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Insect olfactory receptors (ORs) are tuned to volatile chemicals, they are expressed in

the membrane of olfactory sensory neurons (OSNs), housed in sensilla on the antenna.

The olfactory apparatus is under strong selection and ORs are tuned to vital chemical

signals, mediating social communication, feeding and oviposition, and avoidance of

predators and pathogens. An emerging technique to reliably and efficiently identify

the key ligands of ORs is to express single ORs in heterologous cell systems for

subsequent screening. Several in vivo and in vitro platforms have been developed; we

here provide a step-by-step protocol for OR expression in Drosophila melanogaster

OSNs. Following RNA extraction, molecular cloning of ORs and injection of plasmid

vectors into Drosophila embryos to create flies with OR transgenes, single ORs are

expressed, via crossing with specific transgene promoters in OSNs of ab3 and T1

antennal sensilla. This approach enables replicable single sensillum electrophysiological

recordings (SSR) from readily distinguishable Drosophila sensilla, containing OSNs

expressing transgenic ORs. We expect this method to be applicable to ORs across

insect orders and to increasingly contribute to chemical ecology research. Heterologous

expression enables thorough investigation of single ORs, toward the identification of

yet unknown, behaviorally and ecologically relevant chemical signals. It also enables

investigations of the functional properties of ORs and their evolutionary diversification,

through comparative structure-activity studies across phylogenies.

Keywords: insect ORs, heterologous expression, empty neuron system, single sensillum recordings,

deorphanization

INTRODUCTION

Olfactory communication signals are recruited from countless volatile chemicals filling the air. A
foremost goal in insect chemical ecology research is to unambiguously identify behavior-modifying
compounds, termed semiochemicals, which convey messages from animals, plants or microbes.
Semiochemicals usually are blends of several compounds and it is a sensitive and time-consuming
task to discriminate between behaviorally active and inactive compounds found in headspace
collections.

In insects, electrophysiological recordings, which employ the antenna as sensor, have been a
versatile and widely used tool for selecting candidate compounds (Schneider, 1957; Arn et al.,
1975) and facilitate interlacing chemical with behavioral analysis. Recordings from entire antennae
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are particularly efficient for identification of sex pheromones,
used for communication within the same species, and typically
elicit a conspicuous response. Knowledge of de-novo produced
pheromones also facilitates further identifications, since
taxonomically close species use related biosynthetic pathways
(Jurenka, 2004). Consequently, hundreds of lepidopteran
pheromones have been described (Arn et al., 1992; El-Sayed,
2015).

In comparison, unequivocal identification of kairomones,
compounds which guide host plant attraction, inmoths and other
herbivorous insects is infinitely more difficult. Plants release a
wealth of compounds and, in contrast with sex pheromones,
there is no producer-receiver correlation—abundance of plant
compounds is no criterium for behavioral activity. Plant volatiles
that attract herbivores have long been known (Dethier, 1947;
El-Sayed, 2015), but we still do not know as to whether, or to
what extent these attractants actually correspond to the chemical
signatures used by insects to find their host plants. The attractant
power of synthetic kairomones is a straightforward criterium,
but behavioral assays with kairomones, especially in females, are
complex and laborious.

Screening candidate compounds prior to behavioral analysis
is therefore paramount. Unfortunately, for the identification
of kairomones, conventional antennal electrophysiological
recordings fail to deliver. The most abundant compounds in
plant headspace invariably produce a response when recording
from the entire antenna, disregarding their behavioral relevance.
Recordings from single olfactory sensilla, on the other hand, are
technically demanding and will only rarely provide exhaustive
information. This is exemplified by work on codling moth,
where the main apple volatiles produce a strong antennal, but
only weak or no behavioral response (Bäckman et al., 2001;
Ansebo et al., 2004; Coracini et al., 2004). In contrast, pear ester,
a compound which has not been found in the main host apple,
is the strongest known adult and larval attractant (Light et al.,
2001; Light and Knight, 2005; Light and Beck, 2012).

Following the identification of olfactory receptor (OR) genes
from codling moth antennae (Bengtsson et al., 2012), it has
recently been shown that CpomOR3, which is highly expressed
in male and female antennae, is specifically tuned to pear ester
(Bengtsson et al., 2014). This finding corroborates the biological
role of pear ester and is supported by intracellular recordings
and functional imaging of the codling moth antennal lobe
(Trona et al., 2010, 2013). The functional characterization of
CpomOR3 also underscores the weight of a reliable screening
technique for single ORs—toward a more efficient identification
of semiochemicals of plant origin.

In silico identification of putative odourant receptor (OR)
genes in Drosophila melanogaster was the starting point for a
new era of chemical communication research and opened the
door for downstream studies in which ORs are functionally
characterized according to the ligands they are tuned to, a
process also known as “deorphanization” (Clyne et al., 1999;
Gao and Chess, 1999; Vosshall et al., 1999; Hallem et al., 2004;
Hallem and Carlson, 2006). Deorphanization of insect ORs
is achieved through testing their response spectrum toward
odourant compounds, following heterologous expression of these

OR proteins in heterospecific cell systems, which facilitates
thorough and unambigious screening.

In vitro systems involve the expression of ORs in cell culture
platforms, such as human embryonic kidney cells (HEK; Große-
Wilde et al., 2006; Syed et al., 2006; Corcoran et al., 2014),
Spodoptera frugiperda Sf9 cells (Matarazzo et al., 2005; Kiely et al.,
2007; Anderson et al., 2009; Jordan et al., 2009; Xu et al., 2015)
and also Xenopus oocytes (Sakurai et al., 2004; Mitsuno et al.,
2008; Wanner et al., 2010; Leary et al., 2012; Liu et al., 2013;
Zhang and Löfstedt, 2013; Jiang et al., 2014). Recently, a cell-free
expression system has been reported (Tegler et al., 2015).

