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Autotrophic organisms reveal an astounding �exibility in their elemental stoichiometry,
with potentially major implications on biogeochemical cycles and ecological functioning.
Notwithstanding, stoichiometric regulation, and co-limitation by multiple resources in
autotrophs were in the past often described by heuristic formulations. In this study,
we present a mechanistic model of autotroph growth, which features two major
improvements over the existing schemes. First, we introduce the concept of metabolic
network independence that de�nes the degree of phase-locking between accessory
machines. Network independence is in particular suggestedto be proportional to
protein synthesis capability as quanti�ed by variable intracellular N:C. Consequently,
the degree of co-limitation becomes variable, contrastingwith the dichotomous debate
on the use of Liebig's law or the product rule, standing for constantly low and high
co-limitation, respectively. Second, we resolve dynamic protein partitioning to light
harvesting, carboxylation processes, and to an arbitrary number of nutrient acquisition
machineries, as well as instantaneous activity regulationof nutrient uptake. For all
regulatory processes we assume growth rate optimality, here extended by an explicit
consideration of indirect feed-back effects. The combination of network independence
and optimal regulation displays unprecedented skill in reproducing rich stoichiometric
patterns collected from a large number of published chemostat experiments. This high
skill indicates (1) that the current paradigm of �xed co-limitation is a critical short-coming
of conventional models, and (2) that stoichiometric �exibility in autotrophs possibly
re�ects an optimality strategy. Numerical experiments furthermore show that regulatory
mechanisms homogenize the effect of multiple stressors. Extended optimality alleviates
the effect of the most limiting resource(s) while down-regulating machineries for the
less limiting ones, which induces an ubiquitous response surface of growth rate over
ambient resource levels. Our approach constitutes a basis for improved mechanistic
understanding and modeling of acclimative processes in autotrophic organisms. It
hence may serve future experimental and theoretical investigations on the role of those
processes in aquatic and terrestrial ecosystems.
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1. INTRODUCTION

Autotrophs display an astounding �exibility of their elemental
composition. This stoichiometric �exibility is recognizedto
have implications on biogeochemical cycles across a vast range
of a spatial and temporal scales (Lenton and Watson, 2007;
Weber and Deutsch, 2010). Stoichiometric variations also govern
trophic interactions and the �ow of material and energy from
autotrophs toward the food-web (Hessen, 1992; Sterner and
Elser, 2002). Stoichiometric regulation has often been reported
to be signi�cant in autotrophs (e.g.,Rhee, 1974; Healey, 1985;
Ågren, 2004), and, as a consequence, is increasingly subject to
both empirical analysis (e.g.,Harpole et al., 2011; Hillebrand
et al., 2013; Martiny et al., 2013) and theoretical approaches (e.g.,
Ågren et al., 2012; Pahlow et al., 2013; Daines et al., 2014).

After Red�eld (1958)argued that the ratios of carbon (C),
nitrogen (P), and phosphorus (P) of both plankton and sea water
are rather �xed, and followingFleming (1940), at a respective
atomic 106:16:1 ratio, a substantial body of research sought
explanations for the governance of, and deviations from the
Red�eld ratio. In the light of evidence that particular cellular
structures (ribosomes and chloroplast) with speci�c functional
responsibilities (protein synthesis and light harvesting) have
substantially di�erent chemical compositions (Rhee, 1978;
Geider and La Roche, 2002), stoichiometric variations are
conceptualized as internal optimization of cellular allocations in
response to changing environmental conditions. This “optimality
view” re�ects highly e�cient resource processing in the
evolutionary mostly old lineages of autotrophs. Optimality,
indeed, was shown to resolve variations in stoichiometry both for
plants (e.g.,Hilbert, 1990; Friend, 1991; Hollinger, 1996; Wirtz,
2000; Ågren et al., 2012) and for phytoplankton (e.g.,Shuter,
1979; Bloom et al., 1985; Klausmeier et al., 2004a; Wirtz and
Pahlow, 2010; Smith et al., 2011; Pahlow et al., 2013; Talmy
et al., 2013). However, the application of optimality theory
to co-limitation by multiple resources discloses a fundamental
problem in the approach as the identi�cation of a goal function
appears ambiguous in two important aspects. First, no commonly
accepted function for co-limitation e�ects by multiple nutrients
exists. Secondly, as for any multi-objective optimization,the
target elementary “currency” needs to be speci�ed: Either can C-
uptake be maximized, or P- and N-uptake, but each choice would
induce a di�erent regulatory dynamics.

The �rst problem of functionally formulating e�ects of
multiple nutrient limitation is encountered in many models of
autrophic growth, also outside optimality theory. Approaches
adopted so far can be categorized into two groups. The �rst
group comprises popular heuristic formulations such as thevon
Liebig (1855)and product rules. Although their simplicity o�ers
obvious advantages, and conceptual implication are clear, i.e.,
strictly essential resources for Liebig and interactive resources
for the product rule (Tilman, 1980), evidence for both views
exist, for example, for the case of nitrogen and phosphorus in
autotrophs (Elser et al., 2007; Harpole et al., 2011), preventing a
conclusive resolution of the dichotomy. The second group ofco-
limitation models descent from the idea of mutual dependencies
in the biochemical function of each element (Saito et al.,

2008). Interdependencies in the processing of macro-nutrients
(N and P) have been addressed byÅgren et al. (2012); Bonachela
et al. (2013); Pahlow et al. (2013). However, these works are
built on speci�c physiological assumptions such as a critical
P-dependency of N-uptake and are accordingly di�cult to
generalize.

Here, we propose a new theory of co-limitation, in which
the growth rate dependency on multiple quotas is linked to
the queuing theory established in operational research. This
will allow to de�ne and use as novel control variable the co-
limitation strength. The co-limitation formulation derived from
queuing theory then provides the basis for extending classical
optimality approaches and to tackle the second conceptual
problem of optimality in autotrophic regulation that is the
target currency. As already suggested in previous works (Wirtz
and Pahlow, 2010; Smith et al., 2011; Wirtz, 2013), variational
principles known from physics can express feed-back e�ects of
dynamically coupled metabolic cycles and this way merge an
arbitrary number of target currencies into a single objective
function. This idea is here for the �rst time formulated
in the context of multiple nutrient limitation. The resulting
optimality scheme is combined with a resource allocation model
for autotrophs and validated using a large set of published
chemostat experiments revealing extreme variations in the
stoichiometry of prokaryotes, unicellular eukaryotes, andplants.
Degree and origin of co-limitation strength is then assessed
through numerical experiments.

