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The capacity to communicate effectively with other individuals plays a critical role in

the daily life of an individual and can have important fitness consequences. Animals

rely on a number of visual and non-visual signals, whose production brings costs

to the individual. The theory of honest signaling states that these costs are higher

for low than for high-quality individuals, which prevents cheating and makes signals,

such as skin and plumage coloration, indicators of individual’s quality or condition.

The condition-dependent nature of signals makes them ideally suited as indicators of

environmental quality, implying that signal production might be affected by contaminants.

In this mini-review article, we have made the point that oxidative stress (OS) is one

overlooked mechanism linking exposure to contaminants to signaling because (i) many

contaminants can influence the individual’s oxidative balance, and (ii) generation of both

visual and non-visual signals is sensitive to OS. To this end, we have provided the first

comprehensive review on the way both non-organic (heavy metals, especially mercury)

and organic [persistent organic pollutants (POPs)] contaminants may influence either OS

or sexual signaling. We have also paid special attention to emerging classes of pollutants

like brominated flame-retardants (BFRs) and perfluoroalkoxy alkanes (PFAs) in order to

stimulate research in this area. We have finally provided suggestions and warnings for

future work on the links among OS, sexual signaling, and contaminant exposure.

Keywords: contaminants, POPs, oxidative stress, honest signals, heavy metals, hormesis

INTRODUCTION

Work on honest signaling has been a major area of research in animal behavior and evolutionary
ecology in recent decades. Honest signals reflect the individual quality, which depends on various
interacting factors, such as foraging capability, functionality of the hormonal and immune systems,
or oxidative balance (Hill, 2011). In 1999, Von Schantz et al. proposed that the association between
oxidative stress (OS) and health might be a primary mechanism linking the expression of sexual
ornaments to genetic variation in fitness-related traits, promoting the evolution of female’s mate
choice and male’s sexual ornamentation (von Schantz et al., 1999). OS is a biochemical condition of
cells, which occurs when there is an increase in oxidative molecular damage and oxidation of non-
protein and protein thiols that regulate the cell oxidative balance. It is now increasingly recognized
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that OS may have an impact on the whole organism, for example
as a modulator of some key life-history trade-offs (Costantini,
2014).

It is sometimes forgotten in ecological studies that some
among individuals or species variation in life histories or
physiological condition may simply be the by-product of
contaminant exposure (Carere et al., 2010). In this context,
the role of contaminants in influencing the production of
honest signals and, consequently, sexual selection might be
relevant. Pioneering work from Møller (1993), Manning and
Chamberlain (1994), or Hill (1995) suggested that the condition-
dependent nature of ornaments and armaments makes them
suited indicators of environmental quality. The majority of
the work in this area has been focused on the expression of
colorations in birds. Both non-organic and organic contaminants
may alter various, often inter-linked, physiological processes,
causing changes in endocrine and neuroendocrine pathways
(Frye et al., 2011), and oxidative balance (Metodiewa and
Dunford, 1990; Whysner and Wang, 2001; Isaksson, 2010).
Contaminants might either exacerbate costs of or constrain on
physiological pathways underlying the production of honest
signals.

In this review we have made the point that OS is an additional
but overlooked mechanism linking contaminant accumulation
in the body to the expression of sexual signals. OS has
been extensively studied in ecotoxicology and this background
knowledge can be used as a strong basis to establish mechanisms
of action for signaling. We have provided the first comprehensive
review of potential pathways through which both non-organic
and organic contaminants would influence signaling through the
induction of OS. We have also relied on studies of emerging
pollutants of global concern for wildlife in order to stimulate
research in this area. Although most of the work has been on
birds, the implications of the examples provided are not taxon-
specific.

NON-ORGANIC CONTAMINANTS

Non-organic contaminants can disrupt body colorations
(Figure 1A) and induce OS through various mechanisms. For
example, metal ions can induce cleavage of peroxides and
organic hydroperoxides through the Fenton reaction, leading to
the generation of new free radicals that can fuel OS. Metals can
also bind to thiol groups, such as the endogenous antioxidant
glutathione (Chan et al., 1992; Bridges and Zalups, 2006),
inducing oxidation of the thiol without the generation of free
radicals. These metals include, for example, cadmium, mercury,
lead, and arsenic. For example, mercury has a strong propensity
to react with cysteine and reduced glutathione (Stricks and
Kolthoff, 1953; Mah and Jalilehvand, 2010) and animals have
evolved adaptive mechanisms, in some species confined during
specific stages of the life cycle, to actively eliminate such
damaging contaminant from the body. For example, in birds,
mercury is excreted through its deposition in the feathers
during the molt (Monteiro and Furness, 1995). In this pathway,
mercury is bound to keratin sulfhydryl groups during synthesis