In the case of in vivo systems, heterologous expression
is based on the use of mutant, “empty-neuron” lines of
D. melanogaster (Dobritsa et al., 2003; Hallem et al., 2004).
The antennal basiconic sensilla type 3 (ab3) of the mutant
D. melanogaster flies contain an odourant sensory neuron (OSN)
that lacks its native OR: expression of the native OR22a/b in
ab3A OSNs is disrupted in these mutant flies (Dobritsa et al.,
2003). When coupled with the Gal4-UAS transgene expression
system (Brand and Perrimon, 1993), using an OR22a Gal4 line,
transgenic ORs can be specifically expressed in ab3A empty
OSNs, which project their dendrites into large basiconic sensilla
(Shanbhag et al., 1999). These OSNs can then be screened for
novel responses conferred by the transgenic OR, by means
of single sensillum electrophysiological recordings (SSR). This
methodology has been successful for the deorphanization of
receptors from different subsystems such as antennal ORs as well
as maxillary palp ORs (Dobritsa et al., 2003; Goldman et al.,
2005). In addition, the empty neuron system has also allowed to
deorphanize larval receptors (Kreher et al., 2005, 2008; Mathew
et al., 2013).

Deorphanization of putative pheromone receptors (PRs)
has proven to be more challenging than OR deorphanization.
To provide PRs with a more suitable cellular environment,
heterologous expression has instead targeted the trichoid
sensillum T1 of D. melanogaster. In wild-type flies, T1 sensilla
contain a single neuron expressing a single receptor, OR67d,
which is tuned to the male pheromone, 11-cis-vaccenyl acetate
(cVA). In knock-in mutant flies, this native receptor is replaced
with an OR67d-Gal4 construct (Kurtovic et al., 2007). The T1
system is suitable for the deorphanization of both PRs (Syed
et al., 2010; Montagné et al., 2012) and some ORs tuned to plant
compounds (Bengtsson et al., 2014; Ronderos et al., 2014).

Heterologous expression in Drosophila has served as a
fundamental tool for the deorphanization of insect ORs and
PRs across diverse taxa. However, the procedures necessary
to produce flies expressing transgenic receptors have not been
comprehensively described. Here, we provide a hands-on, step-
by-step protocol of how to express and test insect ORs in
Drosophila OSNs.

MATERIALS AND EQUIPMENT

Reagents and materials required for the different steps in
producing and testing transgenic fly lines that ectopically express
ORs in the empty neuron systems are shown in Table 1.
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TABLE 1 | Materials and equipment.

Protocol Step Materials Equipment Notes

Molecular

cloning of

insect ORs

RNA extraction and

purification

Dissected target insect tissue

RNA extraction/purification kit

First strand cDNA synthesis Purified RNA sample Thermocycler/incubator

machineFirst strand cDNA synthesis kit

PCR amplification of target

OR sequence

Target tissue cDNA sample Thermocycler/incubator

machineUltra-pure molecular biology grade sterile water

Proofreading Taq polymerase and 10×

polymerase buffer

Gene specific forward and reverse PCR

primers (10µM)

dNTPs (10mM)

Gel analysis of PCR product

and gel purification

Molecular grade agarose

Deionized water

DNA intercalating agent

Razor blades

UV light source/agarose gel

imaging system

Standard DNA gel extraction kit Electric heating block

apparatus

TOPO gateway cloning of

target OR sequence and

confirmation of desired

construct

Gel-purified PCR product Thermocycler/incubator

machine

Catalog No. K2500-20

(Thermo Fisher Scientific)PCR-8/GW/TOPO TA cloning kit with E. coli

bacteria

Ultra-pure molecular biology grade sterile water

Non-proofreading Taq polymerase and 10×

buffer reagents

dNTPs (10mM) CAS No. 22189-32-8

Spectinomycin Antibiotic solution (50

micrograms per mL) with Spectinomycin

dihydrochloride pentahydrate

LB Agar Powder

LB Medium Powder

TOPO-GW plasmid forward (GW1) and reverse

(GW2) PCR/sequencing primers (10µM)
GW1 sequence:

GTTGCAACAAATTGATGAG

CAATGC

GW2 sequence:

GTTGCAACAAATTGATGAGC

AATTA

OR gene specific forward (GSP1) and reverse

(GSP2) PCR primers (10µM)

Standard plasmid mini-prep purification kit

Clonase transfer of OR

insert to Gateway

destination vector

TOPO-GW plasmid with OR insert (25 ng/µL)

pUASg.attB destination plasmid

LR Clonase II enzyme mix kit with proteinase K

solution

Ampicillin antibiotic solution (50µg/mL) with

ampicillin sodium salt

LB agar powder

LB medium powder

Plasmid mini-prep purification kit

pUASg.attB plasmid forward

(UAS1) and reverse (UAS2) sequencing primers

(each 10µM)

Thermocycler-incubator

machine

Destination plasmid obtained

from the Basler lab FlyC31

website (http://www.flyc31.

org/)

Standard laboratory

incubator shaker

Catalog No. 11791-020

(Thermo Fisher Scientific)

Standard laboratory growth

chamber incubator

CAS No. 69-52-3

UAS1 sequence:

TAGCGAGCGCCGGAGTAT

AAATAG

UAS2 sequence:

ACTGATTTCGACGG

TTACCC

Transgenic

expression of

ORs in empty

neuron

system

Genetic crosses Transgenic fly strains with red/orange eye color Presumes the laboratory

maintains or has access to fly

rearing facilities. The fly-lines

indicated below are available

upon request

Double balancer Bl/Cyo; TM2/TM6b fly line

1Halo/Cyo; TM2/TM6b fly line

1Halo/Cyo; DmelOR22a-Gal4 fly line

w−; Bl/Cyo; DmelOR67d-Gal4 fly line

(Continued)
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TABLE 1 | Continued

