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A common approach to the conservation of farmland biodiversity and the promotion of
multifunctional landscapes, particularly in landscapes containing only small remnants of
non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use
intensity. In contrast, it has recently been shown that devoting specific areas of non-crop
habitats to conservation, segregated from high-yielding farmland (“land sparing”), can
more effectively conserve biodiversity than promoting low-yielding, less intensively
managed farmland occupying larger areas (“land sharing”). In the present paper we
suggest that the debate over the relative merits of land sparing or land sharing is
partly blurred by the differing spatial scales at which it is suggested that land sparing
should be applied. We argue that there is no single correct spatial scale for segregating
biodiversity protection and commodity production in multifunctional landscapes. Instead
we propose an alternative conceptual construct, which we call “multiple-scale land
sparing,” targeting biodiversity and ecosystem services in transformed landscapes. We
discuss how multiple-scale land sparing may overcome the apparent dichotomy between
land sharing and land sparing and help to find acceptable compromises that conserve
biodiversity and landscape multifunctionality.

Keywords: central-place foraging, metapopulation, protected area, habitat patch network, landscape
complementation, landscape mosaic

INTRODUCTION

Agricultural intensification and expansion have caused major losses of global biodiversity leading
to fundamental trade-offs between food production and species conservation (Mattison and
Norris, 2005). Strategies that preserve landscape heterogeneity and reduce agricultural land-use
intensity are commonly used to conserve farmland biodiversity (Benton et al., 2003) and promote
multifunctional landscapes (Foley et al., 2005). However, less intensive agricultural practices, such
as organic farming, are often associated with reduced yields (Seufert et al., 2012; but see Ponisio
et al., 2015), and in addition, it is not clear if such schemes generate aggregated biodiversity
benefits at larger spatial scales (Kleijn et al., 2011; Birkhofer et al., 2014; Schneider et al., 2014).
Recent research suggests that agricultural production needs to increase dramatically to feed globally
increasing human populations, coupled with expected dietary shifts (Valin et al., 2014). It has
been suggested that increased production could be achieved by closing yield gaps by, for example,
increasing yields on existing farmland through optimized inputs of mineral nutrients (Foley
et al., 2011; Mueller et al., 2012). However, other studies emphasize that, rather than focussing
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solely on increased production, there is a need to consider
alternative ways of improving food security: reduction of food
waste, reduction of the demand for livestock feed, and achieving
an equitable distribution of the food that is currently produced
(Fischer et al., 2014; Loos et al., 2014). Nevertheless, the conflicts
between biodiversity protection and food production appear to
be stronger than ever before.

By conceptualizing two contrasting land-use scenarios; land
sparing and land sharing it has been suggested that trade-
offs between biodiversity and food production are more likely
to be alleviated by the spatial segregation of food production
and conservation, which would allow for higher yields within
smaller shares of lands (Green et al., 2005; Phalan et al,
2011a,b; Balmford et al., 2012). A land-sparing approach has
been suggested to be particularly suitable in the tropics, where
forests with high biodiversity values are threatened by expanding
agriculture (Ramankutty and Rhemtulla, 2012). A complete
segregation of land areas devoted to commodity production
and biodiversity protection has nevertheless been criticized for
two ecological reasons. First, the fact that a large proportion of
species of conservation concern occur outside protected areas,
also necessitates conservation strategies within production land
(including both farmland and managed forests; Rodrigues et al.,
2004; Palomo et al., 2014; Troupin and Carmel, 2014). Second,
segregation strategies may increase negative off-site effects from
intensive agriculture (Foley et al., 2005) and erode ecosystem
services within agricultural systems—ultimately affecting yields
and hindering the development of ecologically sustainable, high-
yielding farming systems (Bommarco et al., 2013).