2. MODEL DESCRIPTION

2.1. Quota Dependent Co-limitation and
Intermittency
In seeking a high generality, we resolve an arbitrary number
of resources that are relevant to autotrophic growth. These
resources are here distinguished by the indexi (e.g., i = N,
P, energy). Their availability within the cell or body tissueis
described by normalized quotasqi (relative to maximum and
minimum carbon based quota, see Equation S1). Atqi = 0, no
allocatable internal pool exists, whereas aroundqi = 1 this pool
can su�ciently fuel all internal metabolic demands related to
resource/element cyclei. The normalized quota can furthermore
be considered to determine the biosynthesis or processing rate
T� 1

i of elementi since this rate ceases to zero atqi ' 0 while
it reaches the maximum usage rate at saturated intracellular
availabilityqi = 1. The simple relationship betweenT� 1

i and qi
here only serves for disclosing the implicitly made assumptions
of classical co-limitation models and, hence, is not critical for
the results later shown in this work. These classical schemes
o�er various baseline descriptions of how the overall biosynthesis
rate C D T� 1

tot depends on individual quotasqi or processing
ratesT� 1

i , respectively. These models can be separated into three
idealized categories, two extremes and a compromising case. In
the �rst scenario, individual resource cycles run in parallel, thus
fully independently, which corresponds to the classical Liebig
law where only the most rate limiting elemental processing
with maximal Ti , or minimal T� 1

i , resp., controls the overall
biosynthesis rate of cellular material (Figure 1, Equation 1a).
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FIGURE 1 | Three idealized modes of co-limitation by two resour ces. From left to right: the Liebig, sum, and product formulation, both as growth-contour plots
and respective formulae Equations 1a–c. Contour lines forC D 0.15, 0.3, and 0.6 are plotted with increasing line thickness as a function of the normalized quotas of
elements 1 and 2 (q1 and q2). Also a model similar to the sum rule,C� 1 D

P
q� 1

i C 1 �
P

qi, is given, which is proposed by the DEB theory (light cyan lines). The
green contour lines show the co-limitation intensityCn according to Equation (2) with different values of the independence n as given in the subplots.

In the second case, resource cycles advance in series but still
independently. Processing times are then summed up toTtot DP

Ti , equivalent toFigure 1, Equation 1b, a formulation close
to the “biochemically dependent co-limitation” proposed by
Buitenhuis et al.(2003); Saito et al.(2008). A variant of Equation
(1b), Ttot D

P
Ti C 1 �

P
T� 1

i , has been derived in reference
to enzyme kinetics by the Dynamic Energy Budget (DEB) theory
(Kooijman, 2010). Thirdly, one can assume an intimate bound
between sub-cycles such that a delay in one cycle (i) fully
constrains other biosynthesis processes (j 6Di). These ampli�ed
delays translate to a multiplication of all turnover times of
individual limiting resources,Ttot D T1 � T2 � � � , as formulated
in the product ruleT� 1

tot D
Q

T� 1
i or Equation (1c).

However, none of the co-limitation formulations visualized
in Figure 1 o�ers an explanation for the conditions under
which it may apply. The modes represent �xed metabolic
network topologies that are arbitrarily set and in particular
do not allow for an interchange (e.g., from parallel to serial
processing) occurring, e.g., at di�erent context settings orin
di�erent species or groups of autotrophs. We hence introduce the
variable coe�cientn that quanti�es the degree of independence
in networked (biosynthetic) activities. Independencen resembles
the processing synchrony, or inverse intermittency, introduced
byWirtz (2012), which describes the probability of phase-locking
between sub-steps in a process chain. Increasing values ofn
correspond to improved synchronization within the scheduling
of sequential sub-processes. Along the classi�cation made above,
growing independencen describes the transition from serial
processing of sub-stages to their parallel processing. This change
in scheduling has already been studied in operational research
(Saaty, 1961; Cox and Smith, 1991). Following the assumption of
a Poisson statistics of phase-locking between sub-stages (Kendall,

1953), a continuous intermittency or network interdependency
can be represented by the queuing functiongn (Wirtz, 2012).
To obtain the integral processing rate, or internal co-limitation
degree,Cn(qi ,qj), the queueing functiongn is applied to the ratio
between two turnover timesqj=qi D Ti=Tj :

Cn(qi ,qj) D qi � gn

� qj

qi

�
� cf with gn(r) D

r � r1Cn

1 � r1Cn r D
qj

qi
(2)

where the correction factorcf , only required for very lown where
it deviates from one, will be outlined in Section S1.1. Implicit
to the application ofgn to the (processing time) ratioqj=qi is
that during the processing of resourcei (e.g., N assimilation) a
slowing in cyclej (e.g., P assimilation) can lead to “intermittent
stops,” thus an overall reduction inCn, which occurs at probability
gn(qj=qi). Contrary to former approaches, the interference is
ubiquitous for all considered metabolic cycles, thus works the
same way between, e.g., silicate and carbon or phosphorus and
silicate metabolisms. The description remains agnostic about
details in the stoichiometric demands of individual metabolisms
such as P-demand for building ribosomes or locked cell cycle
and assimilation of other elements due to slowed down wall
growth under Si-de�ciency, but it maintains a generic account
of all those interdependencies. The queueing functiongn(qj=qi)
then quanti�es the degree of phase-locking between the sub-
cyclesi and j. Due to the monotonic form ofgn(r) visualized
in Figure S1, a small ratioqj=qi translates to a smallgn with
quasi-linear dependency onqj=qi in Equation (2) such that the
pairwise combined limitation factorCn(qi ,qj) approaches the
second resource factorqj , while at saturatinggn it returns the �rst
factorqi . At large independencen ! 1 , the queuing function

Frontiers in Ecology and Evolution | www.frontiersin.org 3 November 2016 | Volume 4 | Article 131

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Wirtz and Kerimoglu Optimality and Variable Co-limitation in Stoichiometry

Equation (2) reconstructs the Liebig rule (Figure 1, Equation 1a),
asg1 (qj=qi) converges toqj=qi for qi > qj (meaningCn ! qj)
and to 1 forqi < qj (Cn ! qi). At intermediate independence
or intermittency, e.g.,n D 1, it can be shown thatC1 D (q� 1

i C
q� 1

j )� 1, which is the sum rule (Figure 1, Equation 1b). Therefore,
as also laid down in more detail in Section S1.1, Equation (2)
accurately reproduces all major classical co-limitation modes
(Figure 1) and relates them to variations in a single network
propertyn, which is the network “synchrony” or the capacity of
distinct biochemical cycles for parallel operation.

