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Green infrastructure consists of ecosystems that provide valuable services to

urban areas. Constructed ecosystems, including green roofs, bioretention systems,

constructed wetlands and bioreactors are artificial, custom-built components of green

infrastructure that are becoming more common in cities. Small size, strong spatial

boundaries, ecological novelty and the role of human design characterize all constructed

ecosystems, influencing their functions and interactions with other urban ecosystems.

Here I outline the relevance of ecology and evolution in understanding the functioning

of constructed ecosystems. In turn, a research focus on the distinctive aspects of

constructed ecosystems can contribute to fundamental science.
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Introduction

Green infrastructure originally referred to natural ecosystems in and around urban areas and
the corridors that connect them (Weber and Wolf, 2000; Hostetler et al., 2011). Current
definitions emphasize that green infrastructure is designed and managed in order to make a large
contribution to urban ecosystem services (European Union, 2013). Usage of the term has expanded
to include ecosystems constructed in the built environment that carry out evapotranspiration
and other functions characteristic of natural ecosystems. Here, the built environment refers to
buildings, roads and associated infrastructure such as parking lots, and is also referred to as
“gray infrastructure” (Tanner et al., 2014). The built environment is usually characterized by hard,
impermeable surfaces and these characteristics result in distinct changes to urban microclimates,
hydrology, and soil properties relative to natural ecosystems. The green infrastructure components
of the built environment include green roofs, living walls, bioretention systems such as bioswales
or raingardens, water treatment wetlands and other artificial habitats (Table S1) (Gill et al., 2007).
One of the “Grand Challenges” of urban ecology is to understand the built environment as a set of
ecosystems that interact with each other and withmore natural habitats in the urbanmatrix (Pataki,
2015). Especially in the urban core, constructed ecosystems form an important component of the
ecology of cities.

Constructed ecosystems can be defined as engineered systems featuring interacting living
and non-living components, designed to produce valuable services (Table S1) (Ranalli and
Lundholm, 2008). Ecosystems such as green roofs and walls, raingardens and sewage treatment
wetlands are obviously part of green infrastructure, as the ecosystem services produced contribute
toward mitigating the negative environmental impact of cities. As components of city landscapes,
energy, materials and organisms can flow between these systems and other urban ecosystems,
warranting a landscape approach to constructed ecosystems (Braaker et al., 2014). Constructed
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ecosystems that occur primarily indoors, such as living walls,
can also be considered a valuable part of green infrastructure
as they provide ecosystem services and enhance human well-
being (Table S1) (Pataki, 2015). Some constructed ecosystems,
such as the various types of bioreactors and biofiltration systems
increasingly used to treat wastewater, may require significant
isolation from other ecosystems to carry out their functions and
may have limited interaction between system components and
organisms from outside. One of the key variables influencing the
function of such ecosystems and their effect on urban ecology as
a whole is thus the degree of connection with other ecosystems
(Todd and Josephson, 1996; Lundholm, 2015a).

There is already a good deal known about the function
of the natural components of green infrastructure, such as
urban forest and wetland patches, but constructed ecosystems
represent a relatively new addition to the field. I surveyed
Google Scholar for various keywords related to urban ecology
and green infrastructure. While references to the parent fields
of ecology and evolution have stayed relatively constant over the
last decade, references to constructed ecosystems have increased
dramatically over the same period (Figure 1). The burgeoning
interest in constructed ecosystems has been matched by an
increase in their prevalence in urban landscapes (Soreanu et al.,
2013; Liu et al., 2014; Williams et al., 2014; Wu et al., 2015),
so a full understanding of urban ecology is incomplete without
recognition of the structure and function of these components
of green infrastructure. This paper provides an ecologist’s
perspective on the commonalities between seemingly disparate
kinds of constructed ecosystem and how they differ from natural
ecosystems. I outline the importance of ecological understanding

FIGURE 1 | Google Scholar search hits for terms related to green infrastructure and constructed ecosystems for 5 year intervals.

in improving the functioning of constructed ecosystems. I also
outline how the distinct features of constructed ecosystems can
yield fundamental insight into ecology and evolution.