Protocol Step Materials Equipment Notes

Single

sensillum

recordings

Mounting 200-µl Pipette tips

Full-length glass microscope slide

Piece of microscope slide (one fifth of

full-length)

Glass capillary

Dental wax

Recordings 2 Sharpened tungsten electrodes (0.1mm Ø) 2 Electrode holders: for reference and for recording electrode

DC-3K Micromanipulator equipped with a PM-10 piezo translator

INR-02 Probe

Channel USB signal acquisition controller (IDAC-4)

Stimulus controller

Software for visualization and analysis (Autospike)

Odourant stimulation Glass Pasteur pipettes

Filter paper (1.5× 1 cm)

Solvent (hexane, paraffin oil, ethanol, acetone,

or other)

Diagnostic compounds diluted in the selected

solvent at maximum dose of 1µg/µl. For ab3A

empty neuron system: ethyl-3-hydroxybutyrate,

2-heptanone, ethyl hexanoate or ethyl butyrate.

For T1 empty neuron system: cVA

FIGURE 1 | Schematic overview for heterologous expression of insect ORs in Drosophila OSNs. (A) Wild type fly embryo and fly (top row). Red circle

highlights antenna, shown in three magnification steps (second row, separated by triangles): sensilla on antenna; 2 olfactory sensory neurons (OSNs) housed in one

sensillum; olfactory receptor proteins (ORs) expressed in cell membrane of each OSN. Wild type flies do not smell pear ester. (B) cDNA is synthesized from RNA

extracted from lepidopteran antennae; OR gene is cloned into plasmid; plasmid is injected into fly embryo. Following crosses using Gal4/UAS expression system,

lepidopteran OR tuned to pear ester is expressed in target OSN on fly antenna, allowing it to detect pear ester. Moth and fly drawing by Katarina Eriksson

(www.markadesign.se).
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FIGURE 2 | Crossing scheme for heterologous expression of an OR transgene in empty neurons in ab3 sensilla, using 1Halo mutant background and

DmelOR22a-Gal4 driver line. Fly drawing by Katarina Eriksson (www.markadesign.se).

PROCEDURES

For efficient streamlined cloning of OR genes and generation

of transgenic flies, we recommend use of the TOPO/gateway
cloning system (Thermo Fisher Scientific Inc., Waltham,

Massachusetts, USA) coupled to PhiC31 integrase-mediated
transgenesis system applied to D. melanogaster (Bischof et al.,

2007). The TOPO/gateway system facilitates cloning and
transfer of DNA inserts from entry to destination plasmid

and the Phi3C31 system facilitates highly-efficient, non-random,

sequence-directed and irreversible genomic insertion of vector
DNA. The following protocols have been formulated specifically
for use of these systems. Whether the goal is to express
an OR transgene in the ab3A or T1 systems, the molecular
cloning procedures in the following section are identical
up until the point of embryonic injections, as described
below.

An overview of the two main worksteps, molecular cloning
(Section Molecular Cloning of Insect ORs) and transgenic
expression by fly crossing (Section Transgenic Expression of
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FIGURE 3 | Crossing scheme for heterologous expression of an OR transgene in OSNs in T1 sensilla, using DmelOR67d-Gal4 knock-in with knock-out

of DmelOR67d coding sequence. Fly drawing by Katarina Eriksson (www.markadesign.se).

ORs in Drosophila OSNs) is shown in Figures 1–3. A best-case
scenario time plan for the procedures described in the following
section is shown in Supplemental Figure 1.

Molecular Cloning of Insect ORs
RNA Extraction and Purification
Dissect antennal (or other target) tissue from a sufficient number
of insects into an empty 1.5-mL microcentrifuge tube held in
liquid nitrogen, dry ice, or else standard ice. For D. melanogaster,
100 insects are recommended; for moths, 30 insects may be
sufficient. Size of the antenna determines the number of specimen
required.

Store target tissue in −80◦C freezer, or proceed immediately
to RNA extraction and purification. Follow standard protocol
provided with extraction/purification kit/reagents.

Measure RNA quantity with photospectrometer or equivalent
device and store RNA at −80◦C or proceed immediately to the
next step.

First-Strand cDNA Synthesis
Follow manufacturer’s protocol for cDNA synthesis, with
maximum quantity of RNA allowed within the volumetric
parameters of the enzymatic reaction.

cDNA may commonly be diluted with ultra-pure water (e.g.,
at 1:1 ratio with cDNA sample) for PCR amplification assays,
if necessary. However, dilution of cDNA may not be desirable,
when the target genes show relatively low expression patterns
compared to other ORs.

Store cDNA at −20◦C or proceed immediately to the next
step.
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PCR Amplification of Target OR Sequence
Generate gene specific primers (GSPs) for PCR amplification of
the entire open reading frame (ORF) of the target OR. Utilize
forward primers (GSP1) that begin with the start codon and
reverse primers (GSP2) that begin with the reverse-complement
of the stop codon. If the start to stop codon primers are
not ideal for PCR amplification due to mismatched melting
temperatures (Tm, greater than 5◦C difference) or other factors,
it is advisable to design primers upstream or downstream of the
ORF, respectively. If positive control primers are not previously
available, the Orco gene could serve as a target to control for
gene amplification in antennal tissue, since it is always expressed
together with ORs and displays high expression in antennal
tissue.