The ability to generate a continuum of internal co-limitation
modes depending on interdependency makes it possible to relax
the assumption of constant interdependence. In this study, we
hypothesize the degree of independence,n, to correlate with
the availability of synthesizing proteins, which in turn should
be proportional to the availability of (1) energy and (organic)
carbon and (2) nitrogen as the C and N are primary constituent
of proteins. Assuming equal importance of intracellular N and
C pools as structural and energetic constituents, the most simple
dependency ofn on relative C- and N-quotasqC andqN reads:

n D n� � (qC C qN) (3)

The intimate link between organismal energy and C budgets,
e.g., within the catabolism of glucose or fatty acids, motivates to
attribute to carbon the role of a basic currency, thus to de�ne
intracellular stoichiometry as C-based ratios throughoutthis
work. The choice implies that the internal relative C quotaqC
equals one.

2.2. Multi-resource Uptake and Growth in
Autotrophs
Internal co-limitation Cn(qi ,qj) in Equation (2), entailing the
queueing function, so far considers two nutrients. In the special
case of resolving intracellular N and C, we haveqi = q1 = qC = 1
andqj = q2 = qN, and Equation (2) describes a pure queueing-type
dependency on the relative N-quota,Cn(qC,qN) D gn(qN), which
means that due to N-C co-limitation the integral processing rate
should not be written as unbounded linear function ofqN as
proposed by various models in the past (Geider et al., 1998;
Bougaran et al., 2010; Wirtz and Pahlow, 2010; Pahlow et al.,
2013). The concept can be generalized to an arbitrary number
of nutrients, by assuming that the network interdependence is
analog for all elements. To scale to the generic situation ofany
arbitrary number of limiting resources (in our study eitherthree,
for C-N-P, or four in case of an application to Si-limitation
in diatoms), we propose a recursive scheme. Letq0

i denote the
normalized availability of resourcei also integrating the limiting
e�ect of other resources.q0

i quanti�es the e�ective limitation
e�ect of sub-cyclesi andj on i such thatq0

i = qi if those limitations
are absent, andq0

i = Cn(qi ,q0
j) otherwise. Starting from C as

base resource, the co-limiting e�ect of N isq0
C = Cn(qC,q0

N)
= Cn(1,q0

N). q0
N in turn incorporates co-limitation by the next

resource, say phosphorus, and therefore the scheme extends to
q0

C = Cn(1,Cn(qN,q0
P)) and so forth. Total resource co-limitation

intensity, which re�ects the state of all internal nutrientstores,

then downsizes gross production based on photosynthesis rateP,
detailed in Equation (S31).

VC D P� gn

�
Cn

�
qN, Cn(qP, : : :)

��
�

X

i

� iVi (4)

Net C uptake VC links gross production with respiratory
expenses proportional to nutrient assimilationVi and element
speci�c assimilation costs� i (Geider et al., 1998; Pahlow, 2005).

2.3. Multi-level Ecophysiological
Regulation
The internal co-limitation functionCn conveys a coherent and
generic description for how organismic growth rate depends on
stoichiometric variations as quanti�ed by the relative quotasqi .
This dependency is a prerequisite for formulating, vice versa,
the control of quota changes by ecophysiological regulation.
Uptake ratesVi of all elementsi ( i = C, N, P, : : :) are not
only determined by external nutrient concentrations, but also by
the state of accessory machineries. We here propose to resolve
ecophysiological regulation along a multi-level partitioning and
regulation scheme, where the levels are distinguished according
to typical time scales and relation to common trade-o�s.

The variable partitioning of energy or proteins into uptake
functions has often been suggested as key ecophysiological
strategy, especially in phytoplankton (Richardson et al., 1983;
Klausmeier et al., 2004b; Pahlow, 2005). The �rst regulation
level of our model therefore describes the allocation of proteins
to di�erent uptake machineries, namely for nutrient uptake
and assimilation (fV), photon harvesting (fLH), and carboxylase
activity fC (cf. Figure 2). This partitioning scheme acknowledges
the basic role of photosynthesis and C assimilation in autotrophic
organisms and was similarly devised byWirtz and Pahlow(2010)
for unicellular autotrophs or for plants at the leaf level (Wirtz,
2000) and organism level (root-shoot allocation byWirtz, 2003);
here, protein allocation also re�ects the largely structuralnature
of those functional compartments located, e.g., in light harvesting
complexes, thylakoid complexes, or nutrient uptake sites. From
the three coe�cientsfV, fLH, andfC, two are independent (here
fLH andfC) so thatfV D 1 � fLH � fC (Figure 2I).

The second level regulation then entails a classical ecological
trade-o� between uptake a�nity and maximal processing.
Investments of proteins for gathering inorganic nutrient
molecules at the cell boundary (f A

i ) are assumed to diminish
the amount of proteins used as carriers or for assimilation
into cellular structure (1� f A

i ) (Pahlow, 2005). This allocation
principle regulates the potential nutrient a�nityAi D f A

i � A�
i

and maximal assimilation rateVmax,i D (1 � f A
i ) � V �

max,i and is
applied to each nutrient under consideration separately (i = N, P,
Si, : : :, Figure 2II). Thus, this second regulation scheme can be
regarded as an adaptation at a sub-ordinate level, which renders
the individual complex more e�cient, but has no implications
and trade-o� relationship to other functions.

Potential nutrient uptake rate is, in total, given by the
relative pool size of all nutrient uptake machineriesfV , the
uptake characteristicsVmax,i andAi , as well as ambient nutrient
concentrationRi (Dissolved Inorganic Nitrogen, Phosphorus,
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FIGURE 2 | Three-level regulation of uptake systems in unicel lular autotrophs: (I) Protein allocation to photosynthetic vs. nutrient uptake machinery, with the
photosynthetic apparatus being further divided into lightharvesting and Rubisco/electron-chain;(II) allocation of transport proteins vs. uptake sites or, analogously,
between transport/processing and af�nity; (III) regulation in nutrient uptake activity. Both, ambient resource concentrationCi and adaptive responses in
ecophysiological traitsx D fC, fLH, fAi , ai determine the internal resource availabilitiesqi, which through the �exible co-limitation functionCn determine biomass
synthesis rate, here expressed as the carbon and energy/ATP turnoverVC.

DIN and DIP, resp., and silicate). At the third regulation level
and in each uptake complex, enzymatically controlled variations
in speci�c activity (ai) are then supposed to control actual uptake
Vi (cf. Figure 2III ). The realized uptake ratesVi thus not only
depend on potential uptake but also on the promptness and
demand of the cell/organism to further e�ectuate active nutrient
transport across the membranes. This third regulation scheme
in ai decides whether uptake is perpetuated at all, depending on
costs and bene�ts of assimilating a given resource.

