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Sexual dimorphism, a poorly understood but crucial aspect of vector mosquito biology,

encompasses sex-specific physical, physiological, and behavioral traits related to

mosquito reproduction. The study of mosquito sexual dimorphism has largely focused

on analysis of the differences between adult female and male mosquitoes, particularly

with respect to sex-specific behaviors related to disease transmission. However, sexually

dimorphic behaviors are the products of differential gene expression that initiates during

development and therefore must also be studied during development. Recent technical

advancements are facilitating functional genetic studies in the dengue vector Aedes

aegypti, an emerging model for mosquito development. These methodologies, many of

which could be extended to other non-model insect species, are facilitating analysis of

the development of sexual dimorphism in neural tissues, particularly the olfactory system.

These studies are providing insight into the neurodevelopmental genetic basis for sexual

dimorphism in vector mosquitoes.
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Sexual Dimorphism, a Critical Aspect of Pathogen Transmission
by Vector Mosquitoes

Mosquitoes, including Aedes aegypti, which exhibits innate sexually dimorphic behaviors that
contribute to the transmission of dengue, yellow fever, and chikungunya viruses, are excellent
subjects for studies that examine the biological basis of sexual dimorphism. Genes that contribute
to mosquito sexual dimorphism, including the development of neural circuitries that promote
human host-seeking, female blood-feeding behavior, mating, and oviposition,may represent targets
for vector control (Clemons et al., 2010a; Tomchaney et al., 2014). Unfortunately, knowledge
concerning the extent of sexual dimorphisms in the structure of the central nervous system (CNS),
the control of sex-specific behaviors by sexually dimorphic neurons, and the developmental genetic
basis for sexually dimorphic behaviors is limited in all organisms, including insects (Kimura, 2011).

Research on the neurodevelopmental genetic basis for insect sexual dimorphism has largely
been restricted toDrosophila melanogaster, a genetically-tractable—albeit highly derived—dipteran
insect that displays innate sexually dimorphic behaviors. Although early studies suggested
that few significant anatomical sexual dimorphisms exist in the D. melanogaster CNS, more

Abbreviations: CNS, Central nervous system; DETs, differentially expressed transcripts; dsx, doublesex; siRNAs, small

interfering RNAs; dsRNA, double-stranded RNA; ORNs, olfactory receptor neurons; OR, olfactory receptor; IRs, ionotropic

receptors; TALENs, TALE nucleases; FAIRE-seq, formaldehyde-assisted isolation of regulatory elements paired with DNA

sequencing.
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recent investigations indicate that the Drosophila CNS
has sexually distinct morphologies that originate during
development (reviewed by Kimura, 2011). The availability of
molecular markers and transgenic reporters to label particular
Drosophila neurons greatly facilitated detection of sex-specific
developmental differences. Sex-specific differences likely exist in
the developing nervous systems of many other insects. However,
given the lack of molecular markers for developing neurons
in non-model species, comparable analyses have not yet been
performed in most insects.

Mosquito genome projects (Holt et al., 2002; Nene et al.,
2007; Arensburger et al., 2010; Neafsey et al., 2015) facilitated
research in new facets of mosquito biology, including functional
developmental genetics. Magnusson et al. (2011) assessed
sex-specific transcriptomes throughout Anopheles gambiae
development and characterized the functions of several testis-
and ovary-specific genes during gonad development. Functional
genetic analysis of nervous system development has been
performed in A. aegypti (Clemons et al., 2011; Haugen et al.,
2011; Mysore et al., 2013, 2014a,b; Sarro et al., 2013), an
emerging model for vector mosquito development studies
(Clemons et al., 2010a). A recent functional genetic study
explored the development of sexual dimorphism in the A.
aegypti pupal nervous system (Tomchaney et al., 2014). Here, we
review these findings and highlight possible future strategies and
methodologies for dissecting the developmental neurogenetic
basis for sexual dimorphism in A. aegypti,many of which may be
applicable to other non-model arthropods.

Global and Spatial Analysis of Sexually
Dimorphic Gene Expression in the
Developing A. aegypti Nervous System

Custom microarrays were used to examine global differences in
female vs. male gene expression in the developing A. aegypti
pupal head (Tomchaney et al., 2014). Head tissues were prepared
24 h after puparium formation, a critical period for nervous
system development (Mysore et al., 2011, 2013, 2014a,b). At
this time point, which follows periods of extensive proliferative
activity and pupal histolysis, neuropils characteristic of the
adult brain, including the antennal lobe, central complex, and
optic lobe neuropils, have begun to form. Extensive neural
process outgrowth, targeting of higher order brain neurons,
synapse formation, and arborization also occur, and the increased
neuropil density of the adult is generated (Mysore et al.,
2011). In total, 2527 differentially expressed transcripts (DETs)
were identified. Analysis of DETs indicated that dimorphic
expression of genes linked to proteolysis, metabolism, catabolic
and biosynthetic processes, ion transport, cell growth, and
proliferation underlie differences in developing A. aegypti males
and females.

