may further counter gene flow to avoid maladapted
hybrids (Mayr, 1963; Ramsey et al., 2003; Lukhtanov et al., 2005;
McBride and Singer, 2010). Greater isolation by distance (Martin
and McKay, 2004), genetic divergence (Eo et al., 2008), but
limited occurrence of hybrids (Hopkins, 2013; Surget-Groba and
Kay, 2013) has been documented in the tropics andmay represent
on-going speciation events within local sub-populations.

Non-synonymous substitutions arising in small populations
could promote evolution of novel ecological preferences. Since
the rate of fixation of non-neutral mutations might be higher
(Tachida and Iizuka, 1991; Ohta, 1992) and proteins evolve
faster in small populations (Ohta, 2002), this may increase the
overall rate of morphological evolution. For instance, in the
fossil record small ranged and transient trilobite fossil species
show increased morphological variation (Hopkins, 2011), while
large ranged species are more likely to show morphological stasis
(Gould and Eldredge, 1977). As formulated in the theory of

punctuated equilibria (Gould and Eldredge, 1977; Eldredge et al.,
2005), ecological innovations might arise at higher frequency in
smaller populations. This would also explain the faster rate of
morphological evolution in tropical islands (Millien, 2006) and
lakes (Schliewen et al., 1994), where population size is smaller
(Woolfit and Bromham, 2005) compared to larger continental or
ocean surface. Stable habitats reunite the theoretical conditions
expected to fuel speciation, including lower effective population
size, local mating linked to dispersal limitation and high levels
of local genetic variation (Gavrilets, 2004). Together this suggests
that molecular evolution fuelling speciation is faster under stable
conditions, high competition and limited dispersal, which is
characteristic of the tropics. Population differentiation might be
further fuelled by higher metabolic and mutation rates expected
at lower latitudes (Wright et al., 2006; Stegen et al., 2009).

The current argument suggests a link between rate of
molecular substitution and rate of speciation. Evidences of a link
between the rates of molecular evolution and diversification have
been reported (Eo and DeWoody, 2010; Lanfear et al., 2010; see
Dowle et al., 2013). For instance, Lanfear et al. (2010) identified
a correlation between clade rates of molecular evolution and
net-diversification in birds. However, the demonstration that the
correlation between molecular evolution and speciation hinges
on population sizes would require a sampling at the scale of
population subdivision. Moreover, as raised by Dowle et al.
(2013), there is currently a lack of evidence of differential
population size along latitudinal gradient. The absence of
evidence primarily result the lack of studies investigating the
genetic structure of population with a comparable sampling
design across latitudes. Nevertheless, many studies highlight
unexpected high genetic structure in low latitude species (Martin
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and McKay, 2004; Born et al., 2008; Eo et al., 2008; Lasso et al.,
2011), which provide clues of a lower gene flow and smaller
effective population sizes due to limited dispersal. Fedorov’s
ideas relied on the hypothesis of higher rate self-pollination in
tropical trees, which was later contradicted (Bawa, 1974). Gene
flow through pollen dispersal in tropical trees could potentially
occur across long distances (White et al., 2002), but whether
pollen transfer across large distance is common or not still
remains to be documented across many species. Further studies
are therefore required to quantify gene flow among populations
across latitudes.

At the other extreme, in less stable environments larger range
size resulting from higher dispersal may buffer species against
extinction, as suggested by the positive relationship between
range size and duration in the fossil record (Jablonski, 2008).
This could explain the larger range size at higher latitudes
(Rapoport’s rule, Stevens, 1989), which may reduce the risk of
extinction under less stable environmental conditions. Species
with larger range size have greater dispersal ability (Gaston,
1998) and shorter generation time, like r species along the r-
K gradient (MacArthur and Wilson, 1967). Species with shorter
generation time accumulate synonymous substitutions faster
and generally show a higher level of neutral polymorphism
than species with greater longevity or offspring quality (Lanfear
et al., 2014; Romiguier et al., 2014). Species with a wide
distribution and high dispersal are stabilized in their genetic
variation by their large population size and the process of
gene flow (Gould and Eldredge, 1977), but which also limits
morphological or ecological evolution. Yet, at higher latitude, in
less stable environments, speciation may also happen neutrally
related to species range dynamics. For instance, range dynamic
in interaction with habitat heterogeneity can result in range
fragmentation and high rate of speciation (Arenas et al.,
2012, 2013; Mona et al., 2014). Populations in expansion
are expected to fix mutations though genetic drift occurring
in populations located on the edge of the expansion, which
may promote speciation (Excoffier and Ray, 2008). However,
pronounced range dynamic at higher latitude should also have
increased extinction rates (Dynesius and Jansson, 2000). Better
sampled phylogenies at the scale of ongoing population divisions
(i.e., infra-species) within landscapes is necessary to compare
diversification processes across latitudes.