2.4. Indirect Effects through Dynamic
Variations
Temporal changes in intracellular quota, Equations (S1) and
(S4), follow from dis-pair uptake ratesVi with i = C, N, P,
: : : that in turn are mediated by the three-level regulation
in the ecophysiological variablesx D fC, fLH, f A

i , and ai .
However, this dynamically coupled system does not infer a
possibility to formulate functional dependenciesqi(x) as would
be required to directly link the ecophysiological statex to net
growth rate VC(qi). Indeed, we are not aware of any sound
mechanics for deriving explicit expressionsVC(x) that contain all
relevant growth dependencies. The functional division between

controls of nutrient and carbon uptake,Vi(x) and VC(x) in
Figure 2III , Equation (4), and the resulting incompleteness in
VC(x), makes a fundamental problem of any regulation scheme
in uptake variablesx. If optimizations in, e.g., speci�c activities
ai maximize the respective resource assimilationVi , this would
at the same time increase respiratory losses as formulated
in Equation (4), but would not necessarily lead to higher
(co-limited) assimilation of other resources, especially carbon
and energy. Direct e�ects of maximizingVi on VC(x) would
hence remain negative. We here estimate the indirect e�ect of
variations in x on internal quotas and further on to growth
di�erences from variational principles as already suggested by
Wirtz and Pahlow(2010); Smith et al.(2011); Wirtz (2013).
The basic idea is that the integration of indirect e�ects intoan
optimality approach for regulation inx does not require the full
knowledge ofVC(x), but of growth di�erentials dVC/dx. These
di�erentials, or marginal dependencies, can be estimated from
the dynamic balance equation (see Equation S4), the chain rule
and a variational principle. The calculation �rst accounts for
the speci�c productivities (direct e�ects on C uptake) in case of
x D fC, fLH, or cost-related terms for the nutrient uptake traits
x D f A

i ,ai , and fV D 1 � fLH � fC, both explicitly known as
@VC=@x (Section S1.3). Secondly, marginal dependencies have to
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incorporate the e�ect of ecophysiological trait changes on the
internal stores as described by the di�erentials dqx/dx. These
di�erentials follow from a variational technique that uses the
balance equation to estimate the (marginal) quota variation dqx
when slightly changing an uptake trait by dx (Section S1.3). The
di�erentials dqx/dx times the derivatives@VC=@qx, which follow
from the new co-limitation function, build the indirect marginal
growth e�ect. Together, direct and indirect e�ects constitute the
total marginal growth e�ect of variations inx, which makes the
center-piece of an optimality approach for all traits such asx = fC
or x = ai :

d
dt

x D

regulation

� x

�exibility

�

"
@VC

@x
directC

C
X

i

@VC

@qi

dqi

dx
indirect e�ects

#

(5)

We here assume the second and third level regulation to
be relatively fast in comparison to the ecological time scales
considered here, such that the optimal behavior is reached
instantaneously. For such cases dx/dt should be zero, satis�ed
by setting the growth derivative in the bracket term of Equation
(5) to 0 and solving the resulting expression forx, which is
done here forx D f A

i as in Pahlow (2005), but for the
special treatment ofx D ai , see Section S1.6. As the �rst
level regulation forfC, fLH is mostly realized through structural
changes, Equation (5) prescribes a transient optimization with
a �nite �exibility � x, which for fractional variables (e.g.,fx =
fC) reads� x D fx � (1 � fx) (Wirtz and Eckhardt, 1996; Wirtz,
2000). The trade-o� relation with the dependent variablefV
leads to additional terms in the total marginal growth e�ect,i.e.,
dVC/dfx ! dVC/dfx� dVC/dfV, such that protein investments
into photosynthetic machinery consider the feed-backs of a
down-sized nutrient uptake machinery. Regulation infLH is
complicated by the relation between chloroplast density andqN
in Equation (S3). Optimal trait adaptation therefore applies to
chlorophyll concentration of chloroplasts. From that regulation
and the changing N-quota, variations infLH are calculated using
Equation (S3).

2.5. Data Integration and Model Set-ups
Six continuous culture experiments were selected from literature
according to the presence of two autotrophic growth regimes,
which are N-limitation and P-limitation, and the stoichiometric
data digitized. The experiments were in two cases conducted
with cyanobacteria (S. linearis, M. aeruginosa, seeTable 1), in
two cases with chlorophytes (S. minutum; Scenedesmussp.),
one with a diatom (T. pseudonana), and one with young tree
plants (B. pendula). The birch plants were grown in chambers
where roots are placed in an aqueous solution with controlled
in�ow of mineral nutrients, in analogy to chemostats containing
microbial populations (Ingestad and Lund, 1979; Ingestad et al.,
1995; Ågren, 2004). Dilution ratesD had been varied from 0.04
(B. pendula) or 0.1 (S. linearis) to 1.1 (Scenedesmussp.) or 1.4d� 1

(S. linearis), but were �xed in theM. aeruginosaexperiment (D
= 0.15d� 1) where instead pCO2 was varied from 0.5 to 4000
ppm. Not always was the same light level preserved between the
pair experiments (seeB. pendula), but in one case (S. linearis)

the N- or P-limited cultured were maintained at a set of distinct
PAR. All settings ofTable 1were adopted in the simulation runs.
Available photosynthetically active radiation (PAR) accounts for
self-shading calculated for 12 cm water column height and
extinction coe�cient of 0.01 m� 1 mM-C� 1. The dynamic model
equations Equation (5) and Table S1 were integrated for 30 days
starting fromBCj tD0 = 1 m M-C, BN = 0.1m M-N, BP = 0.01m
M-P (in the T. pseudonanarun alsoBSi = 0.1mM-Si), fC = 0.5,
andfLH = 0.25.

2.6. Numerical Experiments
In the calibration runs, continuous cultures were simulated
at a range of dilution ratesD slightly extending the reported
ones. Model parameters were varied �rst automatically in
a coarse hypercube using the root-mean-square deviation
between calculated and reported stoichiometric values as goal
function. Thereafter, the most critical parameters were �ne-tuned
manually resulting in the values listed in Table S2.