of feathers. Seabirds with slow molt cycles may have, however,
a limited capacity for mercury detoxification (Thompson and
Furness, 1989). Mercury may also be excreted from the body
through the glutathione-pathway. Mercury binds to the thiol
group of glutathione, forming a complex that is excreted in the
feces (Ballatori and Clarkson, 1985). Sulfhydryl groups like thiols
are important molecules that regulate the oxidative balance and
any depletion leads to disruption of redox signaling and control,
and increase in OS (Jones, 2006). Thus, high contamination
with mercury might lead to a high depletion of thiols regardless
of the pathway of excretion, which may compromise defenses
against oxidation. Depletion of glutathione due to mercury may,
for example, compromise the activity of the enzyme glutathione
peroxidase (Hoffman and Heinz, 1998), which uses glutathione
as a cofactor to detoxify the organism from peroxides and
organic hydroperoxides, which is an important pathway through
which organisms protect themselves against OS. The activity
of selenium-dependent glutathione peroxidase may be further
compromised by depletion of selenium that is being used to
biosynthesize mineral granules containingmercury and selenium
(Nigro and Leonzio, 1996).

The interaction between mercury and glutathione offers
a potential way through which mercury might influence
melanin-based colorations (Figures 2A,B). Melanins are
pigments that animals synthesize from the aromatic amino acids
phenylalanine and tyrosine (Hearing, 1993). Melanins occur
in two chemically distinct forms: eumelanin is a brown-black
polymer of dihydroxyindole carboxylic acids and their reduced
forms; pheomelanin is a cysteine-containing red-brown polymer
of benzothiazine units. Melanocyte-stimulating hormones
and the adrenocorticotropic hormone regulate the activity
of the enzyme tyrosinase, which favors eumelanogenesis to
pheomelanogenesis when its activity is high (Ozeki et al.,
1997; Benathan et al., 1999). Melanogenesis is also regulated
by the availability of thiol groups, such as free cysteine and
cysteine-containing peptides (Ozeki et al., 1997; Benathan
et al., 1999). Dopaquinone (produced from hydroxylation
of the amino acid tyrosine) can react with thiol groups to
synthesize pheomelanin or, in the absence of thiol groups,
undergo a cyclisation that leads to the synthesis of eumelanin
(García-Borrón and Olivares Sαnchez, 2011). Given that thiol
compounds like glutathione play an important role in the
regulation of cell redox status and protection against oxidative
damage, melanin-based ornaments might signal the individual
OS level (Galván and Alonso-Alvarez, 2008; Galván and Solano,
2009; Grunst et al., 2014). The property of melanic traits to
signal individual OS would be favored by the differentiation
in color between eumelanic (black and gray) and pheomelanic
(yellowish, reddish, chestnut, and brown) traits (Galván and
Alonso-Alvarez, 2008; Galván and Solano, 2009). Production
of pheomelanin requires cysteine, which is also needed for
the synthesis of glutathione (Galván and Solano, 2009). Thus,
there should be a trade-off between the use of cysteine for
glutathione and for pheomelanin synthesis. Cysteine-containing
peptides like glutathione can also be used in melanogenesis.
Thus, when the synthesis of glutathione is not constrained, the
organism can maintain high glutathione concentration, while
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FIGURE 1 | (A) Wild male mallards (Anas platyrhynchos) exposed to high concentrations of lead (Pb) had paler carotenoid-based colorations in both legs and beak.

Reprinted from Vallverdú-Coll et al. (2016) with permission from John Wiley and Sons; (B) Wild female black-legged kittiwakes (Rissa tridactyla) with higher blood

concentrations of persistent organic pollutants (POPs) had paler carotenoid-based colorations in the gapes. Modified from Blévin et al. (2014). Photographs were

courteously provided by Frédéric Angelier.
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FIGURE 2 | (A) Simplistic diagram of the hypothetical links among heavy metals, oxidative stress, and coloration via the glutathione pathway; (B) Schema of the

catalytic cycle for the depletion of the cellular glutathione pool by mercury, proposed on the basis of mass spectrometric behavior, and biochemical evidence