Distinctive Features of Constructed
Ecosystems

As ecosystems, installations as different as green roofs or walls on
building exteriors and membrane bioreactors deep inside water
treatment facilities share key features. In each case, engineered
components, such as the physical containers of bioreactors, are
essential to the function of the system. These components directly
impact ecosystem functioning, for example, engineered retention
fabrics underlying green roofs contribute to their stormwater
capture functions (Savi et al., 2013). They also support and
influence the biological components of the systems. Human
design is thus an essential factor underlying all constructed
ecosystems. Constructed ecosystems feature relatively simple
designs, compared with the obvious complexity of their natural
counterparts. Indeed, some of these systems feature tight control
over some aspects of the biological communities as well, as in
treatment wetlands installed with single plant species, but there
are always spontaneous dynamics that can affect community
structure and ecological functioning as well, and the degree to
which ongoing human intervention organizes these ecosystems
can vary greatly, even within the same kind of ecosystem
(Lundholm, 2015a). There is thus a “wild” element inherent to
constructed ecosystems and complexity comes with this wildness
despite human attempts at simplification and control.
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In comparison to other highly human-dominated ecosystems,
such as forest plantations or agricultural fields, constructed
ecosystems tend to have extremely distinct spatial boundaries
differentiating them from other ecosystems. This is inherent due
to the physical containers for the individual ecosystems nested
within the built environment (i.e., the edges of the building
roof create a stark boundary for green roof systems) and the
spatially heterogeneous configuration of the urban landscape
itself (Alberti and Marzluff, 2004). Constructed ecosystems also
tend to be relatively small and this leads to the relevance
of treating them as ecological islands (McGuire et al., 2015).
Being small may make these systems more sensitive to outside
influences which could destabilize functioning (Ewel et al.,
2013). While some degree of isolation from surrounding
ecosystems is inherent in the spatial limits and small size
of constructed ecosystems, we can recognize a continuum
of isolation with outdoor ecosystems highly influenced by
the flows of materials, energy and organisms from other
ecosystems, to more self-contained, indoor ecosystems, such
as bioreactors, which often require isolation to carry out their
functions.

Like urban ecosystems in general, constructed ecosystems
feature high levels of ecological novelty: combinations of species
or environmental conditions that have not occurred in the
evolutionary history of the organisms or populations involved
(Carthey and Banks, 2014; Fridley and Sax, 2014; McGuire et al.,
2015). In some cases, engineered features, small size, or isolation
result in these novelties. If novelty results in conditions that
exceed the tolerance of individual organisms, stress, reduced
fitness, changes to community structure and consequences to
ecosystem functioning can result (Speak et al., 2013; Li et al.,
2015). However, it is also possible that novelty can favor certain
species. Isolation may free a plant population from pests, leading
to higher productivity (Hawkes, 2007) or select for species
tolerant of pollution (McGuire et al., 2013). Land managers
and agriculturalists have exploited ecological novelty to increase
ecosystem functioning, for example, when nitrogen fixing crops
are introduced to an area without native nitrogen fixers resulting
in erosion control and increased productivity (Magnússon, 1997).
Our understanding of ecological novelty is limited, and ecologists
and designers of constructed ecosystems need to collaborate to
determine whether we can take advantage of ecological novelty
to improve ecosystem functioning.

A major cause of novelty in constructed ecosystems comes
from their creation from scratch in disconnection from natural
ecosystems, often resulting in a lack of biological legacy
and ecological memory inherent to the dynamics of natural
ecosystems (Schaefer, 2009). For terrestrial ecosystems, the soil
represents an ecological reservoir containing seeds and an
entire food web based on microbial activities, but natural soils
rarely form the basis of plant-based constructed ecosystems
like green roofs, walls and treatment wetlands. This lack
of biological legacy or ecological memory may result in
depauperate microbial communities (John et al., 2014) which
could have profound effects on ecosystem functioning. The
degree of isolation from other ecosystems may also influence
the degree to which ecological memory of adjacent ecosystems

can influence a constructed ecosystem. Design can also play
a key role in whether biological legacy of natural ecosystems
can contribute to constructed ecosystems. Green roofs using
natural soils instead of the commonly applied artificial substrates
represents a way of incorporating some ecological memory into
a constructed ecosystem (Best et al., 2015). Bioaugmentation of
bioreactor microbial consortiums is an analogous procedure in
a different system (Todd and Josephson, 1996; Curtis and Sloan,
2004).