Based on theS. minutum set-up, ambient N and P
concentrations were varied systematically within the wideranges
found in both oligotrophic and eutrophic environments, which
means 0.03–50m M-N and 0.0005–2m M-P. In addition to the
reference variation with optimality Equation (5) and variable
independencen, six scenarios were created: �rst, �exibilities
� x = 0 were set to zero. This non-regulatory setting implies
that the carboxylation partitioningfC remains constant alike the
chlorophyll concentration of chloroplasts (see Section S1.2), but
fLH becomes strictly proportional to relative N-quota due to
Equation (S3); also, the a�nity/transport time partitioning were
�xed to f A

i = 0.5, and activities linearly bound to quotas viaai D
1 � qN. The regulatory/non-regulatory settings were combined
with three co-limitation realizations, (i) �xed and high value of
network independence (n = 50, “Liebig”), (ii) �xed and low value
(n = 0.5, “product”), and (iii) the reference case of variablen,
which results in overall six physiological scenarios.

3. RESULTS

3.1. Stoichiometric Patterns
Our data collection captures a rich diversity of stoichiometric
responses, with respect to species, type of nutrient limitation,
and light conditions (Figure 3). As expected, quotas of the non-
limiting nutrient is higher than that of the limiting nutrient,
with the exception ofB. pendula, where the di�erences become
negligible. Also as expected, quotas of the limiting nutrients
increase with increasing dilution rates. A key feature captured
by the data set is the asymmetric behavior of N and P quotas
when they are not the limiting nutrient: whilst N:C ratios increase
with dilution rate under P-limitation—with the exception of
Scenedesmussp.—, P:C shows a remarkable insensitivity to
dilution rates under N-limitation—again, with the exception of
B. pendula. Yet, P:C in general largely deviates from the Red�eld
ratio at low dilution rates. All these stoichiometric patterns are
accurately reproduced by the model.

The model is also successful at quantifying di�erent N:C
ratios obtained at various degrees of inorganic carbon limitation.
The cyanobacteriaM. aeruginosasustains high N:C in P-limited
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TABLE 1 | Settings of chemostat experiments at different photos ynthetically active radiation (PAR) levels with two pairs o f input/reservoir N and P
concentrations that induced either N- or P-limited growth.

Species PAR ( mE/m 2s) N (mM) P (mM) Other controls

Selenastrum minutum 100 100 100 Elri� and Turpin, 1985

2000 100

Synechococcus linearis 22–144 200 2 Healey, 1985

50 20

Microcystis aeruginosa 50 12,000 260 pCO2 Verspagen et al., 2014

400 260

Scenedesmussp. 67.5 22/10 10 Rhee, 1974

2000 1.1

Thalassiosira pseudonana 150 880 3.8 140 mM-Si Claquin et al., 2002

88 38

Betula pendula 350/228 100 200 6.5 Ingestad et al., 1995; Ågren, 2004

200 2

chemostats at the full range of pCO2 concentration, whereas
under N-limitation the quota declines at pCO2 around 50 ppm
as reported byVerspagen et al.(2014) (Figure S3). Finally, the
model proofs high skill in reproducing the N:Si ratios as well,as
inferred from the experiments withT. pseudonana(Figure S2),
which also displays extreme divergence from Red�eld ratios: N:Si
shifts from about 0.5–6 mol-N/mol-Si with increasing dilution
rate. Given the relative low N:C observed and calculated forthis
diatom species, large values in N:Si correspond to very low Si
quotas.

Large diversity in stoichiometric responses re�ects both
ambient conditions and species speci�c features. While the
ambient conditions were relatively similar among the chemostat
experiments, ecophysiological features of the used culture species
are distinguished by their model parameters in Table S2.
Among these, most distinct are the speci�c carbon costs of
nutrient uptake (� N, � P) and the speci�c metabolic independence
(n� , de�ned in Equation 3). Uptake costs can intuitively
be understood as pivotal for optimization, while metabolic
independence discriminates changing constraints for uptakeand
assimilation processes.

3.2. Metabolic Independence
Di�erences in species speci�c independencesn� provide a
�rst indication for the ecophysiological signi�cance of the
independence between metabolic sub-cycles. For instance,n�

is low for B. pendulaand Scenedesmussp. (see Table S2)
so that the resulting independencen takes values of one to
two, corresponding to the sum rule, while reaching Liebig-type
values of around nine in P-limitedS. linearis(Figure 1). Actual
independence not only depends on the setting ofn� but also on
qN (Equation 3). Therefore, in analogy to the behavior ofqN , n in
all runs �rst increases withD and reaches to saturation at highD
and is greater under P-limitation compared to N-limitation.

The overall model accuracy can be taken as a �rst and indirect
support of our assumption that co-limitation strength increases
under N-shortage. The approval is further substantiated by two
experimental model runs wheren is kept constant for both
S. minutumand Scenedesmussp. under N-limitation (Figure 3,

dashed lines). ForS. minutum, n = 4 corresponds to an average
value of variable independence under N-limitation. Major
di�erences to the reference run appear in P-stoichiometries:
the extreme P-stores measured byElri� and Turpin (1985)
become greatly underestimated at lowD. These experiments
suggest a strong link between the asymmetric response of
N:C and P:C under N- and P-limitation and the co-limitation
strength being inversely proportional to available N-stores.For
theScenedesmussp. run, a �xedn = 4 leaves predicted N-limited
N:C rather una�ected, whereas P:C displays a dramatic shift,
behaving like under P-limitation, thus much di�ers in magnitude
and functional response from the reference run and the trend
observed byRhee(1974).

This sensitivity experiment helps to better interpret the results
of the reference run where stoichiometric asymmetry correlates
with relative di�erences in metabolic independence (Figure 3).
For example, relative changes are small inB. pendulawith
linearly increasing N:C and P:C independently of the nutrient
regimes. To the contrary, relative di�erences inn are highest
in Scenedesmussp. andS. minutum, which indeed exhibit a
very distinct stoichiometric response depending on the limiting
nutrient. The central role of metabolic independence for the
making of C:N:P:Si:Chl stoichiometry together with the large
variations in n from 1.5 to 5 in T. pseudonanaor from 3.5
to 9 in S. linearisemphasize that the current paradigm of a
�xed limitation function (of arbitrary type) constitutes a critical
bottleneck in the model description of autotrophic growth.