Conduct PCR amplification reaction with a DNA polymerase
system that includes 3′ to 5′ exonuclease (proofreading) function.
At this step, use of a proofreading Taq polymerase is critical; it
drastically reduces the likelihood of obtaining unusable plasmid
clones that contain OR inserts with incorrect sequence. Set up
one PCR reaction per target OR, with positive (e.g., Orco) and
negative (e.g., no template) control, according to manufacturers
protocol. Run PCR amplification reaction in thermocycler
machine according to manufacturers specifications for the Taq
polymerase system, with annealing temperature 3◦C less than
primer melting temperature (Tm) and 30–35 amplification cycles
(standard running time, ca. 2 h).

Store PCR overnight at 4◦C, for longer periods at −20◦C, or
proceed immediately to next step.

Gel Analysis of PCR Product and Gel Purification
Run PCR products through 1.5% agarose gel for simultaneous
verification of amplification and excision of OR-specific
amplicon for purification. Expected band size for ORs is typically
around 1200 base-pairs, as compared to fragments of standard
DNA ladder.

Use low-intensity UV wavelength so as not to damage/mutate
DNA, and minimize exposure time while cutting out the agarose
gel that contains OR-specific fragments. Place excised gel in 1.5-
mL microcentrifuge tubes and measure the mass of the added
gel material. Gel may be frozen at −20◦C for later use, or used
immediately for the next step.

Purify OR-specific DNA from the gel with standard gel
purification/extraction kit according to manufacturers protocol.
Elute DNA in ultra pure sterile water or buffer provided with
the kit.

Run a small aliquot (e.g., 5 µL) of purified DNA on a 1.5%
agarose gel in order to verify success of the procedure and
ensure the presence of only OR-specific DNA at the expected
size.

Store gel-purified OR DNA at−20◦C or proceed immediately
to next step.

TOPO/Gateway Cloning of Target OR Sequence and

Construct Confirmation
While the use of Taq polymerase with proofreading function is
essential to ensure accurate amplification of the target sequence,
it results in the removal of adenosine overhang nucleotides at

the 5′ and 3′ ends of the DNA amplicon, which is a feature
of standard Taq polymerase. These adenosine nucleotides are
critical for the function of the TOPO cloning system. Thus,
it is necessary, after gel purification, to enzymatically add the
adenosine overhangs to the target OR sequence to be cloned.

Use 10 µL of gel-purified DNA, 1.2 µL of 10× PCR buffer,
1 µL of 10 mM dNTPs (both included in TOPO cloning kit),
and 0.5 µL of standard Taq polymerase (without proofreading
activity, not included in TOPO cloning kit). It is critical to use
only the buffer supplied with the TOPO cloning kit; this buffer
is compatible with downstream cloning steps. Mix contents and
incubate at 72◦C for 10 min. Proceed immediately to next step.

Add 4 µL of previous reaction, 1 µL of salt solution (provided
with TOPO cloning kit) and 1 µL of topoisomerase vector mix
(provided with TOPO cloning kit). Mix and incubate at room
temperature (22–23◦C) for more than 5 min, but less than 30
min. For inserts larger than 1 kb in size, the longer incubation
time is recommended.

Toward the end of the incubation period, thaw appropriate
number of aliquots of One Shot Competent E. coli (provided with
TOPO cloning kit) on ice. Mix 2 µL of previous reaction with E.
coli and chill on ice for greater than 5 min, but less than 30 min.

Heat shock cell/plasmid mixture at 42◦C for 30 s, and place
tube promptly on ice. Add 250 µL of SOC media (provided
along with E. coli tubes) to cells and grow at 37◦C for at least 1
h in incubator shaker. Apply entire contents of cell culture on
prepared LB+Spectinomycin (50 µg/ml) bacterial growth plates
and incubate overnight at 37◦C. Plates may be stored at 4◦C for
up to 1 month.

To ensure appropriate expression of the OR transgene in
D. melanogaster, orientation of the insert from 5′ to 3′ with
reference to the attL1 element in the TOPO plasmid is required.
To verify correct orientation of the insert, a standard colony PCR
protocol is followed, with amplification using one GSP and one
TOPO plasmid primer (GW1 or GW2); either combination of
GW1 and GSP2 or GW2 and GSP1 will suffice. For either of these
combinations, amplification of a PCR product (ca. 1.3 kb) will
only occur if the insert is positioned in the plasmid in the desired
orientation.

Typically, screening of 4–8 colonies with this assay is sufficient
to identify a clone with the insert in the desired orientation.
First, select colonies and transfer them each to a 1.5-mL
microcentrifuge tube with 50 µL of LB plus spectinomycin (50
µg/ml) growth medium. Incubate culture at 37◦C in incubator
shaker for at least 1 h. In the meantime, prepare PCR reactions
with master mix appropriate to the number of colonies being
assayed. Using a Taq polymerase system, without proofreading
function, a standard PCR reaction shall be prepared with 2 µL
of each colony culture to be added to each PCR reaction tube.
Remainder of colony culture is to be stored at 4◦C for later
use. For the amplification procedure, standard thermocycling
parameters shall be followed according to the Taq polymerase
system being used, with a 5 min extension period per cycle,
and 30–35 amplification cycles. Ensuing gel analysis of PCR
amplification products on a 1.5% agarose gel will confirm
the presence of amplicon, and thus correct orientation of the
insert.
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For each TOPO/OR construct, one or more colony cultures
with insert may be selected for further processing. After PCR
assay and confirmation, the remainder of the colony culture is
added to a culture tube with 3 mL of LB plus spectinomycin (50
µg/ml), and this culture is grown overnight at 37◦C in a shaker
incubator. After overnight growth, the culture may be stored at
4◦C for 2–3 weeks or used immediately in the next step.

Using a standard plasmid mini prep purification kit, the
culture is to be processed according to manufacturers protocol.
Elute plasmid DNA in ultra-pure sterile water or supplied elution
buffer and measure concentration of plasmid preparation with
photospectrometer or equivalent equipment.