The growth of ecological engineering acknowledges
the importance of merging ecology and design into green
infrastructure (Mitsch and Jørgensen, 2003). Ecologists have
become more involved with research in these areas (e.g., Graham
and Smith, 2004), but there are compelling reasons for more
involvement of ecologists and evolutionary biologists in these
systems, especially in urban areas.

Ecological Understanding to Improve
Functionality

While I have argued that constructed ecosystems are distinct
from natural and most agricultural ecosystems, a body of
research suggests ecological insight derived from studies of other
systems can be applied toward the improvement of constructed
ecosystem functioning (Graham and Smith, 2004; McMahon
et al., 2007; Cook-Patton, 2015). The composition of species
taking part in constructed ecosystems plays a large role in
their function (Iamchaturapatr et al., 2007; Liu et al., 2007;
Lundholm and Williams, 2015), as it does in other ecosystems.
Work by ecologists toward understanding the role of functional
traits in ecosystem functioning could provide a general basis
for selection of biological components to enhance constructed
ecosystem functions (Lundholm et al., 2015; Storkey et al.,
2015).

Ecologists have driven research into the value of biodiversity
in the functioning of ecosystems for the last three decades.
Including greater biodiversity in constructed ecosystems can
improve their functionality (Akratos and Tsihrintzis, 2007;
McMahon et al., 2007; Cook-Patton, 2015) but relatively few
studies have documented these effects and the underlying
mechanisms are relatively unknown. Multifunctionality, a key
frontier of biodiversity-ecosystem functioning research (Hector
and Bagchi, 2007), is especially important in understanding full
cost-benefit accounting of constructed ecosystems (Carter and
Keeler, 2008; Spatari et al., 2011), and is likely to be affected
by the taxonomic or functional diversity of the component
biota (Lundholm, 2015b). While the engineered components
of these systems are essential to understanding their function,
more collaborative involvement of ecologists is necessary to
fully understand how they work and their contribution to
green infrastructure. The degree of ongoing maintenance and
design intervention can also affect ecosystem functions and
research is needed to determine how much management vs.
allowing spontaneous dynamics is optimal for any constructed
ecosystem (Todd and Josephson, 1996; Mitsch and Jørgensen,
2003; Dunnett, 2015; Lundholm, 2015a).

Frontiers in Ecology and Evolution | www.frontiersin.org 3 September 2015 | Volume 3 | Article 106

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Lundholm Constructed ecosystems

Constructed Green Infrastructure Is
Spreading

Constructed ecosystems are becoming more common in urban
areas. Green roofs, living walls, bioretention systems, vegetated
pavements are increasingly components of city infrastructure
targeting thermal moderation, infiltration, mitigation of runoff
related problems, and softening the appearance of urban
environments. Most of the research on these systems has been
from the “inside-out,” in other words, focusing on the design
engineering and function of the ecosystem. But these outdoor
ecosystems interact with other components of the urban matrix,
and are sufficiently prevalent in some cities that we can approach
them from the “outside-in”: as habitats that take place within
an urban landscape with interactions with and influences on
surrounding urban ecosystems. One consequence of constructed
green infrastructure built to provide thermal or hydrological
functions is that they are used as habitat by species not originally
included in their design, leading to their potential in biodiversity
conservation initiatives (e.g., Williams et al., 2014).