Land sparing and land sharing are broadly defined as,
respectively, segregating or integrating commodity production
(e.g., agricultural production) and biodiversity protection. The
production side in this relationship has been conceptualized
by comparing landscapes along landscape-wide gradients of
agricultural yields and baseline habitats with no yields (Phalan
etal, 2011a,b), by exemplifying “land sparing” and “land sharing”
with particular habitat types along land-use intensity gradients
(e.g., Egan and Mortensen, 2012; Quinn et al., 2012), or by
combinations of these approaches (Gabriel et al., 2013; Gilroy
et al., 2014). However, particularly in relation to the latter two
approaches, there is a wide variation in definitions of what
constitutes spared land. While some researchers argue that only
natural or near-natural habitats should be used to represent land-
sparing strategies (Phalan et al., 2011a), others have used grazed
grasslands (Dotta et al., 2015; Kamp et al., 2015), or managed
grasslands, set-asides, and field boundaries (Quinn et al., 2012;
Gabriel et al, 2013), to represent land sparing. A similar
variability in definitions also complicates the interpretation of
what could constitute land sharing, which has been exemplified
by organic farming (Hodgson et al., 2010; Gabriel et al., 2013),
shade coffee (Chandler et al., 2013), silvopastures (Macchi et al.,
2013), or landscapes with low human population densities
(Chapron et al., 2014). In addition, while some researchers argue
that land sparing must be carried out across large areas if it is
to benefit biodiversity conservation (Phalan et al., 2011a), others
have advocated that land sparing can be applied successfully at
relatively small spatial scales (Gabriel et al., 2013).

In the present paper we suggest that the debate over
the relative merits of land sparing or land sharing (Phalan
et al., 2011a; Tscharntke et al., 2012a; Fischer et al., 2014)
is partly blurred by the differing spatial scales at which it
is suggested land sparing should be applied. Neither sparing
nor sharing is conceptually tied to a particular scale, creating
a definitional gray zone (Fischer et al., 2014) and making it
challenging to generalize outcomes between land sparing and
land sharing across different contexts. Despite this, it is clear
that conservation efforts are needed at multiple spatial scales
both in general (Lindenmayer et al., 2006) and, more specifically
in agricultural landscapes (Benton et al., 2003; Fischer et al.,
2008).

To allow a discussion of multiple scale sparing strategies, we
explicitly define land sparing as delimiting habitats known or
supposed to be important for biodiversity and land primarily
devoted to commodity production, irrespective of the spatial
scale at which this is carried out. The spared land may thus
constitute larger reserves (Phalan et al., 2011b), more fine-
grained habitat fragments (Hodgson et al,, 2010), or at even
smaller spatial scales, field boundaries (Gabriel et al., 2013). The
framework of land sparing vs. land sharing can be applied for
any production system (Edwards et al., 2014; Paul and Knoke,
2015; Stott et al., 2015), but here we focus on trade-offs between
agricultural production and biodiversity conservation. We define
land sharing as any intervention intended to benefit biodiversity
by reducing in-field agricultural intensity, for example by
reducing stocking rates in pastures and the use of agro-chemicals
in arable fields, which therefore reduces yields compared to
a baseline of intensive agricultural production. However, we
are fully aware that in practice there may be cases where it
is debatable whether a specific measure constitutes sharing or
sparing (e.g., integrated pest management, when long-term set-
asides are established on arable land, or when spared land needs
low-intensive agricultural management to maintain biodiversity).
We highlight the need for maintaining biodiversity-friendly
habitats over a hierarchy of spatial scales (Figure 1) in order
to conserve biodiversity and to benefit ecosystem services
relevant for agricultural production (Bommarco et al., 2013;
Ekroos et al., 2014). Finally, we discuss whether multiple-
scale land sparing is sufficient to reach these goals, or
whether land sharing may additionally be needed in some
circumstances.

BIODIVERSITY CONSERVATION ACROSS
MULTIPLE SPATIAL SCALES

Conservation at different spatial scales is necessary because
conservation has multiple objectives, which range from the
conservation of wide-ranging iconic species to the integration
of functional biodiversity within production landscapes (Mace
et al., 2012). Traditional conservation has a focus on sparing
specific areas that are known to be important for species in
need of conservation efforts, or on distinct habitat types that
form the basis for current biodiversity protection schemes
(Secretariat of the Convention of Biological Diversity, 2008).
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FIGURE 1 | A simplistic representation of spatial scales at which ecological processes modulating biodiversity and multiple ecosystem services
operate. Nature reserves can effectively protect species (e.g., iconic, large-ranging mammals) that are sensitive to anthropogenic disturbance, whereas
dispersal-limited species (e.g., strict habitat specialists) occurring in highly fragmented landscapes benefit from conservation efforts based on sparing habitat-patch
networks across smaller regions. At smaller spatial scales, many mobile habitat specialists and habitat generalists occurring in farmland will benefit from sparing key
resource patches integrated across landscape mosaics spanning a few kilometers, as long as resource patches for the particular species are found within their
foraging range. Many ecosystem services, such as carbon sequestration across large spatial scales, and services relying on mobile organisms at smaller spatial
scales, may also be governed by sparing habitats at spatial scales corresponding to those presented above. Soil quality in production lands is, however, underpinned
by the local soil biota and cannot benefit from land-sparing strategies. Instead, improving soil quality must rely on interventions implemented within individual fields.