3.3. Protein Partitioning
Allocation to nutrient uptake,fV decreases with dilution rate
(Figure 3), which is an expected consequence of alleviating
nutrient limitation, hence lower requirements for nutrient
uptake. Interestingly, allocation to carboxylation,fC also
decreases with dilution rate, contrasting with the increase
estimated byWirtz and Pahlow(2010) for Isochrysis galbana,
which mainly follows from the di�erent coupling of pigment
partitioning to the N-store for this species (Equation S3 turns
to � fC D � CfLH, see Section S1.2). On the other hand,
the increase in carboxylation machineryfC with increasing
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FIGURE 3 | Steady-state N:C, P:C, network independence n, and protein fraction for nutrient uptake ( fV) and for carboxylation ( fC), and
chlorophyll-to-carbon ratio at different dilution rates for different experiments and culture species (see Table 1). Diamonds, reported data; Gray lines,
Red�eld stoichimetry; Lines, model for P-limited (red) and N-limited cultures (green).
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irradiance observed forS. linearis(Figure 3) results from the
decreasing needs for light harvesting apparatus, which is in
turn re�ected by the decline in Chl:C (that serves as a 1:1
proxy for fLH) with higher irradiance levels (Figure 3). At
a given light intensity, Chl:C ratio rises with dilution rate,
as more resources become available for light harvesting with
decreasingfV. Chl:C observed byHealey(1985) for S. linearis
and by Elri� and Turpin (1985) for S. minutum are well
reproduced in the numerical experiments. However, CHL:C
projected by the model overestimates the data forS. linearis
under P-limitation (right column in Figure 3). In the light
of accurate reproduction of the corresponding N:C it seems
that for S. linearis, photoacclimation and changes in pigment
stoichiometry are di�erently linked to the N-status depending on
the limitation type.

Apart from a repeated weak decline infV with increasing
dilution rate a diverse array of uptake partitioning schemes
arises across species and limitation type: variations infV are
neither clearly ordered with respect to the limitation type, nor to
independencen. Lacking correlation betweenfV andn may add
to the understanding of the observed richness in stoichiometry,
as both ecophysiological variables di�erently control elementary
stores:fV directly constrains potential uptake rates, whilen
shapes marginal growth gains@VC=@Qi of nutrient stores and
consequently in�uences the optimization of uptake activities
(Equation S20).

3.4. Activity Regulation
Uptake activity,ai , the realized fraction of potential uptake
(Figure 2 and Equation S19), is regulated based on the
maximization of the growth rate. This scheme most profoundly
illustrates the functioning of the extended optimality approach:
aN only a�ects N-uptake and thus appears in the growth
rate exclusively through respiratory costs so that a meaningful
optimization has to include the indirect e�ects of enhancing N-
uptake, which are mediated through increasing N-availability as
outlined in detail in Section S1.6. Note that we here present
and discuss only the regulation of N-uptake activityaN because
aP behaves analogously. When uptake activity is plotted over
the respective relative quota for all model experiments, a
surprising alignment along a circular attractor becomes evident
in Figure 5. This circular structure is however displaced for
the plant application (B. pendula). The regulatory dynamics
inherent to our model approach thus produces a rather well
con�ned relationship between internal resource availability (qN)
and uptake activity (aN), regardless of limitation strength,
type, species, and other co-limiting factors such as light. This
relationship, furthermore, deviates from thea priori assumption
of linearly decreasingaN with increasing qN (ai D 1 �
qN, see Methods and “no regulation” scenario inFigure 5).
The emerging regulatory dynamics o�ers mostly two solutions
aN(qN) at each nitrogen stateqN, one of which even reveals an
increase in uptake activity when increasing the internal store—
as a result of co-limitation. The decline under N-limitation
can be deduced from decreasing marginal growth bene�ts of
further increasingqN , while the unexpected increase for P-
limited cultures can be understood in terms of the marginal

C gain dVC=daN derived in Section S1.6. The coupling of N-
and P-metabolism described by the queuing function ampli�es
the marginal importance of rising N-quota if not nitrogen but
another element becomes the most limiting resource. In parallel,
the uptake partitioningfV declines at higherD in all P-limited
cultures apart ofScenedesmussp. (Figure 3); therefore the rising
indirect productivity gain demands for further elevated activity in
N-uptake, which at loweredfV also induces moderate respiratory
costs.

At very low qN , N-uptake activity covers the range from
around 0.2–0.9 (Figure 5), implying a high degree of sensitivity,
due to the “regulation neutrality” explained in Section S1.6.

3.5. Optimal Uptake Regulation
Since the in�uential works ofTilman et al.(1982), co-limitation
is analyzed by means of growth isoclines as a function of
two external resources. Distinct curvatures of these growth
contours correspond to di�erent types of co-limitation: recti�ed
isoclines indicate Liebig-type growth dependency on a single
factor, independent from another, circular outward isoclines
represent moderate to strong co-limitation, whereas inward
isoclines describe an inhibitory e�ect of one factor. Comparison
of the growth isoclines produced by a factorial design of 6 model
experiments with regulatory model dynamics switched on and
o� and co-limitation strength high (as in product rule), variable
(as in the standard run) and low (as in the Liebig's rule), provide
insight into the relative e�ect of each of these model assumptions
(Figure 6).

In the non-regulatory scenarios inward isoclines along DIN-
axis emerge as a typical feature, pointing to growth inhibition
at high DIN/DIP ratios. Inhibition in this P-limited zone results
from non-optimal regulation in uptake activityaN. A �xed,
linear relationship between relative N-quota andaN, adopted
from Morel (1987), almost always results in higher uptake
activity (Figure 5), causing high respiratory costs that are not
compensated by productivity gains (cf. Section S1.6) and thus
lower the net growth rate.

Strength of inhibition under P-limitation depends on
the imposed co-limitation strength through the prescribed
independencen, increasing from lown (emulating the product
rule) to large n (Liebig). Considering that organisms can
easily avoid such inhibitory e�ects (i.e., by simply ceasing
nutrient uptake) such behavior should be regarded as arti�cial.
Notwithstanding, the artifact may easily emerge in classical
schemes, especially if the Liebig rule is to describe co-limitation.

Comparison of the growth isoclines among the �exible model
variants �nally reveal a crucial consequence of optimality: they
all represent a moderate degree of co-limitation, irrespective of
the prescribed internal co-limitation strength (Figure 6), which is
most obvious for the case of Liebig co-limitation: isoclines deviate
from the recti�ed shape characteristic for the implemented Liebig
function. This can be seen as a manifestation of regulatory
mechanisms evoking an internal state where strength of di�erent
stressors become more similar then they externally exert, in
analogy with the “multiple limitation hypothesis” (Bloom et al.,
1985) according to which organisms seek to balance di�erent
stressors. Our optimality and trait-based approach therefore
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introduces a rationale for understanding the co-limitation
balance.