Another consequence of the spread of constructed ecosystems
is that they have become further embedded in the complex
socio-ecological matrix of cities. Like all urban ecosystems,
socio-economic forces also shape the design, placement and
functioning of constructed ecosystems (Tanner et al., 2014). One
of the key differences among the varied types of constructed
ecosystems is the identity of their designers, with some [e.g., those
contained in wastewater facilities (Table S1)] requiring high levels
of technical expertise, precluding broad participation in their
design. Other constructed ecosystems, such as green roofs and
walls may facilitate more participatory design and interactions
between experts and laypeople. Visibility and accessibility to
urban citizens also varies greatly depending on the type
of ecosystem and context of its placement within the built
environment, possibly resulting in heterogeneous psychological
and sociological impacts.

Constructed ecosystems can provide disservices as well. Green
roofs may have negative impacts on species of conservation
concern, for example if they act as ecological traps (MacIvor,
2015), attract nuisance wildlife (Fernandez-Canero and
Gonzalez-Redondo, 2010), or are considered unattractive by
local human populations (Loder, 2014). In some cases, the
material and energy costs of constructed green infrastructure
may outweigh their benefits, as in the case when green roofs
provide too much heat sink, resulting in higher cooling costs in
tropical environments (Jim, 2014), or when treatment wetlands
result in significant release of greenhouse gases (Ström et al.,
2007). Both “inside-out” and “outside-in” perspectives are
important to understand the potential impact of constructed
ecosystems on city ecology, and studies of the linkages between
constructed ecosystem patches and other ecosystem in the urban
matrix are essential (Braaker et al., 2014).

Urban home gardens have received considerable attention
as ecosystems in the last decade (Cameron et al., 2012).
In urban core environments, private horticulture is often
restricted to containers placed on hard surfaces or suspended
off the ground (Figure 2). The ecosystems created in this kind

of microgreening represent constructed ecosystems as they
are highly artificial environments, strongly spatially bounded,
potentially very isolated from natural ecosystems and other
green infrastructure, feature high levels of ecological novelty, and
have less ecological memory than in-situ urban gardens based
on local soils. Nevertheless, they provide ecosystem functions,
especially visual relief and interest in otherwise hard-surfaced
environments and should be studied to determine the overall
contribution to urban ecosystem services. Container gardening
is also important for food production in many parts of the world
(Ghosh, 2004; Abegunde et al., 2009). Compared with many
other types of constructed ecosystem, container gardens, like
indoor potted plant ecosystems (e.g., Orwell et al., 2004) they
are often designed and installed by ordinary citizens outside of
the professional and academic fields of ecological engineering.
The emphasis on green infrastructure to date has been on “big”:
wide expanses of relatively natural forest, wetland or riverine
habitats, or large organisms (trees in the urban forest) but the role
of microgreening in food production (Hui, 2011), ameliorating
microclimates (Hagishima et al., 2007), and providing visual
relief (Kaplan, 2001; Groenewegen et al., 2006) may be important
where it provides the only green infrastructure in the urban core
and can be readily implemented by urban residents.

A Stronger Acid Test for Ecology?

The restoration of damaged ecosystems has been called an “acid
test” for ecology (Bradshaw, 1987), as sound predictive capability
is a prerequisite to recreating structure and function. Others
argued for a more general heuristic value of restoration ecology,
citing that we can learn much from restoring ecosystems in

FIGURE 2 | Examples of constructed ecosystems. (A) outdoor living wall;

(B) indoor living wall; (C) intensive (deep growing medium) green roof; (D)

extensive (shallow growing medium) green roof; (E) container gardens; (F)

bioswale.
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a way that working non-manipulatively with relatively intact
ecosystems cannot (Harper, 1987). This understanding has been
extended to constructed ecosystems (Mitsch and Jørgensen,
2003; Graham and Smith, 2004). All ecosystems should be
comprehensible using the same set of basic concepts, so learning
about one kind of ecosystem should generate knowledge that
can improve general understanding of how ecosystems work,
with the caveat that many of the details are system-specific and
dependent on local context and historical contingency.