However, conservation efforts at large spatial scales need to
be complemented by conservation efforts at smaller, more
fine-grained, spatial scales. In human-modified landscapes the
opportunities for conservation are set by historical land-use,
and opportunities for sparing large areas of land may not
be a practical alternative. While conservation at large spatial
scales creates areas with a high degree of ecological integrity,
conservation at smaller spatial scales may facilitate the dispersal
of organisms between fragmented habitats (Honnay et al,
2002), or provide complementary resources for mobile species
(Smith et al., 2014). Below we therefore also illustrate how
sparing at two smaller spatial scales affect two distinct ecological
processes of importance for biodiversity conservation. At
regional scales, metapopulation dynamics govern spatially
structured populations, because local populations face
significant risk of extinction, whereas at smaller spatial scales,
processes affecting regular foraging movements of animals
in landscape mosaics, determine population persistence (see
Figure 1).

SPARING HABITAT AT LARGE SPATIAL
SCALES: CONTIGUOUS PROTECTED
AREAS

Protected areas constitute the backbone of traditional nature
conservation efforts (Baudron and Giller, 2014), with over 12% of
the world’s total land area currently under some form of formal
protection (Joppa and Pfaff, 2011). The argument for focussing
conservation efforts on large, contiguous nature reserves is
supported by ecological theory: the concept of minimum viable
population size suggests that the success of an effort to conserve a
threatened species is likely to increase with increasing population
size (Frankham et al., 2014), while the species-area relationship
predicts that species richness will increase with increasing area
and increasing habitat diversity (Rosenzweig, 1995). In addition,
the ecological integrity of a reserve is more likely to remain intact
with increasing reserve area and habitat diversity (Schwartz,
1999). However, as further discussed below, a network of small
reserves with a small total area may also capture a high overall
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level of diversity in some cases (Tscharntke et al, 2012b).
Such observations have led some researchers to question the
anticipated strong negative effects of habitat fragmentation on
biodiversity (Fahrig, 2013), whereas others point out that simple
estimates of species richness provide a poor basis for effective
biodiversity conservation (Phalan et al., 2011a; Hanski, 2015).

To efficiently protect species within protected areas, these
should be large enough to maintain ecological integrity and
cover representative habitat types over large geographic areas.
Protected areas have historically not been designated on the basis
of ecological integrity, but instead on factors such as scenic,
recreational or hunting value, or the protection of large-ranging
iconic species (Pressey, 1994; Scott et al.,, 2001). Furthermore,
because of the high opportunity costs of conservation in
production landscapes, most protected areas lie in regions
with low productivity and, as a consequence, these protected
areas are likely to target only a subset of the overall regional
diversity (Joppa and Pfaff, 2011). In Europe the Habitats
Directive (European Commission, 1992) and the Birds Directive
(European Commission, 2009) forms a binding legislative
framework for creating a network of protected areas identified
across large geographic scales (the Natura 2000 network). The
Natura 2000 network has been found to perform better compared
to nationally designated protected areas (Sanchez-Fernandez
et al, 2013), but substantial gaps have also been identified
(D’Amen et al., 2013; Maiorano et al., 2015; Sdnchez-Fernandez
and Abellan, 2015). In addition, although protected areas may be
large enough to contain multiple habitats and ecosystems, they
often do not include all necessary habitat elements required to
maintain natural disturbance regimes, nutrient flows, organism
movements, and population processes within them (Hansen and
DeFries, 2007; Wiens, 2009).