(reprinted from (Rubino et al., 2006) with permission from Elsevier); GSH, glutathione; GS-Hg+, mono-S-glutathionyl-mercury(II); Hg, mercury; CSCyGlyOH, oxidized

cysteinyl-glycine; Hg+-SCyGlyOH, mercury(II)-cysteinyl-glycine conjugate; Pyr, pyroglutamic acid; RSH, thiols; (C) Simplistic diagram of the hypothetical links among

persistent organic pollutants (POPs), oxidative stress, and coloration. Different classes of POPs can generate oxidative stress via binding with specific cellular

receptors, including the aryl hydrocarbon receptor (AhR), and proliferator-activated receptor-alpha (PPAR-α); (D) Schema of the effects of dioxin-like pollutants (e.g.,

co-planar PCBs, PBDEs) via induction of the cytochrome P450 pathway (adapted from Regoli and Giuliani, 2014) which induces uncoupling of the catalytic cycle of

the cytochrome P450 1A subfamily allowing the heme iron within the active site of this enzyme complex to undergo cycles of oxidation and reduction, and act as a

Fenton catalyst generating free radicals—AhR, aryl hydrocarbon receptor; Ah, aryl hydrocarbon genes (e.g., CYP1A, CYP1B); HSP 90, heat shock protein 90; ARNT,

aryl hydrocarbon receptor nuclear translocator; DRE, dioxin responsive element. Different classes of pollutants can act on the same cellular targets altering the cell

oxidative machinery, see Regoli and Giuliani (2014) for a full review on these aspects.

using it for the production of pheomelanins. Using glutathione
in melanogensis might indicate that the individual has sufficient
alternative antioxidant resources to counteract the decrease in
glutathione itself or is not exposed to pro-oxidants (Galván and
Alonso-Alvarez, 2008; Galván and Solano, 2009). On the other
hand, a decrease in glutathione and, consequently, in cysteine
availability would result in increased production of eumelanins.
If mercury decreases glutathione availability, we should expect
an increase in eumelanin coloration, but this has never been
tested experimentally in free-living nor captive animals.

PERSISTENT ORGANIC POLLUTANTS

Polychlorinated Biphenyls
Persistent organic pollutants (POPs) are a large variety
of compounds, including polychlorinated biphenyls (PCBs),

organochlorine pesticides, or dioxins. Although industrial
production of some POPs is now banned in most countries,
they still represent a major health hazard due to their high
persistence in the environment and their lipophilic properties
that facilitate bio-accumulation and bio-magnification via the
food chain (Beyer and Biziuk, 2009). Exposure to PCBs has been
associated with dramatic adverse effects in many species (e.g.,
eggshell thinning in birds of prey; Wiemeyer and Porter, 1970;
Ross, 2004; Frye et al., 2011). Several studies have shown that
increased OS may be an additional mechanism underlying the
negative effects of PCBs on the organism (e.g., Oakley et al., 1996;
Zhu et al., 2009).

One important mechanism of action of PCBs is the binding
capacity of some “dioxin-like” congers, such as PCBs 77 and
126, with the aryl hydrocarbon receptor (AhR), activating
the enzyme cytochrome P450 1A subfamily (Hennig et al.,
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1999, 2002; Figures 2C,D). These interactions can uncouple
the catalytic cycle of the enzyme CYP1A, allowing the heme
iron within the active site of this enzyme complex to undergo
cycles of oxidation and reduction, and act as a Fenton catalyst,
generating free radicals (Schlezinger et al., 1999). Therefore
exposure to PCBs might increase production of pro-oxidants
that, if not counteracted by antioxidants, may cause OS. PCBs
might also cause OS through the de-regulation of specific
antioxidants. Administration of PCB 77 to rats suppressed
both transcription and enzymatic activity of selenium-dependent
glutathione peroxidases and total selenium in liver (Twaroski
et al., 2001), which are important components of the antioxidant
machinery. Although this review specifically focuses on OS, we
note that several PCBs are also known to influence hormonal
systems that regulate signaling (Ottinger et al., 2002).