4. DISCUSSION

Limitation of growth rate as a function of the
intracellular/intrabody state is handled here by means of
the queuing theory. This highly generic approach can be applied
to an arbitrary number of resources (this study), and to any
organism and resource type. For example, it should similarly
apply to herbivorous consumers where co-limitation by protein
and carbohydrates or cholesterols and fatty acids has been
so far described by classical schemes (Sperfeld et al., 2015).
Describing the co-limitation by a single function that can
generate responses across the spectrum between the product
rule and Liebig law facilitates the implementation of distinct
physiologies in autotrophic cells or organisms and also enabled
testing the idea that co-limitation strength is not constant,
but increases under N-shortage. The generality of the model
structure does not constrain model versatility and skill. This is
con�rmed in applications to the limitation by inorganic carbon
(M. aeruginosa), and silicate (T. pseudonana). A recurrent
phenomena also reproduced well is rising Chl:C with dilution
rate (Geider et al., 1998; Pahlow et al., 2013; Talmy et al.,
2013) and increasing investments in carboxylation along an
abandonment of light harvesting at higher irradiance (Talmy
et al., 2013). Most prominently, diverse and at times, intriguing
patterns of C:N:P stoichiometries inherent to the data sets
collected in this study are captured successfully. These patterns
can be categorized into 3 broad classes: (1) both N:C and
P:C increasing with dilution rate under N- and P- limitation
(B. pendula, Ågren, 2004); (2) only the limiting nutrient
correlates with dilution rate (Scenedesmussp.,Rhee, 1974); (3)
the asymmetric response, i.e., N:C increasing with dilutionrate
both at N- and P-limitation, but P:C increases only when P is
limiting, (S. linearisand S. minutum, Elri� and Turpin, 1985;
Healey, 1985). Also using a Synechococcus strain, however in
a constrained range of growth rates,Garcia et al.(2016) found
similar asymmetric patterns. Those patterns were previously
addressed by alternative model approaches (e.g.,Ågren, 2004;
Flynn, 2008; Bougaran et al., 2010; Bonachela et al., 2013; Pahlow
et al., 2013). Bonachela et al. (2013)hypothesize that the protein
repression for nutrient uptake sites of both N and P is a function
of P only; or, Flynn (2008)makes the transport rate of the
non-limiting nutrient depending on the identity of the nutrient.
Most capable so far to generate stoichiometric asymmetry were
the chain models ofPahlow and Oschlies (2009)and Ågren
et al. (2012), proposing synthesis of N dependent on P quota
and growth dependent on N-quota, Yet, a part of the observed
patterns remains weakly explained by existing schemes—even
if complemented with optimality arguments. For example,
Klausmeier et al.(2004b) predict a convergent P-quota for all
N:P input ratios at a maximalD, a phenomenon only observed
for S. minutum, while data for other phytoplankton species do
not support obligative P-quota convergence, neither does our
model approach. Or, the model ofBougaran et al.(2010), an
extension of the one proposed byKlausmeier et al.(2004b), can

�t the linear N:C increase of P-limitedS. minutumobserved by
Elri� and Turpin (1985), but generates functionally deviating
responses in N:C and P:C under N-limitation. The optimality
(chain) model ofPahlow and Oschlies(2009) and Pahlow et al.
(2013), which conceptually resembles elements of our approach
and according to the number of validated applications could
be seen as the most skilled scheme formulated so far, displays
some bias. Although it focuses on the physiological role of P, the
model underestimates N:C at low dilution rate (D) and displays
strong up-regulation of both N:C and P:C at highD for P-limited
cultures and thus has di�culties to produce the rather linearP:C
increase with risingD. Our approach more completely capturing
the asymmetric response does not necessarily exclude any of the
above hypotheses. However, a simple relation between available
C- and N-stores, determining the protein expression capacity,
and the ability to run metabolic sub-cycles independently seems
to constitute a very basic but also e�ective biochemical argument.
The comparison between model runs with and without optimal
regulation indicates that optimality induces a more realistic
physiological behavior. Without optimality, calculated growth
rates are much downscaled (Figure 6), growth isoclines become
arti�cially inward, and simulated N:C and P:C at increasing
D not even qualitatively reproduce the observed asymmetric
response (Figure 4). However, it is important to note that
the improving realism with optimality depends on the model
structure proposed here; optimalityper sewill likely lead to weak
predictions under di�erent assumptions on inherent constraints
and especially incomplete goal functions which overrate one
resource uptake over others. Also, non-optimality approaches
like the ones discussed above or the surrogate model discussed
below may be able to qualitatively reproduce growth responses
under co-limitation.

4.1. Implications of Co-limitation Flexibility
and Optimality
E�ects of the �exibility in co-limitation are understood best
from the growth isoclines across limiting nutrients.Ågren et al.
(2012), showed that the chain-model structure, with its linkage
between (N-rich) enzymes and (P-rich) ribosomes, leads to
interdependence (deviation from the Liebig law) which is in line
with the biochemical co-limitation concept ofArrigo (2005).
Moreover, co-limitation strengthens with enhanced growth rates
at increasing external nutrient concentrations (Figure 4 in Ågren
et al., 2012). Interestingly, this feature is already captured by the
queuing theory in its pure form, i.e., without the modi�cation of
n with qN, at small or intermediaten, thus emulating the product
or sum rule (seeFigure 1). The phenomenon can to some extent
also seen in the contouring of the regulated scenarios ofFigure 6.
However, by assuming that independence,n, increases with
increasing N-availability, i.e., enzyme concentrations,we weaken
the transition toward enhanced interdependence with increasing
availability of nutrients, although not to an extent of neutralizing
the transition completely, as can be observed inFigure 6.

The rather ubiquitous shape of co-limitation under optimality
is here found to be unexpectedly independent of the underlying
internal limitation function. The contouring is similar to
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the outcome of the sum rule without adaptive regulation
(Figure 1B), which means that the queuing function applied to
ambient resource ratios can bypass the regulatory transformation
within a fully trait- and optimality-based structural modeland
describes its e�ect by rather simple means. This furthermore
entails the opportunity to include e�ects at the community
level. Ecophysiological regulation such as changed partitioning
realized within one culture population to some extent emulates
community structure changes between specialists. Startingfrom
a Liebig-type internal co-limitation function, the superposition
of resource dependencies of specialists leads to interdependence
(outward contouring) at the community level (Danger et al.,
2008).

FIGURE 4 | Calculated (steady-state) and reported N:C, P:C i n three
N-limited cultures analog to Figure 3 (“I=38” experiment for S. linearis ).
In addition, two physiological scenarios are displayed using (a) long-dashes
(Sm, Ss): simulations with �xed independencen=4, and (b) short-dashes (Sm,
Sl-38): without optimality regulation.