Diversity Increases Landscape
Fragmentation

Species diversity itself could be a driver of species diversification
following the famous “diversity begets diversity” model, since
speciation rates correlate with diversity (Emerson and Kolm,
2005). I propose that, when more than one species co-exist in a
landscape, and assuming the same potential density of pairs in
all species, the effective population size of a species i follow the
formula:

Ne =
4πσ

2
di
D

Sp

where D is the density of pairs contributing to the reproduction
σdi the standard deviation of dispersal distance of the species i
and Sp the number of species. An increase in species diversity
causes a decrease in species relative density, thus reducing
effective population size. Increasing the number of species thus
decreases the local population size, enhancing genetic drift, and
the likelihood of divergence (Wright, 1946; Ohta, 1992).

A higher rate of neutral molecular evolution has been found in
tropical clades (Wright et al., 2006; Gillman et al., 2009), and in
clades with greater numbers of species (Duchene and Bromham,
2013), but small population size was dismissed as an explanation
based on the assumption that neutral substitution is not
influenced by population size (Charlesworth, 2009). However,
the neutral substitution rate is higher for smaller populations
in the presence of overlapping generations, as is largely the
case in tropical species (Charlesworth, 2009; Balloux and
Lehmann, 2012). In addition, limited dispersal in highly diverse
landscape may shape more patchy distribution of populations
with non-regular spatial structures (Figure 1). Allen et al.
(2015) demonstrated that singular geometric spatial structures of
individuals or populations that form in high diversity landscapes
(Figure 1) can increase the rate of synonymous substitution. The
higher rate of molecular evolution in tropical clades supports
the central role of effective population size in tropical speciation
(Wright et al., 2006; Gillman et al., 2009, 2012). Therefore, a
higher rate of both neutral and non-neutral substitution could
fuel speciation in stable habitats in interaction with population
sizes.

Ecological Island Syndrome at Higher
Trophic Levels

Specialisation of antagonistic and mutualistic interactions is
another typical response of higher trophic levels to resource
competition in stable habitats (Futuyma and Moreno, 1988).
Specialisation allows an increase in the efficiency of the use of
a given resource, to the detriment of a wider trophic regime
(Futuyma and Moreno, 1988). Trophic specialization is central
to models of adaptive radiation (Schluter, 2000), and may
underlie much of the shaping of species diversity (Jocque et al.,
2010; Forister et al., 2012). Like traits related to competitive
abilities, trophic specialization is expected to be negatively related
to dispersal, as the probability of finding suitable conditions
elsewhere declines with specialization (Salisbury et al., 2012).
Following Janzen (1968), who described plants as islands in space
for the herbivorous insects that feed on them, a specialist will
only be distributed in the area overlapping host or prey species,
thus increasing the fragmentation of its populations (Figure 2).
Hence, specialization results in a limited population size, which
should increase the probability of speciation (Wright, 1946; Ohta,
1992).

Fragmentation of populations following the appearance of
strong biotic interactions may trigger an increased rate of
molecular substitution and speciation (Gavrilets et al., 2000). In
both marine and terrestrial ecosystems, biotic specialization is
associated with marked intra-specific spatial genetic structure.
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FIGURE 2 | Example of biotic interactions impacting the spatial

configuration of populations. The butterfly Jalmenus evagoras of the

Lycaenidae feeds on ∼16 Acacia plant species (A) (Pierce and Nash,

1999), and is in an obligatory mutualism with principally two

Iridomyrmex ant species (Iridomyrmex anceps, I. rufoniger) (B). As a

consequence, the distribution of J. evagoras (C) is not only constrained

by the host plant, but also by the mutualist ant, causing population

fragmentation and likely genetic differentiation (Eastwood et al., 2006).

(D) Schematic view of the trophic link between the butterfly J.

evagoras and its host plants and ant species. Distribution maps were

obtained using species distribution models with a random forest

statistical approach applied to occurrences from http://www.gbif.org/.

Pseudo-absences were generated randomly across Australia. The

distribution of J. evagoras was constrained by the forecasted range of

the host plants and mutualistic ant species. Acacia spectabilis image

by Melburnian [Own work (digital photograph by author)] [CC BY 3.0

(http://creativecommons.org/licenses/by/3.0)], via Wikimedia Commons.

Jalmenus-evagoras-ventral image by Benjamint444 (Own work) [GFDL

1.2 (http://www.gnu.org/licenses/old-licenses/fdl-1.2.html)], via Wikimedia

Commons.