SPARING HABITAT AT REGIONAL SCALES:
HABITAT PATCH NETWORKS

Strict habitat specialists are dependent on a particular type of
habitat and, because of land-use change, many such habitats
are currently highly fragmented (Hanski, 2005; Tscharntke
et al.,, 2012b). Individual habitat fragments are often not large
enough to sustain viable populations, particularly in the absence
of immigration. In such situations, protecting networks of
remaining habitat fragments across entire regions becomes
essential for the maintenance of long-term population viability.
Rare but recurrent dispersal events between habitat fragments are
a typical feature of metapopulation dynamics (Fronhofer et al.,
2012) and may play a particularly important role for habitat
specialists that occur in highly fragmented landscapes, such as
semi-natural grassland in Central Europe (Tscharntke et al.,
2012b) or old-growth forests (Hanski, 2005). A metapopulation
can form when the environment is structurally highly variable,
and when between-patch movement is possible, yet much
reduced by dispersal barriers (Fronhofer et al., 2012). The best-
known empirical example of a metapopulation is provided by
the Glanville Fritillary (Melitaea cinxia) on the Aland Islands,
where the butterfly occurs in highly fragmented dry grasslands.

The ~1600 grassland fragments are located within an area of
roughly 75 x 50 km?, covering only around 2 km? altogether
(Ojanen et al., 2013).

Poor dispersal, for example limited seed dispersal in plants,
may reduce the ability of species to colonize available patches
of suitable habitat (Riibak et al., 2015). For example, plant
population sizes and levels of genetic diversity are often positively
related to historically less fragmented landscapes. Grassland
plants are therefore often characterized by an extinction debt
leading to further losses of species, even though there is no
further habitat fragmentation (Kuussaari et al., 2009). Sparing
habitat fragments across regions in a way that takes into
account the historical distribution of habitat fragments as well
as current dispersal probabilities between local populations may
therefore be critically important to maximize and maintain
overall diversity. In Europe, grassland habitat specialists are often
restricted to sites that have had a prolonged history of grazing and
nutrient-removal (Purschke et al., 2013). Such sites, which have
had hundreds of years of grazing continuity, can therefore not be
substituted by young patches of nutrient-rich grassland habitat.

SPARING HABITATS IN LANDSCAPE
MOSAICS

Many animals, including species that are relatively specialized
in their habitat and resource use, are mobile enough to persist
within mosaic landscapes that consist of multiple distinct
habitat patches, separated by distances of tens to thousands
of meters. In some cases organisms have to use resources
in multiple patches for populations to be viable (landscape
complementation and supplementation sensu Dunning et al.,
1992). In contrast to habitat patch networks, where migration
events between patches are rare because of dispersal limitation,
habitat mosaics are characterized by regular movements between
habitat patches, either within seasons (e.g., spill-over processes)
or within days (e.g., multipatch foraging; Tscharntke et al., 2005;
Fahrig et al, 2011; Blitzer et al,, 2012; Smith et al., 2014).
Many relatively common organisms use multiple habitats that
offer complementary or supplementary resources, and therefore
perceive landscapes as mosaics consisting of habitat patches
varying in quality over space and time (Fahrig et al., 2011;
Tscharntke et al., 2012b). The habitat patches of the mosaic
landscape are used by animals for separate needs, such as
food, shelter, nesting, and/or hibernation (Fahrig et al., 2011).
Although the need for between-patch movement may vary over
the day or over the season, unconstrained and regular movement
is fundamentally important for species to be able to persist in
mosaic landscapes.

Daily movements are particularly important for the short-
term persistence of central-place foragers, such as birds and
nest-building insects, which often feed in multiple habitat
patches that together sustain populations through landscape
complementation and/or landscape supplementation processes
(Olsson and Bolin, 2014; Smith et al., 2014). Bumble bees nesting
in semi-natural habitats regularly fly out into the surrounding
agricultural landscape to forage in other, more flower rich
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habitats (Ockinger and Smith, 2007; Garibaldi et al., 2011;
Ekroos et al., 2013). Some species forage over large areas and
are thus able to utilize spatially scattered resources, including
highly rewarding, but seasonally restricted resources such as
mass-flowering crops (Garibaldi et al, 2011; Rundlof et al,
2014). Therefore, preserving key habitat features offering nesting
and feeding sites at a scale within daily or seasonal movement
ranges will be important to promote biodiversity in mosaic
landscapes, such as farmland (Smith et al,, 2014) or forestry
systems (Lindenmayer et al., 2006).