Sex-specific pupal brain spatial expression patterns were
assessed for a subset of DETs (Figure 1; Tomchaney et al., 2014).
These investigations were facilitated by the work of Mysore
et al. (2011), who used cross-reactive Drosophila antibodies to
establish the first set of molecular markers for the developing

mosquito brain. Many of the antibodies work well in conjunction
with a combined whole mount in situ hybridization/protein
localization protocol (Haugen et al., 2010), which employs a
detergent-treatment permeabilization step that has facilitated
mRNA localization in many arthropod species (Patel et al.,
2001; Duman-Scheel et al., 2002). The results obtained validated
the microarray data and laid a foundation for future studies.
For example, differential expression of the growth regulators
cyclin-dependent kinase 4/6 (cdk4/6) and p53 (Figures 1C,I)
may contribute to sexually dimorphic neurite outgrowth (Di
Giovanni et al., 2006; Flannery et al., 2010). p53 also controls
apoptosis (reviewed by Sutcliffe et al., 2003), suggesting that
this process may be regulated in a sex-specific manner in
the developing brain. Differential expression of synaptojanin
(synj) (Figure 1G), which regulates endocytosis at the Drosophila
synapse (Verstreken et al., 2003), was also detected in A.
aegypti. Furthermore, geko, which mediates Drosophila olfactory
responses to ethanol (Shiraiwa et al., 2000) and is dimorphically
expressed in A. aegypti (Figure 1E), is an interesting target
for future functional studies. These expression studies, which
detected sex-specific gene expression in the optic lobe, antennal
lobe, and mushroom body (Figure 1; also confirmed in sectioned
brains), suggested that sex-specific differences exist in the visual
and olfactory systems and the processing of sensory information
and invoked the question of how dimorphic gene expression is
regulated in the developing mosquito nervous system.

Doublesex, a Regulator of Sex-Specific
Gene Expression in the Developing
Mosquito Brain

The D. melanogaster doublesex (dsx) gene encodes a key
terminal transcription factor in the sex-determination pathway
(Kimura et al., 2005; Mellert et al., 2010). Drosophila dsx
pre-mRNAs are spliced in a sex-specific manner (Burtis and
Baker, 1989; Ryner et al., 1996), generating male (DsxM)
and female (DsxF) proteins with a common N-terminus and
DNA-binding domain, but distinct C-termini that differentially
direct sex-specific gene expression (Christiansen et al., 2002;
Camara et al., 2008). Male and female dsx splice variants were
detected in A. aegypti (Salvemini et al., 2011), and analysis
of their expression (Tomchaney et al., 2014) revealed sexually
dimorphic dsx expression patterns in the A. aegypti antennal lobe
and mushroom body (Figure 2). These sex-specific expression
patterns differ fromD.melanogaster, in which sexually dimorphic
dsx expression was detected in only small subsets of neurons
(Lee et al., 2002; Rideout et al., 2010). Moreover, dsx is expressed
much more broadly in the A. aegypti female and male pupal
brain. For example, dsx expression is not detected in the D.
melanogaster pupal optic lobe, but sex-specific isoforms of dsx are
expressed abundantly in A. aegypti pupal optic lobes (Figure 2).
These results suggest that Dsx may play a more prominent
role in the regulation of sex-specific neural development in A.
aegypti. Furthermore, search of the A. aegypti genome sequence
uncovered 732 Dsx consensus binding sites, most of which
are associated with genes that group under gene ontology
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FIGURE 1 | Sex-specific gene expression in the A. aegypti pupal