The goal-driven nature of constructed ecosystems often
trains the focus of ecologists to different questions than are
usually asked of natural ecosystems. For example, biodiversity-
ecosystem functioning studies ask what happens to functioning
when species are lost from an ecosystem, whereas constructed
ecosystems usually begin simple and we ask what happens
when we engineer biotic complexity into the system (Lundholm,
2015b). The range of ecosystem functions produced by
constructed ecosystems is considerably broad, thus many
questions about the function of these systems cannot simply
be answered by resorting to the literature on natural systems,
because the same questions have not been asked (Quijas
et al., 2010). As an example, most biodiversity-ecosystem
functioning work on terrestrial systems emphasizes productivity
and biomass whereas other physical properties of constructed
ecosystems, such as green roof optical properties (Lundholm
and Williams, 2015), may be important to their functioning.
So constructed ecosystems can direct research into new areas.
Likewise, constructed ecosystems may offer a further advantage
compared with ecological restoration activities for generating
ecological understanding in that there is often no biological
legacy to begin with. We can thus get at the importance of
ecological memory and legacy by comparing systems that differ
in the extent to which they receive subsidies from natural
populations, communities, and ecosystems. In general, focusing
on the ways in which constructed ecosystems differ from others
may be a productive approach: we can examine the ways in which
isolation, novelty, and varying amounts of biological legacy
influence the structure and function of constructed ecosystems. A
further logistical advantage is that manipulations can involve the
entire system itself, rather than relying on simplified microcosms
of much larger natural ecosystems (Graham and Smith, 2004;
Oberndorfer et al., 2007).

While much of this research is necessary to increase our
general understanding of how constructed ecosystems function,
understanding the effects of the distinct features of constructed
ecosystems in a general sense may require comparisons with
other ecosystems that share some similarities with constructed
ecosystems. Natural or urban habitats with similar physical and
chemical properties to constructed ecosystems have been used
as templates for selection of biota for the artificial ecosystems
(Lundholm and Richardson, 2010) and thesemay warrant further
comparison. This has begun with urban infrastructure like
green roofs where ecologists have sought to compare ecological
processes in constructed versus other urban ecosystems (Ksiazek
et al., 2012; Quispe and Fenoglio, 2015) and determine whether
the habitat value for species of conservation concern is equivalent
to that of ground-level habitats (Colla et al., 2009).

Crucibles of Evolution?

While the focus on ecosystem processes requires an ecosystem
ecology approach to constructed ecosystems, several key features
of these systems suggest that evolutionary studies are also highly
relevant, as in other urban ecosystems (Tanner et al., 2014).
There is reason to believe that selection pressures may be
particularly high in constructed ecosystems, due to relatively
homogeneous conditions and high levels of ecological novelty,
and other features such as isolation and small population sizes
can enhance drift effects, much like in natural islands (Ewel
et al., 2013), leading to rapid evolution. The growing emphasis
on evolutionary processes that shape ecosystem functioning
(Lipowsky et al., 2011; Srivastava et al., 2012; Schöb et al., 2015)
also warrants attention given the importance of ecosystem service
provisioning inherent to constructed ecosystems. Evolution in
these novel environments may have produced location-specific
genotypes, for example, green roofs in Berlin have been present
for over 100 years (Köhler and Poll, 2010), more than enough
time for genetic divergence between plant populations. Again, the
potential for such evolution, should it prove to be widespread,
is interesting in its ability to shed light on general evolutionary
processes (Cheptou et al., 2008), but it is also of relevance to
the functioning of constructed ecosystems, for example, when
genetic diversity within a population drives ecosystem-level
processes (Cook-Patton et al., 2011).

Conclusions

Constructed ecosystems are key components of green
infrastructure in cities. The science underlying the functioning
of these ecosystems has progressed rapidly but there is still
much to be gained by greater involvement of ecologists and
evolutionary biologists. Ecology, evolution and evolutionary
ecology are necessary for understanding constructed ecosystems
themselves, and as elements interacting with other ecosystems
in urban landscapes. As with the rest of urban ecology, it goes
without saying that interdisciplinary understanding is required
to push forward our understanding of the value of constructed
ecosystems, and biological scientists will continue to work with
physical and social scientists to generate a more comprehensive
understanding of green infrastructure. We can hope that
recognizing these artificial creations as ecosystems will also lead
to a better understanding of basic evolutionary and ecological
principles.
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