Fishes in close mutualism with corals, sea urchins, or anemones
show exceptional spatial genetic structure (Hoffman et al., 2005)
and a higher rate of diversification (Litsios et al., 2012). Zayed and
Packer (2007) found that a species of bee with a specialized pollen
diet had considerably higher spatial genetic variation among
populations compared to a generalist counterpart. Strong spatial
genetic differentiation has also been found among populations
of mutualistic butterflies of the family Lycaenidae (Eastwood
et al., 2006; Pellissier et al., 2012), which has led to even stronger
differentiation in one of their specialized parasitoid wasps
(Anton et al., 2007). Higher degrees of specialization or multiple
biotic constraints (e.g., the required presence of a mutualist
in addition to the trophic host, Figure 2) should reinforce the
degree of fragmentation. The idea that biotic constraints play
a major role in the process of tropical diversification is not
novel (Dobzhansky, 1950), and has led to the hypothesis that
the latitudinal diversity gradient is mainly due to latitudinal
differences in biotic interactions (Wallace, 1878; Dobzhansky,
1950). Jocque et al. (2010) also argued that the trade-off between
specialization and dispersal underlies the latitudinal diversity
gradient, since specialized biotic interactions are more common
in the tropics (Schemske et al., 2009). Accordingly, I propose
that speciation associated with biotic interaction may not be
necessarily due to filling novel niches, but results from spatial

fragmentation of populations due to limited dispersal which
promotes local divergence.

Conclusion

Although it is becoming increasingly clear that many tropical
clades experience higher speciation rates, very little is known
about the processes of divergence among populations (Surget-
Groba and Kay, 2013). Increased evidences of unexpected
high degree of genetic differentiation among populations of
tropical species argue for pursuing Fedorov’s idea (Lasso et al.,
2011). Here, I discussed how biotic constraints may modulate
population size, the rate of molecular evolution and speciation
in stable habitats like those found in the tropics. I propose
that under stable environmental conditions, biotic constraints
promote speciation through a trade-off between competition
and dispersal. In turn, this can be extended to specialization-
dispersal trade-offs at higher trophic levels (Jocque et al., 2010).
The current theory can be broken down into a series of elements
which can be validated independently on empirical data and
thus represent a testable framework (Table 1). The strength of
the present concept is its ability to bridge theories in ecology
(C-S-R, r-K theories, Rapoport’s rule), paleontology (punctuated
equilibria) and evolution (the nearly neutral theory of molecular
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TABLE 1 | List of syndromes that provide indication of the links between competitive abilities, dispersal abilities, population sizes, and species

diversification along a latitudinal gradient.

Sign Syndromes References

X Y

Stability and latitude − Diversity Latitude Gaston, 2000; Kreft and Jetz, 2007;

Rohde, 2007

− Intra-specific genetic structure Latitude Martin and McKay, 2004; Born et al.,

2008; Eo et al., 2008

− Rate of molecular evolution Latitude Wright et al., 2006; Gillman et al.,

2009;

+ Range size Latitude Stevens, 1989; Gaston, 1998

− Lineage age Latitude Weir and Schluter, 2007

− Speciation rate Latitude Cardillo, 1999; Weir and Schluter,

2007

− Cryptic diversity Latitude Burns et al., 2008; Smith et al., 2008

Stability and competition + Environmental stability More competitive species Horn, 1974; Tilman, 1985

Competition and evolution + Longevity Non-synonymous substitution Lanfear et al., 2014; Romiguier et al.,

2014

+ Body size Amino-acid substitution Bromham, 2002; Popadin et al.,

2007; Weber et al., 2014

Dispersal and population size + Dispersal Population size Hubbell, 1979

− Dispersal Intra-specific genetic structure Hardy et al., 2006; Kisel and

Barraclough, 2010

+ Dispersal Range size Gaston, 1998; Lester et al., 2007

Population size and evolution + Rate of molecular evolution Rate of speciation Wright et al., 2006; Gillman et al.,

2009; Lanfear et al., 2010; Gillman

et al., 2012

+ Range size Duration in fossil record Jablonski, 2008

− Duration in fossil record Fossil morphological diversity Hopkins, 2011

− Range size Speciation Jablonski and Roy, 2003

− Range size Species diversity Gaston, 1998

− Population size Rate of molecular evolution Ohta, 1992; Woolfit and Bromham,

2005

+ Diversity Rate of molecular evolution Duchene and Bromham, 2013

Trophic specialization − Trophic specialization Range size Williams et al., 2009

− Trophic specialization Dispersal Salisbury et al., 2012

+ Trophic specialization Intra-specific genetic structure Hoffman et al., 2005; Eastwood et al.,

2006 Anton et al., 2007; Habel et al.,

2009

Columns show the relationships documented in the literature that provide evidence for the proposed mechanism.

evolution). Only by cutting across disciplines can we hope to
unravel the mechanisms driving the origin of species diversity
on earth. The continued reductions in DNA sequencing costs
which allow sampling many populations across tropical and
temperate landscape, and estimating both Ne and substitution
rates, promise many advances in the years to come.
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