brain. The antennal lobe (AL), optic lobe (OPL), suboesophageal ganglion

(SOG), and mushroom body (MB) regions are marked (red dots) in a

whole brain labeled with anti-N-Cadherin (green in A,B) and TOTO

nuclear stain (blue in A,B). These regions were assessed through

confocal imaging following whole mount in situ hybridization and anti-HRP

staining (C–J). Five merged Z-stacks (totaling 5 microns) of brain

hemisegments (oriented dorsal upward in C–J) labeled through anti-HRP

staining (center panels in C–J; green in overlays at right) and riboprobes

corresponding to the indicated transcripts (left panels in C–J; red in

overlays at right) are displayed. Differential expression of cdk4/6 (C,D),

geko (E,F), synj (G,H), and p53 (I,J) is shown in 24 h pupal brains of

females (C,E,G,I) and males (D,F,H,J). cdk4/6 is commonly expressed in

the optic lobe in both sexes (white arrowheads in C,D), but additional

cdk4/6 expression is detected in the ventral suboesophageal ganglion of

males (red arrowhead in D). geko, which is expressed in the optic lobe of

both sexes (white arrowheads in E,F), is expressed in additional large cell

bodies near the female midbrain and in the female antennal lobe (red

arrowheads in E). Expression of synj is detected in the optic lobe

(white/red arrowheads in G,H) and in a subset of midbrain neurons

(yellow arrowheads in G,H). Sex-specific synj expression is detected in

the optic lobe (red arrowheads in G,H), and midbrain levels of synj are

generally higher in males (compare expression adjacent to yellow

arrowheads in G,H). p53 expression is detected in the suboesophageal

ganglion and optic lobe of females (white arrowheads in I). p53

expression is also detected in the male optic lobe (white arrowheads in

J), but not in the subesophageal ganglion of males. Male-specific

p53-expressing neurons are found adjacent to the antennal lobe (red

arrowheads in J). This figure originally appeared in Tomchaney et al.

(2014), which contains further information regarding experimental details.
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FIGURE 2 | Sex-specific expression patterns of dsx in the A.

aegypti pupal brain. Expression of dsx was analyzed through in situ

hybridization experiments performed on paraffin sections of female (A–C)

and male (D–F) heads. Twelve micron sections through different portions

of the brain revealed the antennal lobe (al), lamina (la), and medulla (me)

in brain hemisegments oriented dorsal upward (A–F). Expression of dsx

is detected in the developing female and male visual systems (blue

arrowheads in A,B,D,E). However, sex-specific expression of dsx is

detected in the antennal lobe (marked by red dots in C,F) and

mushroom bodies (red arrowheads in A,D). This figure originally

appeared in Tomchaney et al. (2014), which provides further

experimental details.

terms linked to neurological processes or neural development,
particularly the sensory system and sensory development, and 48
of which flank dimorphically expressed genes identified in the
pupal head microarray experiments (Tomchaney et al., 2014).
Together, these analyses support the hypothesis that Dsx is a
regulator of sexually dimorphic gene expression in the A. aegypti
nervous system and the development of sexually dimorphic traits
in mosquitoes. This hypothesis was examined through functional
genetic characterization of dsx in A. aegypti.

Functional Analysis of Sex-Specific Genes
in the Mosquito Nervous System

Small interfering RNAs (siRNAs), 20–25 nucleotide long double-
stranded RNA (dsRNA) molecules that interfere with expression
of genes complementary in nucleotide sequence, can be used to
silence genes during A. aegypti development. In comparison to
400–600 bp dsRNAs, custom siRNAs are produced commercially
en masse and are more readily designed to be both gene and

species-specific. The time at which gene silencing initiates can
be managed through control of siRNA delivery. This advantage
facilitates the study of embryonic lethal genes during post-
embryonic stages of development; it also permits identification
of the critical periods in which loss of gene function generates
phenotypes of interest, information that may inform the design
of control strategies (Clemons et al., 2010b; Zhang et al.,
2015).

Microinjected siRNA (Clemons et al., 2010b) can be used
to target A. aegypti developmental genes (Clemons et al., 2011;
Haugen et al., 2011; Nguyen et al., 2013; Sarro et al., 2013;
Tomchaney et al., 2014). siRNA can also be delivered to A.
aegypti larvae via chitosan nanoparticles (Mysore et al., 2013,
2014a,b) that are mixed with larval food and orally ingested
by larvae, and which may promote the stability and cellular
uptake of interfering RNA (Zhang et al., 2010). This technique,
for which detailed methodology is available (Zhang et al.,
2015), is relatively inexpensive, requires little equipment and
labor, facilitates high-throughput analysis of multiple phenotypes
including behavioral analyses (Zhang et al., 2010, 2015; Mysore
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et al., 2013, 2014a,b), and could likely be adapted for gene
silencing studies in other insect species. Furthermore, chitosan, a
non-toxic and biodegradable polymer (Dass and Choong, 2008),
could potentially be utilized in the field.

siRNA-mediated silencing facilitated analysis of the function
of dsx during A. aegypti development. siRNAs corresponding
to different target sequences in Aae dsx exon 2, which is
common to male and female splice variants (Salvemini et al.,
2011), were injected into pupae (Tomchaney et al., 2014). The
p53, synaptojanin, geko, rab6, and cyclin dependent kinase 4/6
genes are flanked by Dsx binding sites. The sex-specific pupal
brain expression patterns of these genes were disrupted by
silencing of dsx (Figure 1), indicating that Dsx is required
for sexually dimorphic gene expression in the developing A.
aegypti CNS (Tomchaney et al., 2014). Analysis of the impact
of developmental silencing of dsx on adult phenotypes will
facilitate analysis of adult female morphological, physiological,
and behavioral characters that result from loss of dsx function
during A. aegypti development. In particular, it will be interesting
to assess the impact of dsx silencing on the structure and function
of the olfactory system.