Confirm the sequence of the insert via sequencing reactions
with GW1 and GW2 primers supplied with the TOPO cloning
kit. This step is critical. Attempts to generate transgenic fly lines
without verifying sequence beforehand may lead to otherwise
avoidable failure of the experiment.

Store plasmid at −20◦C until completion of the sequencing
reactions. Discard all plasmids with incorrect sequence or errors
otherwise. Select one plasmid with correct sequence for further
processing.

Clonase Transfer of OR Insert to Gateway Destination

Vector
Using the TOPO/OR and pUASg.attB plasmids diluted to
specified concentrations, mix 6 µL of TOPO/OR, 2 µL of
pUASg.attB, and 2 µL of the LR clonase enzyme (Thermo Fisher
Scientific, USA) and incubate at 25◦C for 1 h.

Add 1 µL of proteinase K (supplied with LR Clonase kit) to
terminate previous reaction. Mix and incubate at 37◦C for 10
min. This step is critical. If omitted, downstream outcomes will
not be successful.

During the incubation period, thaw appropriate number of
aliquots of One Shot Competent E. coli (provided with TOPO
cloning kit) on ice. Mix 2.5 µL of the clonase reaction with E. coli
and chill on ice for greater than 5 min, but less than 30 min.

Heat shock cell/plasmid mixture at 42◦C for 30 s, and place
tubes promptly on ice. Add 250 µL of SOC media (provided
with E. coli tubes) to cells and grow at 37◦C for at least 1 h
in incubator shaker. Apply entire contents of cell culture on
previously prepared LB+Ampicilin (50 µg/ml) bacterial growth
plates and incubate overnight at 37◦C. Plates may be stored at
4◦C for up to 1 month.

On account of positive selection of pUASg.attB with OR insert,
and negative selection against bacteria with TOPO/OR plasmid
(these contain Spectinomycin but not Ampicillin resistance
genes) and also those with pUASg.attB lacking OR insert (these
contain lethal gene whose gene product results in death of One
Shot E. coli), all bacterial colonies on the growth plate will contain
the pUASg.attB with OR insert in the correct orientation. Thus,
colony PCR is not necessary at this step to confirm presence and
orientation of the insert.

For each pUASg.attB/OR construct, transfer one colony to a
culture tube with 3 mL of LB plus ampicillin (50 µg/ml), and
grow the culture overnight at 37◦C in shaker incubator. After
overnight growth, culture may be stored at 4◦C for up to 2–3
weeks or used immediately in the next step.

Using a standard plasmid mini- or midi-prep purification
kit, the culture is to be processed according to manufacturers
protocol. Elute plasmid DNA in ultra-pure sterile water
and measure concentration of plasmid preparation with
photospectrometer or equivalent equipment.

Confirm the sequence of the insert via sequencing reactions
with UAS1 and UAS2 sequencing primers (described in Table 1).
This step is critical. Attempts to generate transgenic fly lines
without verifying sequence beforehand may lead to otherwise
avoidable failure of the experiment.

Store plasmid at −20◦C until completion of the sequencing
reactions. Discard all plasmids with incorrect sequence or errors
otherwise. Select one plasmid with correct sequence for injection
in fly embryos.

For expression in the ab3A empty neuron system, it
is desirable to insert the UAS-OR construct on the 3rd
chromosome. Therefore, it is recommended that injections are
made into embryos of the following genetic background:

y w M{eGFP.vas-int.Dm}ZH-2A;+;M{RFP.attP}ZH-86Fb;+

For expression in the T1 neuron system, it is desirable that
the UAS-OR construct is inserted on the 2nd chromosome.
Therefore, it is recommended that injections are made into
embryos of the following genetic background:

y w M{eGFP.vas-int.Dm}ZH-2A;M{RFP.attP}ZH-51D;+;+

Injections are outsourced to a company providing Drosophila
embryo injection services. Indeed, fly strains exist that contain
landing sites at different locations on the second and third
chromosomes. The recommended strains have been selected
due to current availability as well as relatively high genomic
integration efficiency and transgene expression. Consultation
with fly embryo injection companies are advised to determine the
best solutions with respect to available fly strains for this purpose.

Transgenic Expression of ORs in
Drosophila OSNs
In order to express the OR transgene (UAS-ORx) in OSNs of
either ab3 or T1 sensilla, it is necessary to push the transgene
through a series of genetic crosses (Figures 2, 3). Injections
are made into a fly strain with white-eye mutation (w−) and
the UAS-OR construct carries a rescue gene for the white-eye
phenotype. Therefore, transgenic flies obtained after injections
will have orange/red eyes and a genotype, w−; +; UAS-ORx
(w+)/+, for use in ab3 system, or alternatively w−; UAS-
ORx(w+)/+,+, for use in T1 system. A series of initial crosses
are necessary to screen for the presence of transgene. While it
is possible for the end-user to obtain larvae directly from injected
embryos and screen for transgenic strains in the laboratory, this is
labor intensive and not recommended. Alternatively, these steps
are typically offered as service by fly-injection companies for a
small fee above and beyond baseline injection costs. For further
details on balancer chromosome phenotypes see Greenspan
(1997). All stock flylines used for crosses mentioned below are
available upon request from our laboratory.
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Fly Crossing Scheme for the ab3A Empty Neuron

System
The OR transgene must be crossed into the 1Halo genetic
background, which contains a chromosomal deletion spanning
the location that includes the OR22a/b locus (Dobritsa et al.,
2003; Gross et al., 2003). An outline of the required crosses is
shown in Figure 2.