MULTIPLE-SCALE SPARING AND
SOFTENING THE MATRIX

A multiple-scale land-sparing approach has the potential to
benefit biodiversity beyond the specific spatial scales discussed
above. In particular, sparing habitats at smaller spatial scales
may benefit biodiversity at larger spatial scales by increasing
resource availability for organisms that fundamentally depend
on larger-scale habitat-patch networks. While conservation
has traditionally focused on creating fairly large reserves on
the basis, for example, of species-area relations or the aim
of maximizing carrying capacity (e.g., Palomo et al, 2014),
such approaches might not be practically feasible in heavily
fragmented agricultural landscapes (Koh et al., 2009; Perfecto and
Vandermeer, 2010). Thus, small-scale land sparing may increase
the quality of the matrix surrounding biodiversity-rich patches
and thereby deliver substantial biodiversity benefits (Ricketts,
2001; Fischer et al., 2006; Driscoll et al., 2013). A multiple-
scale land sparing framework also has the potential of mitigating
disruptions in symbiotic interactions in habitats of conservation
concern by improving the quality of the surrounding landscapes
(Pauw, 2007; Emer et al., 2013; Clough et al., 2014).

In Europe, semi-natural grasslands embedded in agricultural
landscapes are highly species-rich and include many species of
conservation concern (Steffan-Dewenter et al., 2014). Creating
or managing field boundaries, woodlots or ponds, represent
small-scale land-sparing options that might benefit grassland
biodiversity across larger spatial scales by reducing the hostility
of the landscape matrix (Donald and Evans, 2006). Thus,
integrating conservation interventions in the form of a network
of natural or semi-natural areas across agricultural landscapes
(i.e., green infrastructure, see Maes et al., 2015) could benefit a
range of species not primarily occurring in intensively managed
farmland (Bergman et al., 2004; Ockinger and Smith, 2006, 2008).

However, while it has been argued that the integration
of conservation strategies across landscapes is particularly
important in the face of the dual threats of increasing land-
use intensity and climate change (Hannah et al., 2002; Gillson
et al, 2013), there are diverging views on how to achieve
conservation goals. It has been suggested that improving habitats
themselves, either quantitatively or qualitatively, offers a more
effective conservation strategy compared with strategies that
target the surrounding matrix (Hodgson et al, 2009, 2011).
However, in particular in agricultural landscapes with fertile
soils and hence high productivity, it might not be feasible to

expand source habitats because of high opportunity costs, in
which case incentives targeting the matrix might be the only
practical solution (Ekroos et al., 2014). Nevertheless, efforts to
enhance the quality of the matrix for conservation are similarly
constrained by high opportunity costs of any interventions that
reduce yields. A combination of maintaining existing habitat
fragments and creating small, high-quality grassland patches or
resource-rich non-crop habitats between fields might, depending
on landscape context, be the most effective strategy to promote
biodiversity in highly fragmented agricultural landscapes (Baum
et al.,, 2004; Rosch et al., 2013). The relative effectiveness of
improving local habitat quality in fragments vs. improving matrix
quality is likely to be highly context-dependent. Both perspectives
offer hypotheses that can be tested in order to identify suitable
strategies for specific conservation objectives.

MULTIPLE-SCALE SPARING AND
ECOLOGICALLY SUSTAINABLE
AGRICULTURE

In addition to food, feed and biofuels, agricultural systems play
an important role in water and climate regulation, and the cycling
and retention of nutrients (Norris et al., 2010). Agriculture is also
ultimately dependent on a range of ecosystem processes that need
to be accounted for in land-use decisions. Intensive agriculture
that relies on high external inputs in terms of fertilizers
and pesticides erodes ecosystem functions such as pollination,
biological pest control, and nutrient cycling, which to a large
extent rely on species commonly occurring in farmland (Tilman
et al,, 2002; Gaston and Fuller, 2008). So-called ecological
intensification has been suggested as a means of increasing the
sustainability of farming (Bommarco et al., 2013) by maintaining
high yields through an increasing reliance on biodiversity-based
ecosystem functions, or intermediate ecosystem services (Fisher
et al, 2009). The challenge is to match the occurrence of
beneficial biodiversity with the demand of the services provided
by pollinating insects, predatory insects, or soil fauna, which in
part depend on the spatial scale at which habitats are integrated
across production lands (Mitchell et al., 2015). In the following
we discuss how these demands can be met within the context of
multiple-scale land sparing.