Exposure to PCBs can also disrupt body coloration in
birds, and, therefore, potentially influence sexual communication
(Figure 1B). Pioneering work by Bortolotti et al. (2003)
demonstrated that oral exposure to environmentally relevant
dose of a PCB mixture (i.e., 1:1:1 Aroclor 1254, 1248, and 1260)
in American kestrels (Falco sparverius) affected both plasma
carotenoids and carotenoid-dependent coloration in a complex
sex- and season-dependent manner. Differences in coloration
were also found in the juveniles produced by the PCB-exposed
parents, a presumed long-term effect of exposure to PCBs in
ovo (Bortolotti et al., 2003). The effects of PCBs on the adult
colorations might have been the consequence of changes in the
oxidative balance. PCB-exposed individuals may have diverted
carotenoids from colorations to protection against PCB-induced
OS (Bortolotti et al., 2003); this would imply a trade-off for
allocation of carotenoids between sexual signaling and self-
maintenance (Pérez-Rodriguez et al., 2010). Indeed, during the
courtship period, PCB-exposed males were duller than control
males, while PCB-exposed females maintained their plumage
coloration conversely to the expected loss in color observed
in control females when carotenoids are diverted towards the
developing ovaries (Surai, 2002). Moreover, the same PCB-
treated females as in Bortolotti et al. (2003) delayed egg laying
(Fernie et al., 2001). Although the antioxidant role of carotenoids
appears to be minor in birds (Costantini and Møller, 2008),
carotenoids might be more important when individuals are
exposed to environmental (and oxidative) challenges. It might
also be that depletion of other antioxidants would cause increased
passive oxidation of carotenoids (Hartley and Kennedy, 2004;
“protection hypothesis” in Pérez et al., 2008). Therefore, depletion
of carotenoids might still confer honesty to the signal as long
as it conveys other individual quality- and fitness-dependent
functions.

Changes in coloration in response to elevated PCBs have
also been found in ornaments independent from carotenoids
and other pigments. McCarty and Secord (2000) examined
plumage color in sub-adult female tree swallows (Tachycineta
bicolor) breeding in an area highly contaminated by PCBs
in the Hudson River. Females from contaminated areas
had significantly more adult-like structurally colored blue-
green feathers than females from control areas. This result
was interpreted as an effect of PCBs on plumage through

endocrine disruption, however, mechanisms were not directly
investigated.

EMERGING PERSISTENT ORGANIC
POLLUTANTS

Emerging POPs can be broadly defined as contaminants
that are suspect of negative effects for the environment and
wildlife, either not yet or recently regulated. These can include
compounds that have been recently discovered (“true” or “new”
emerging contaminants), or contaminants that have been in the
environment since decades but for which concerns have been
raised more recently (Sauvé and Desrosiers, 2014).

Brominated Flame-Retardants
Brominated flame-retardants (BFRs) include various
compounds, such as emerging BFRs [e.g., 2,3-dibromopropyl
phosphate (TDBPP)], polybrominated diphenyl ethers (PBDEs),
tetrabromibishenol-A (TBBPA), hexabromocyclodecane
(HBCD), and polybrominated biphenyls (PBBs), present in
plastics, textiles, and commonly used in electronic equipment
from catching fire. Several BFRs have raised environmental
health concerns since they are highly persistent in the
environment and can bio-accumulate in the food chains
(de Wit, 2002). Most work has mainly focused on PBDEs, which
are structurally similar to PCBs, and are now recognized as
global pollutants (de Wit, 2002). The adverse effects of PBDEs
may involve neurotoxic action during brain development or
disruption of the thyroid endocrine system (Dingemans et al.,
2011). Both these two mechanisms are likely to be associated
with perturbation of homeostasis and generation of OS. In
mammals, commercially available mixtures of PBDEs can
enhance production of free radicals among different tissues,
including the brain (e.g., Cheng et al., 2009; Bellés et al.,
2010), liver (Fernie et al., 2005), and kidney (Albina et al.,
2010).

Although free-living organisms are exposed to PBDEs since
the start of life (Sellström et al., 1992), only a handful of studies
have examined the consequences of PBDEs exposure for the
organism. In captive nestling American kestrels (F. sparverius),
exposure to environmentally relevant doses of a commercial
mixture of PBDEs led to alterations in the thyroid system as well
as hepatic OS, with marginal increases in oxidative damage (lipid
peroxidation), and increased oxidized glutathione and retinol
(Fernie et al., 2005). Exposure to environmentally relevant doses
of DE-71 (a commercially available PBDE congener) caused
changes in reproductive performance during the pre-nesting
period, reducing copulatory activities and altering frequency
and timing of pair-bonding behaviors (Fernie et al., 2008).
Given that PBDEs are structurally similar to PCBs and appear
to induce similar effects on the individuals’ oxidative balance,
and given that they can alter social and sexual signaling,
it is likely that PBDEs might affect signaling through OS.
We need experimental work that aims to elucidating such
potential functional links among PBDEs, OS, and honest
signals.
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Perfluoroalkoxy Alkanes
Perfluoroalkylated substances (PFAs) have been widely used since
1950s for industrial applications, such as impregnating agents for
carpets and textiles, fire-fighting foam (Jensen and Leffers, 2008).
Perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid
(PFOA) have been the most widely used PFAs. Both PFOS and
PFOA are highly persistent in the environment and have been
detected globally in wildlife and humans (Lau et al., 2007).
Vertebrates do not seem to be able to metabolize and excrete
PFAs (Muir and de Wit, 2010). Thus, PFAs bio-accumulate via
the food chain (Tittlemier et al., 2007) and high levels of PFOS
have been recorded in Arctic top predators, such as polar bears
(Bossi et al., 2005).