Cross 1. Cross w; +; UAS-ORx(w+)/+ to the double balancer
strain, w; Bl/Cyo; TM2/TM6b. Select progeny with red
eyes (w+), curly wings (Cyo) and tubby phenotype (with
a cluster of bristles on the humerus, TM6b): w; +/Cyo;
UAS-ORx(w+)/TM6b. The ebony phenotype features
darker pigmentation and presents in flies with both third
chromosome balancers (TM2/TM6B). In this schema
the OR transgene is present on the third chromosome,
its selection is thus mutually exclusive with the ebony
phenotype.
Cross 2. Cross selected progeny again to w; Bl/Cyo;
TM2/TM6b. Select progeny with red eyes, curly wings,
tubby phenotype and short bristles (Bl), with genotype:
w−; Bl/Cyo; UAS-ORx(w+)/TM6b. Since the 1Halo
mutation has no phenotypic markers, and is introduced
in a genetic background with wild-type (longer) bristles,
it is necessary to first pass the OR transgene through a
short bristle phenotype in order to be able to discriminate
the 1Halo chromosome from its counterpart wild-type
chromosome present in the original transgenic flies
received.
Cross 3. Cross selected progeny to w−; 1Halo/Cyo;
TM2/TM6b. Select progeny with red eyes, curly wings,
tubby and wild-type bristles (1Halo), with genotype, w−;
1Halo/Cyo; UAS-ORx(w+)/TM6b.
Cross 4. Self-cross selected male and female progeny.
Select and breed male and female progeny with red eyes,
curly wings, and wild type bristles, without tubby, w−;
1Halo/Cyo; UAS-ORx, in order to establish a stable
stock of fly lines that are ready for the experimental
cross and downstream electrophysiological assay. In this
stock line, the 1Halo chromosome is maintained in the
presence of the Cyo balancer. While 1Halo homozygous
flies are viable and obtained for downstream assay, they
are not fit for reproduction and are relatively sick. It
is thus advisable to also maintain a stock of flies with
genotype, w−; Bl/Cyo; UAS-ORx(w+)/TM6b, obtained
after Cross 2 (above).

Expression Cross. Cross w−; 1Halo/Cyo; UAS-ORx(w+) to w;
1Halo/Cyo; DmelOR22a-Gal4(w+). Select female progeny with
red eyes and straight wings, w−; 1Halo/1Halo; DmelOR22a-
Gal4(w+)/UAS-ORx(w+). These flies are to be used for
physiological assay, as described below. Since both the Gal4
and UAS constructs in this system are maintained on the
third chromosome, it is not possible to maintain a stable
stock of these flies for physiological assays on demand.
The expression cross must be made as described above
whenever OR assays in the ab3A empty neuron system is
required.

Fly Crossing Scheme for the T1 Knock-In Neuron

System
The OR transgene must be crossed into the OR67d-
knockout/Gal4-knock-in genetic background, which contains
a Gal4 transgene in place of the native OR67d gene, and under
control of the native OR67d promoter (Kurtovic et al., 2007). An
outline of the required crosses is shown in Figure 3.

Cross 1. Cross w; UAS-ORx(w+)/+; + to the double balancer
strain, w; Bl/Cyo; TM2/TM6b. Select progeny with red eyes
(w+), curly wings (Cyo) and tubby phenotype (TM6b), with
genotype: w−; UAS-ORx(w+)/Cyo;+/TM6b.
Cross 2. Cross selected progeny again to w; Bl/Cyo;
TM2/TM6b. Select progeny with red eyes, curly wings, tubby
phenotype and ebony body color, with genotype: w−; UAS-
ORx(w+)/Cyo; TM2/TM6b.
Cross 3. Cross selected progeny to w−; Bl/Cyo; OR67d-
Gal4. Select progeny with red eyes, curly wings, wild-type
bristles, and tubby phenotype, with genotype w−; UAS-
ORx(w+)/Cyo; OR67d-Gal4/TM6b.
Cross 4. Self-cross selected male and female progeny. Select
and breed male and female progeny with red eyes, straight
wings, and without tubby phenotype, with genotype: w−;
UAS-ORx(w+); OR67d-Gal4. In this case, these flies are viable
for stock breeding and are also of the correct genotype for
experimental testing.

Single Sensillum Recordings
Mounting
Trap a fly inside a 200-µl pipette tip. Horizontally cut the pipette
tip close to the head and push the head slightly out of the pipette
tip. Place the pipette tip containing the fly facing upwards on
dental wax on a microscope slide. Push the antennae on the glass
slide fixed with dental wax on the full-length microscope slide.

Fix the glass capillary on dental wax on the microscope slide.
Use the glass capillary to push the antenna down by pressing the
section between the second and third antennal segment. In the
case of transgene ORs expressed in the ab3A OSN, manipulate
the glass capillary until exposing the dorso-medial area of the
antenna. A cluster of thumb-shaped sensilla (large basiconic
sensilla) facing upwards should be visible. For testing transgene
ORs that are expressed in trichoid T1 sensilla, manipulate the
glass capillary to firmly press the lateral side of the antenna
against the microscope slide. The corresponding long pointy
sensilla (T1) are then located at the superior side of the antenna
from the lateral view. Anatomical maps of the D. melanogaster
antenna and sensillum types are found in de Bruyne et al.
(2001), Stocker (2001), Dobritsa et al. (2003), and Couto et al.
(2005). Guidance to perform electrophysiological recordings can
be found in Pellegrino et al. (2010) and in Benton and Dahanukar
(2011).

Recording
Place the mounted fly under the microscope and penetrate
its right eye with the tungsten reference electrode. At high
magnification of the microscope, use the micromanipulator
to move the tungsten recording electrode along the antenna.
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Penetrate either large basiconic sensilla located in the dorso-
medial area of the antennae (ab3, empty neuron system), or long
trichoid sensilla at the tip of the antennae (T1 knock-in neuron
system).