Important ecosystem service providers, such as pollinators
and biological pest control agents, can be maintained by
employing strategic interventions integrated within production
lands (cf. Mitchell et al., 2015). Bees are central-place foragers
that nest in various non-crop habitats and forage in local flower-
rich habitats within their home-range. Because of their huge
variety of life histories and ecological traits bee communities
respond to land-use changes across multiple spatial scales. At
local spatial scales, the disconnection between non-crop habitats,
which provide nest sites for bees, and fields with insect-pollinated
crops, can affect pollination services by wild bees and thereby
crop yield. In contrast, pollination services provided by feral
honey bees remain unaffected in such conditions (Garibaldi
et al., 2011). Therefore, a land sparing strategy to promote
wild pollinators should integrate non-crop habitat patches
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evenly across production lands to ensure that insect-pollinated
crops are located within the foraging range of pollinating
insects. In addition, a greater proportion of natural habitats
in the landscape can buffer wild bee communities from local
impairments caused by pesticides (Park et al., 2015). Enhancing
pollination services as such does not necessarily benefit rare
species with specific habitat requirements (Kleijn et al., 2015).
However, some important habitats for habitat specialists, such
as semi-natural grasslands, also provide important nesting sites
for pollinators, creating possible synergies between biodiversity
conservation and ecosystem service provisioning (Macfadyen
etal.,, 2012; Ekroos et al., 2014). The extent to which pollination in
agricultural landscapes coincides with the occurrence of habitats
targeting species of conservation concern is generally not known.
Neither is it known whether there is a relationship between
local habitat quality in semi-natural grasslands and pollination
in the surrounding agricultural landscapes. With the loss of
semi-natural grasslands the importance of sparing habitats at
smaller spatial scales, such as non-crop field boundaries, increase,
as they may provide substantial benefits for pollinating insects
(Benjamin et al., 2014), although grassland habitat specialists are
not likely to persist in such landscapes (Ekroos and Kuussaari,
2012).

In contrast to wild bees, generalist arthropod predators are
not restricted to a local nest site and its surroundings. Instead,
local assemblages of generalist predators are affected by the
degree of disturbance of the local habitat (field), where land-use
intensification represents increased disturbance and translates
into less diverse predator communities (Rusch et al., 2014).
Increasing non-crop habitat heterogeneity of the surrounding
landscapes may alleviate this effect, where spared habitats act as
source habitats through spill-over effects (Blitzer et al., 2012) or
mass-effects (Leibold et al., 2004). A multiple-scale land-sparing
approach will affect the landscape context surrounding local
fields, which in turn can be managed with in-field interventions.
To enhance biological pest control it becomes crucial to consider
the interactions between in-field scale practices and larger
scale changes of landscape composition for ecosystem services
and service-providing units (Jonsson et al.,, 2014). Increasing
landscape complexity by sparing non-crop habitats may, for
example, affect parasitism rates of agricultural pests positively
(Jonsson et al., 2012) or negatively (Menalled et al., 2003). This
variability of the relationships between biological control and
landscape complexity partly stems from variation in the effect of
local farming practices on natural enemy and pest abundances
(Rusch et al., 2010). It has therefore been suggested that in-field
management interventions have the highest potential to promote
biological control services in landscapes that provide little or no
alternative non-crop habitats (Tscharntke et al., 2005).

In contrast to pollination services and biological pest control,
the process of nutrient cycling cannot be segregated from
production land in a meaningful way if it is to benefit arable
production. The maintenance of soil fertility is essential for
the long-term sustainability of agriculture, which demands
management actions that enhance soil biodiversity at the level
of individual fields (Figure 1). Nevertheless, the soil quality of
arable land has been declining for decades in Europe, which

is worrying in terms of the sustainability of food production
(Verheijen et al., 2009; JRC, 2012). Maintaining nutrient-rich top
soils in agricultural land is important for increasing resistance
to erosion, water-holding capacity, and soil fertility (Boardman,
2013). Because soil quality can only be managed at the local
scale (Tscharntke et al, 2012b), a multiple-scale land-sparing
approach cannot substitute in-field measures to decrease land-
use intensity, such as using organic fertilizers, less intensive tillage
practices, including legumes into crop rotations, or introducing
rotational set-asides (Norris et al., 2010; Quinn et al., 2012).