Analysis of the A. aegypti Olfactory System

Mosquitoes, including Aedes, show robust olfactory-driven
behaviors, a number of which are sexually dimorphic (Bowen,
1992; Zwiebel and Takken, 2004; Carey and Carlson, 2011).
Olfaction in adult A. aegypti is mediated by elaborate olfactory
appendages, antennae, and maxillary palps that are adorned with
many hair-like structures called sensilla. A great majority of
these are sensory sensilla that house olfactory receptor neurons
(ORNs) in which olfactory receptor (OR) proteins are embedded.
A plethora of chemicals originating from blood meal host skin
and breath, plant/nectar, and oviposition sites are detected by
these ORNs (Bowen, 1992; Zwiebel and Takken, 2004). Olfaction
initiates with interactions between specific odorants and distinct
subpopulations of ORs present in the dendritic membrane of
ORNs. While all the antennal segments of females are adorned
with olfactory sensilla, they are present only on the terminal two
segments in males. All types of olfactory sensilla in A. aegypti
display sexual dimorphism in numbers. The most abundant type,
trichodea sensilla that detect the majority of volatile cues derived
from plants (in addition to host derived odorants), are four times
more prevalent in females (Syed and Leal, 2009; Liu et al., 2013).
Another category of sensilla, grooved pegs that primarily detect
host-derived odors and express a distinct family of ionotropic
receptors (IRs), are also at least twice as prevalent in females.
Maxillary palps, the “broad spectrum odorant detectors” (Syed
and Leal, 2007), have only one type of olfactory sensillum that is
approximately twice more abundant in females (McIver, 1971).
In absence of clear evidence in mosquitoes so far, it appears that
sexually dimorphic behaviors potentially result from numerical
differences in sensilla, and/or the relative proportion thereof,
as has been recently reviewed for other blood-feeding insects
(Syed, 2015). Sexual dimorphisms in the number and size of
glomeruli in the antennal lobe of the A. aegypti brain have also
been identified (Ignell et al., 2005).

It will be interesting to examine how developmental silencing
of dsx or other sex-determination genes impacts the sex-
specific structure and function of the adult olfactory system
and olfactory-driven behaviors in A. aegypti. For example,
scanning electron microscopy could be used to explore resulting
numerical and morphometric structural anomalies of the
olfactory sensilla. Maxillary palp sensilla house three ORNs
that respond to carbon dioxide, 1-octen-3-ol, and acetophenone
respectively in Culex (Syed and Leal, 2007), Aedes (Grant and
O’Connell, 1996), and Anopheles (Lu et al., 2007). To date,
studies in all three species have been conducted exclusively
in females, and it remains an exciting avenue to explore
sexual differences, especially after dsx manipulation, in males.
Males are attracted to host odors, but likely differ from
females in their response amplitude and dynamics to host
chemostimuli. Sexual dimorphisms may particularly be expected
at very close range and for landing responses, as well as
in the male mating system which facilitates interception of
females at the host (recently reviewed by Oliva et al., 2014).
It is tempting to speculate that developmental differences will
potentiate measureable neuroethological differences. A variety
of behavioral assays can be employed to efficiently dissect
the sexually dimorphic or isomorphic mosquito life behaviors
mediated by odors: sugar feeding (Syed and Leal, 2008), host
feeding (Sim et al., 2012), and oviposition (Laurence et al., 1985).
It is predicted that loss of dsx will disrupt some or all of these
olfactory-driven behaviors that are critical to mosquito survival
and reproduction. Ultimately, the overarching goal will be to
identify and functionally characterize specific Dsx target genes
that regulate sex-specific olfactory-driven behaviors.