Gently manipulate the recording electrode along the base of
the sensilla until a clear pattern of neuronal activity is established
(monitored by Autospike; Syntech, Kirchzarten).

Identification of Sensillum Identity
After making contact, confirm sensillum identity prior to
testing.

AB3 sensillum. Stable recordings from ab3 sensilla (Dobritsa
et al., 2003) will produce spike trains from two OSNs,
ab3A and ab3B, with two distinct amplitudes (Figure 4A).
A response to stimulation with 2-heptanone, targeting the
native Or85b expressed in ab3B, serves as double control: it
confirms proper sensillum contact and the identity of the ab3
sensillum.

Regular spontaneous activity of the second neuron ab3A
is indicative of a functional transgenic OR. The frequency of
spontaneous neuronal activity of OSNs has been shown to be
determined by the specific receptor protein that is expressed
in the neuron (Hallem et al., 2004), variance of this feature
is thus to be expected. However, response to stimulation with
the wild type ligands, ethyl hexanoate or ethyl butyrate, is
absent or modified and confirms that OR22a is not expressed
(Figure 4B).

Last but not least, contact with the wrong large basiconic
sensillum subtype (ab1 or ab2) can be ruled out by testing
their natural ligands. The ab1 sensillum contains four OSNs
(with varying spike amplitudes), one of which is responsive to
CO2: breathing gently over the fly will produce a response. For
ab2, containing two OSNs, a ethyl-3-hydroxybutyrate stimulus
produces a strong response.

T1 sensillum. When recording from T1 sensilla (Kurtovic
et al., 2007), only one OSN responds (Figure 4C). The two
other types of trichoid sensilla, T2 and T3, contain 2 and
3 neurons, respectively, facilitating discrimination between
different trichoid sensilla. The OR insert in T1 is confirmed
through lack of a response to cVA (Figure 4D).

Odor Stimulation
Apply 10 µl of test chemical solvent dilutions to filter paper
discs inside Pasteur pipettes. Pulses of charcoal-filtered air
(2.5 ml) through the pipette are delivered by a stimulus
controller (Syntech, Kirchzarten, Germany), lasting at least
0.5 s, into glass tubing delivering air to the fly. Verify
sensillum identity before testing. Once contact with correct
sensillum subtype is established, sequentially deliver the test
panel of compounds. Response magnitude is determined by
counting the number of spikes before and after the onset of a
response.

Alternatively, test stimuli can be provided by the effluent of
a gas chromatograph (GC-SSR). The main advantages of using
the GC for stimulation are discussed below (Section Testing
Odourants).

ANTICIPATED RESULTS AND
TROUBLESHOOTING

Molecular Cloning and Heterologous
Expression
Most attempts to amplify the ORF of a determined OR and
clone it into the TOPO entry vector will be successful with
little difficulty. Common problems may be remedied after
consultation with the troubleshooting section of the TOPO
cloning user manual. It must be noted, however, that in some
cases, attempts to amplify or obtain clones with the OR construct
in the correct orientation can be unsuccessful. In case of
amplification issues, it may be necessary to optimize the PCR
amplification with gradient PCR or selection of new primer pairs
that are more compatible with each other and the target cDNA in
question.

Pertaining to issues with identifying TOPO clones with the
desired insert in the correct orientation, it may be necessary,
during the colony PCR screening step, to assay both combination
of plasmid/insert primer pairs, due to primer incompatibility
issues. Otherwise, various unknown and unapparent factors
may render some OR constructs refractory to plasmid vector
propagation. In our experience, this is rare, but may happen;
with patience and effort these molecular obstacles can usually be
overcome.

In test flies, OR transgenes are expressed in either ab3A
or T1 OSNs, which lack their native OR22a/b or OR67d
receptors, respectively. This should be verified though PCR assay
of transgene OR expression in antennae of progeny obtained
through experimental crosses. This can be done by following the
procedures described in section 3.1.1 to 3.1.4, using the antennae
of 100 test flies as starting material. It is our experience that
most ORs will be expressed appropriately in the D. melanogaster
antennae, once the appropriate fly crosses have been made.
However, in few cases, ORs are refractory to expression in these
sensilla, for yet unknown reasons.

Response of OSNs Expressing Novel ORs
The functionality of heterologous expression of ORs in ab3A
and T1 OSNs is assessed by SSR. As mentioned above, the
ab3 basiconic sensilla house two neurons, ab3A, which natively
expresses OR22a (tuned to ethyl hexanoate and ethyl butyrate)
and ab3B, which expresses OR85b (tuned to 2-heptanone).
Identity and functionality of this sensillum can be verified
through stimulation of the ab3B neuron with 2-heptanone.

If ab3A sensilla, expressing a novel OR, should respond to
ethyl hexanoate or ethyl butyrate, further testing with other
OR22a ligands such as methyl hexanoate, isobutyl acetate and
methyl octanoate (Hallem and Carlson, 2006) can help to
determine whether the native DmelOR22a or the experimental
transgenic OR produce this response. Expression of the transgene
OR and lack of expression of the native OR22a receptor can
also be confirmed with a PCR assay, as described above. If
DmelOR22a is indeed present, it is likely due to erroneous
fly-crossings that failed to exclude the wild-type second
chromosome. In this case, it will be necessary to carefully
perform the fly-crossing schema again to ensure that the 1Halo
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FIGURE 4 | Single sensillum electrophysiological recordings. In ab3 empty neuron system, (A) wild-type flies expressing native ORs, (B) mutant flies expressing

native OR85b in the small neuron and transgenic CpomOR19 from C. pomonella in the large neuron (Gonzalez et al., 2015). In T1 empty neuron system, (C) wild-type

flies expressing native OR67d, (D) mutant flies expressing transgenic CpomOR3 (Bengtsson et al., 2014).
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chromosome is present in place of a wild-type chromosome
containing DmelOR22a.