PROSPECTS AND CONCLUSIONS

In this paper we have argued that land sparing should be seen as
a strategy to be implemented simultaneously at multiple spatial
scales. In transformed landscapes, only a multiple-scale approach
can consider all the major ecological processes that determine
levels of biodiversity, affecting habitat specialists and species
of conservation concern across regions and common species
essential for ecosystem functioning locally, on individual farms.
The approach could operationalized using a two-tiered approach:
(1) on single farms, or amongst a group of collaborating farms,
implement management strategies that increase, or maintain a
heterogeneous landscape mosaic, and (2) on the basis of regional
assessments of habitat availability and connectivity, create
incentives for landowners to maintain specific habitats that are
important for species of conservation concern (e.g., forests and
forest remnants, semi-natural grasslands). Land-use decisions
in landscapes dominated by farmland would, therefore, be
made by farmers (guided by agri-environment schemes targeting
key ecosystem processes) whereas biodiversity conservation
should rely on identifying key landscape elements across larger
spatial scales. Landscape elements identified as important for
biodiversity conservation could thereafter be included as targeted
measures within agri-environment schemes, which is currently
the case e.g., in Sweden, regarding management of species-rich
semi-natural pastures (Jordbruksverket, 2005). We believe that a
multi-scale sparing approach offers the opportunity of combining
biodiversity conservation with the ecological intensification of
agriculture (Bommarco et al., 2013; Pywell et al,, 2015), which
will be needed if we are to produce increasing amounts of food
and, simultaneously, decrease negative externalities of agriculture
(Geiger et al,, 2010; Vorosmarty et al., 2010; Rundlof et al.,
2015; Stehle and Schultz, 2015) while maintaining agricultural
soil quality (Verheijen et al., 2009).

However, we also acknowledge that trade-offs may appear if
investing resources in sparing habitats at one spatial scale reduces
resources or opportunities for sparing habitat at other spatial
scales. Given a fixed budget, trade-offs between e.g., buying
land for a new nature reserve and financing small-scale habitat
restoration in farmland under CAP obligations could potentially
arise. Similarly trade-offs might arise between the goals of
protecting biodiversity for its own sake vs. enhancing ecosystem
service providers. For example, restoring habitats for grassland
specialists may demand costly restoration interventions (Olsson
and Odman, 2014), whereas enhancing populations of ecosystem
service providers could be effective with completely different
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management interventions such as flower strips (Kleijn et al.,
2015). The relative weighting of efforts at various spatial scales
is a complicated issue that will depend on both the prioritization
of different conservation goals and on the prevailing ecological
conditions such as soil productivity, the strength of the links
between service-providing organisms and yields (Ekroos et al.,
2014), and whether synergies emerge between multiple-scale
land-sparing interventions through e.g., source-sink dynamics
between regions or habitats (Diffendorfer, 1998).

The amount of land that needs to be spared at various
spatial scales remains an open question for future research.
Across landscape mosaics only a few species persists when the
proportion of semi-natural habitat is less than a few percentages
(Tscharntke et al., 2005), although many of these are common
species that are important providers of ecosystem services
(Kleijn et al., 2015). There is little information on the landscape
conditions under which ecosystem service provisioning varies
over time (Bommarco et al., 2013; Fremier et al., 2013; Birkhofer
et al., 2015), although we can expect a higher variability in
ecosystem service flows over time in structurally simplified
landscapes (Bengtsson et al., 2003; Tscharntke et al., 2012b). In
addition, it is currently not well-known to what extent land
sparing in landscape mosaics can replace in-field interventions,
such as organic farming, to benefit local biodiversity (c.f.
Gonthier et al., 2014).

There is not a single answer to the question of how much
habitat needs to be spared at the level of habitat patch networks as
species will differ strongly in their dispersal ability and tolerance
of habitat degradation, including edge effects (Hanski, 2011,
2015). Reconciling biodiversity conservation and commodity
production may therefore be particularly challenging at a
regional scale in highly fragmented landscapes. On a longer time-
scale, restoration of degraded land (Law and Wilson, 2015) or the
rewilding of abandoned land (Navarro and Pereira, 2012; Ceausu
et al., 2015) may provide new ways of increasing structural
heterogeneity within landscape mosaics or habitat availability
and level of connectivity across landscapes. Finally, at national
or continental levels, it will be important to identify areas
of particular importance for biodiversity to complement the
selection of currently protected areas and minimize conflicts
between agriculture and conservation. Shackelford et al. (2015)
recently showed how such conflicts could be minimized on a
global scale, with a focus on regions where agricultural expansion
may take place at the expense of forest biodiversity, and where
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