Future Functional Genetic Studies in A.

aegypti

Studies in D. melanogaster have demonstrated that Dsx and
Fru function in the same neurons to establish neuronal wiring
and behaviors (Rideout et al., 2007, 2010; Kimura et al., 2008).
Neville et al. (2014) suggested that Drosophila Dsx and Fru act
together, either in a physical complex or through co-regulation
of target genes, to control sex-specific neural development.
Although sex-specific Fru splice forms have been identified in
A. aegypti (Salvemini et al., 2013), the expression patterns of
these transcripts have not yet been assessed in the developing
nervous system, and fru function, has not been characterized in
mosquitoes. Given the likelihood of fertility defects in dsx loss of
function animals and the lack of marked balancer chromosomes
in mosquitoes, conditional siRNA-mediated gene silencing has
proven to be an excellent strategy for analysis of dsx function,
and this technique would likely permit analysis of fru function, as
well as the functions of other components of the sex-specification
pathway. The transcriptional targets of Dsx (Tomchaney et al.,
2014) and Fru may also represent targets for vector control. It
will also be interesting to characterize the functions of various
ORs in males and females, particularly those that are known
to be dimorphically expressed (Bohbot et al., 2007) and that
may be direct or indirect targets of sex-specification genes. In
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addition to RNA interference, targeted mutagenesis is emerging
as a viable option for assessing the function of these target
genes.

Homing endonucleases, zinc-finger nucleases, and TALE
nucleases (TALENs) have been used to generate heritable loss
of function mutations in A. aegypti (Aryan et al., 2013a,b,
2014; Degennaro et al., 2013; Liesch et al., 2013; McMeniman
et al., 2014). Degennaro et al. (2013) used zinc-finger nucleases
to generate targeted mutations in the A. aegypti orco gene,
which encodes the obligate co-receptor in the assembly and
function of heteromeric OR/Orco complexes. Orco is crucial
for discrimination between human vs. non-human hosts and
for repulsion by volatile N,N-diethyl-meta-toluamide (DEET).
Zinc-finger endonucleases were also used to target AaegGr3,
which encodes a subunit of the heteromeric receptor complex
required for carbon dioxide detection (McMeniman et al., 2014).
CRISPR-Cas9 genome engineering was recently reported in
A. aegypti (Basu et al., 2015; Dong et al., 2015; Kistler et al.,
2015). This technology generates high levels of mutagenesis and
is reportedly a cheaper, faster, and more flexible method for
generating loss of function mutations. This technique, which
is rapidly becoming the method of choice for mutagenesis
studies in mosquitoes, will greatly facilitate interrogation of the
adult A. aegypti olfactory system, olfactory development,
and the development of sexually dimorphic traits in
mosquitoes.

Despite substantial progress in mosquito genetic research,
very few cis-regulatory elements (CREs), DNA sequences that
control gene expression, have been identified in the mosquito
genomes. This deficiency—a significant gap in basic knowledge
of mosquito genetics—has resulted in a lack of drivers to
manipulate or prevent gene expression in selected tissues at
specific times. Such tools, which revolutionized research in
genetic model organisms, would facilitate genetic studies and
benefit all avenues of mosquito research, including analysis
of neural development. Discovery of CRE drivers would also
promote the development of transgenic insects for vector control,
such as the female flightless mosquitoes generated with a flight
muscle regulatory element (Fu et al., 2010; Wise De Valdez et al.,
2011). FAIRE-seq, formaldehyde-assisted isolation of regulatory
elements paired with DNA sequencing (Simon et al., 2012), a
powerful new approach for global biochemical isolation of CREs
through their lack of association with nucleosome proteins, will
facilitate genome-wide discovery of putative A. aegypti CREs.
Testing putative CREs in transgenic reporter assays will permit
identification of gene drivers for the brain, olfactory system, and
other tissues of vector importance. FAIRE-seq studies, as well
as the use of other biochemical approaches (i.e., DNAse-seq)

or computational approaches for the identification of insect
CREs (Kazemian et al., 2014), will also facilitate analysis of gene
regulatory networks in the developing nervous system.Moreover,
since FAIRE assesses chromatin states, it is anticipated that
FAIRE-seq might also be applied for epigenetic analysis of sexual
dimorphism in A. aegypti, an exciting prospect.

Conclusions

Recent technical advances are facilitating functional genetic
studies in A. aegypti, an emerging model for vector mosquito
development. These techniques are being used to study the
development of sexual dimorphism in neural tissues, particularly
the brain and olfactory system. Comparison of female vs. male
transcriptomes and detailed spatial analysis of gene expression
patterns are uncovering sexual dimorphisms in the developing
nervous system. siRNA-mediated gene silencing studies and
targeted mutagenesis studies with emerging CRISPR/Cas9
technology can be used to assess the functional contributions
of various genes to the development of sexual dimorphism.
These studies are providing insight into the neurodevelopmental
genetic basis for sexual dimorphism in vector mosquitoes and
may promote the elucidation of novel genetic targets for vector
control strategies.
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