A suspected mechanism involved in the toxic effects of PFAs
is the peroxisome proliferator-activated receptor-alpha (PPAR-
alpha; Figure 2C). Both PFOS and PFOA are weak activators
of this receptor (Abbott, 2009). The PPAR is considered an
important POP-related pathway involved in cell differentiation
and hormone homeostasis (Kennedy et al., 2004). In rodents,
activation of the PPAR-α increases production of hydrogen
peroxide, which may lead to generation of hydroxyl radicals,
which can boost OS (Klaunig et al., 2003). Experimental evidence
shows that PFAs may trigger OS through the stimulation of ROS
production (Eriksen et al., 2010), increased oxidative damage to
DNA (Yao and Zhong, 2005), and cell apoptosis (Panaretakis
et al., 2001).

In agreement with mammalian studies (e.g., Lau et al., 2006),
Yanai et al. (2008) reported that exposure to PFOA in ovo
in chicken reduced hatching success. Intriguingly, the latter
study also showed that the surviving individuals exposed to the
higher doses of PFOA were partially or completely missing their
typical yellow pigmentation post-hatching (Yanai et al., 2008).
Although neither antioxidant nor oxidative damage markers
were measured, the results provided by Yanai et al. (2008) suggest
that pre-natal exposure to PFOA might have interfered with the
metabolism of carotenoids (Surai, 1998). The latter work offers
preliminary evidence that PFAs can alter carotenoid-dependent
colorations, similarly as the exposure to PCBs.

CONTAMINANT DOSE AND SIGNALING

An important point that is often forgotten in research on
the impacts of contaminants on wildlife is that low dose
exposure may stimulate organism’s defense mechanisms. This
phenomenon, called “hormesis,” is increasingly recognized to be
strongly associated with exposure to contaminants (Calabrese
and Blain, 2005) and OS (Costantini, 2014). For example,
sublethal lead exposure may increase male coloration (Vallverdú-
Coll et al., 2015). Male starlings exposed to environmentally
relevant levels of synthetic and natural estrogen mimics
developed longer and more complex songs, and had larger
brain areas controlling song complexity than controls (Markman
et al., 2008). Moreover, females preferred the song of males
which had higher pollutant exposure, despite experimentally
dosed males showed reduced immune function (Markman et al.,
2008). The low dose stimulation of traits involved in signaling

may therefore have serious implications at the population level
whether contaminants paradoxically enhance a signal of male
quality biasing female choice towards contaminated males.

CONCLUSIVE REMARKS AND FUTURE
PERSPECTIVES

Many contaminants can affect either oxidative balance or
expression of signals. We now need experimental work that
seeks to assess the extent to which contamination-induced OS
impacts on sexual signaling. We also need more studies to fully
understand whether sexual signals could reliably be applied to
monitor contaminant exposure in natural animal populations
(Blévin et al., 2014; Giraudeau et al., 2015). Although in ourmini-
review we have not included literature on the impact of pesticides
on OS and signaling, we highlight that our argumentations
also apply to this important class of contaminants. Future
work should pay special attention to the many factors that
likely influence the impact of contaminant-induced OS on
signaling. For instance, we might expect differences between
males and females in those species where their investment into
reproduction differs largely. We would also expect differences
among age classes because both reproductive investment and
resistance to OS vary with age (Costantini et al., 2014).

Most of the work about either OS or honest signals to
date has focused on melanin and carotenoid-based colorations.
Contaminants can also influence other components of signaling,
such as vocalizations (DeLeon et al., 2013), or olfactory detection
(Olsén, 2011). More research on these sexual communication
components would be useful to deeper our understanding of
the links among contaminants, OS, and individual’s quality. We
also stress that very little is known on the effects of emerging
POPs such as BFRs and PFAs on honest signaling and OS in
wild populations. Experimental work on these emerging POPs
is a fruitful area for future research. We finally highlight that
acknowledging the significance of hormesis will be fundamental
for the interpretation of results.
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