On the other hand, even if receptors are functionally expressed
and confer a background-firing rate on respective ab3A and T1
OSNs, test odourants may not elicit significant responses. The
solution is to use a broader test panel of odourants, taking into
account a diversity of ecological sources of odourants that are
representative of the olfactory environment of the insect being
studied. Using volatile collections from natural substrates in
combination with GC-SSR is an option.

In a functional transgenic ab3A system, only ligands activating
the transgenic OR will produce a response from ab3A neurons.
Recently, we have deorphanized CpomOR19 and SlitOR19, of
C. pomonella and Spodoptera littoralis, using the ab3A system.
A response to 1-indanone was recorded only after expression of
CpomOR19 or SlitOR19 in ab3A OSNs, and not from wild-type
D. melanogaster (Figures 4A,B; Gonzalez et al., 2015).

Expression of transgenic candidate PRs or other ORs
in T1 neurons is characterized by an irregular firing rate
(Ronderos et al., 2014). Wild-type flies will show an intense
and long-lasting response when stimulated with cVA, while
experimental flies will respond with a less intense but more
irregular pattern to the ligands of the respective transgene ORs
(Figures 4C,D).

CpomOR3 belongs phylogenetically to the clade of moth
pheromone receptors and is tuned to the plant volatile pear ester.
After functional expression of CpomOR3 in neurons of either ab3
or T1 sensilla, responsiveness and tuning were equally specific
and sensitive (Bengtsson et al., 2014).

Sensillum Environment and OR Function
Systematic investigations of the OR repertoires of Drosophila
and the malaria mosquito Anopheles gambiae demonstrate
that the ab3A empty neuron is a faithful expression system
for insect OR genes. OR response profiles in native neurons
and in the empty neuron, generally resemble each other, but
are not identical (Dobritsa et al., 2003; Hallem et al., 2004;
Carey et al., 2010). However, not all receptors will work in
ab3A neurons. For example, only 50 out of 72 cloned A.
gambiae ORs were functional in the empty neuron (Carey
et al., 2010). A similar percentage of D. melanogaster ORs were
also not functional in the ab3A empty neuron (Hallem et al.,
2004). In cases where transgene ORs are expressed but not
functional in ab3A neuron, the background neuronal firing rate
phenocopies the ab3A empty neuron condition with regular
cluster bursts of multiple action potentials (Dobritsa et al.,
2003).

Advances in transcriptomics and the molecular basis of
odourant reception in insects will help us to understand what
facilitates or impedes correct function of ORs. One explanation
is that the cellular environment contributes membrane-bound
proteins, such as sensory neuron membrane proteins (SNMPs)
and extracellular odourant- or pheromone-binding proteins
(OBPs, PBPs), which are known to mediate interactions between
ORs or PRs and odourant molecules (Nichols and Vogt, 2008;
Leal, 2013; Li et al., 2014; Vogt et al., 2015). Expression patterns
of SNMPs and OBPs have been investigated across olfactory

organs (Vogt et al., 2002; Shanbhag et al., 2005; Benton et al.,
2007), however detailed expression patterns of these genes at
the cellular level, with reference to ORs, remain to be fully
described.

The combined role of ORs and OBPs, and PRs and PBPs,
respectively, in odourant detection and discrimination, has
been confirmed by co-expression analysis and by heterologous
expression in Xenopus (Schultze et al., 2013; Chang et al.,
2015). This is in line with the observation that some ORs are
functional only in trichoid sensilla. Presence of the extracellular
protein LUSH is necessary for pheromone-sensitive OSNs in
Drosophila T1 sensilla (Xu et al., 2005; Laughlin et al., 2008).
Similarly, DmelOr83c does not produce a response at all when
transgenically expressed in basiconic sensilla OSNs, but requires
factors present in trichoid sensilla, including SMNP1 (Ronderos
et al., 2014).

Testing Odourants
Odourants used for functional characterization of insect ORs
comprise a range of compounds which greatly differ in molecular
weight and, accordingly, also in vapor pressure and evaporation
rates. In addition, when compounds are formulated onto
passive dispensers, their physicochemical affinity to the substrate,
including polarity, will modify evaporation rates. Release rates
of the odourants included in a test panel will often differ by
several orders of magnitude. Yet, these differences in release rates
are notoriously ignored or underestimated. For valid structure-
activity comparisons, the amounts of test compounds delivered
to the antenna need to be corrected for differences in evaporation
rates (Bengtsson et al., 1990).

Chemical impurities of test odourants are another serious
error source. Standards of natural or synthetic compounds
invariably contain impurities, which may be more active than the
test compound itself. Even impurities present in trace amounts
may elicit strong responses, since ORs are indeed known to be
strongly tuned to their key ligands. Last but not least, availability
of synthetic standards is often a limiting factor.

Using GC-SSR for stimulation elegantly accounts for
these main concerns: release rates, chemical purity and
availability of standards. Headspace collections from biological
substrates, for example, leaves or fruits of higher plants, will
typically contain several dozens of volatiles. Through the GC
column, these compounds are delivered at known amounts,
independently of vapor pressure. Choice of the column and
temperature programme will ensure delivery of pure compound
at baseline separation. This includes even geometrical or optical
isomers of plant volatiles, which rarely are available as pure
standards.

CONCLUSION

We expect heterologous expression of insect ORs in Drosophila
OSNs to make a significant future contribution to the
identification of insect semiochemicals, and to investigations
of the phylogenetic progression and the functional properties
of ORs.
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