Our application to nutrient limitation in Figure 6 and
the identi�cation of a uniform degree of co-limitation also
unravels an important stoichiometric aspect for biogeochemistry:
increments in a single nutrient at N:P around Red�eld
automatically enhance growth, no matter whether this nutrient
is the most limiting one. Our theoretical corroboration of
such a sum-rule behavior—backed up by various data �ts—
thus o�ers an alternative explanation for the observation that
interdependence is the prevalent mode of co-limitation (Elser
et al., 2007; Harpole et al., 2011). A similar view arises in
the more recent research and discussion on ocean acidi�cation
and CO2 enrichment. It has been suggested that probably the
most important e�ects of this stressor may originate from the
combination with other factors such as temperature or nutrient
regime (Boyd and Hutchins, 2012). However, coupling between
nutrient and pCO2 limitation is not well represented in the
current theory, which for example is evident from the Liebig-
type biomass contour plot (Figure 4) of Verspagen et al.(2014).
Despite the highest value to speci�c independence assigned
within this study (n� = 6, Table S2), our approach generates
persistent inter-dependence—especially in the range of current
and projected CO2 conditions (Figure S3) and therefore con�rms
the conceptual arguments ofBoyd and Hutchins(2012) who
advocated multifactorial studies for better understanding the
consequences of CO2 enrichment on autotrophic growth.

4.2. Limits and Potentials of our Approach
Chemostats are in general performed at a con�ned range of
dilution rates, depending on culture species and environmental

FIGURE 5 | Nitrogen uptake activity aN over relative N-quota qN in N-
(green) or P-limited (red) cultures simulated for different che mostat
conditions and species ( Sm, S. minutum ; Sl, S. linearis ; Ma,
M. aeruginosa ; Ss, Scenedesmus sp.; Tp, T. pseudonana ; Bp,
B. pendula ). Results for the one experiment using three instead of two
nutrients (Tp) are omitted here. For comparison, the simplelinear relationship
aN D 1 � qN is plotted as gray line.

Frontiers in Ecology and Evolution | www.frontiersin.org 11 November 2016 | Volume 4 | Article 131



Wirtz and Kerimoglu Optimality and Variable Co-limitation in Stoichiometry

FIGURE 6 | Realized net growth rate RGR D VC � L using the parametrization and light conditions of the S. minutum experiment after 40 days under
�xed N- and P-concentration for six different regulation scen arios. (A–C, top): reference model optimality. (D–F, bottom): “no regulation” with �xed partitioning
and fAi and activitiesai linearly bound to quotas as plotted inFigure 5 . Network independencen increases from left to right: “Product” type co-limitation(A,D; n =
0.5), variable co-limitation (B,E; reference Equation 3), and “Liebig” type (C,F; n = 50).

conditions. Outside these ranges, populations are either not
viable or display outlier responses di�cult to reproduce
experimentally. At the edge of these dilution ranges also the
performance of our regulatory model declines as the robustness
of numerical experiments deteriorates. At large washout rate D
approaching maximal growth rate, the model reacts sensitively
to small variations of growth parameters that determineVC at
replete conditions. In addition, large sensitivity in stoichiometric
regulation appears at very lowD, thus under extreme nutrient
de�ciency as can be seen, e.g., from P:C of severely N-limited
cultures inFigure 3, the wide spread of optimal uptake activities
in Figure 5, or the N:C �uctuations at very small pCO2 in
Figure S3. Very small rates translate to small growth rate
derivatives, which raises uncertainty in the optimization as
especially derivatives for indirect growth e�ects estimatedbased
on variational principles may drift away. As a consequence, the
approach has to be used with care at the lower viability edge of
populations, or to be complemented by safeguarding schemes
(e.g., by freezing the physiological state).

Our approach on purpose ignores speci�c biochemical
processes. For example, it does not explicitly resolve the

di�erential roles of phosphorus and nitrogen in synthesis of
pigmentory material, and C-�xation (Klausmeier et al., 2004a;
Pahlow and Oschlies, 2009; Ågren et al., 2012; Daines et al.,
2014). Instead, a combination of the generic queuing theory
and optimality arguments (about protein partitioning and uptake
regulation) was used to describe photosynthetic growth. The
generality casts restrictions on testing causal hypotheses at
the sub-process level, such as the interdependence of certain
biochemical reactions (Arrigo, 2005; Saito et al., 2008; Ågren
et al., 2012) and on validation with respect to the concentration
of speci�c enzymes with known metabolic functionality (see,
e.g., Daines et al., 2014). A conclusive evaluation of model
skills of the individual approaches requires a quantitative model
inter-comparison, which should be one of the next steps in
enhancing theory building in physiological research.

Yet, the optimality concept can shed light into popular
but empirical functions that disregard explicit links between
physiological responses and the energetic and resource based
economy of organisms (Parker and Smith, 1990; Smith et al.,
2011). For instance, optimal uptake regulation disclosed in our
work only partially aligns with the a linear down-regulation with
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cell quota proposed byMorel (1987), but better links to the
highly non-linear function to describe the relationship between
maximum N uptake rate and N:C proposed byGeider et al.
(1998). This non-linear function, in our notation equivalent to
aN = (1 � qN)0.05, has been used as ana priori and heuristic
assumption in other structural models for down-regulating
uptake at �lled stores to prevent extreme quota values e.g.,
Zonneveld, 1998. Here, a similarly non-linear shape emerges in
Figure 5, which suggests that the functional response re�ects
optimal regulation.

Our extension of the optimality theory with regard to
indirect e�ects comes with the methodological cost of a more
complex mathematical formalism compared to, e.g., empirical
model approaches. Handling of derivative terms following the
variational principle is especially demanding after a modi�cation
of basic growth functions since all depending derivative terms
have to be updated as well. This can be seen as a major
bottleneck of our approach for a more widespread usage
by non-specialists. However, mathematical complexity does
not automatically prevent coupled model application in three
dimensions (Kerimoglu et al., personal communication). A
possible short-cut of dealing with demanding di�erential calculus
derives from our observation that the structured and adaptive
model has a surrogate, which follows from simple application of
the queuing function to ambient resource levels and is therefore
very easy to implement. Still, a major advantage of the full
model approach is the disclosure of mechanisms leading to
such response. A central prerequisite for optimization to succeed
under a wide range of stress regimes was the usage of a variational
principle. A shortsighted approach which neglects internal feed-
backs can yield net growth rates lower than those obtained
without regulation (results not shown). For organisms living on
an array of essential resources, optimality in one speci�c resource
uptake can only produce reasonable predictions if one assumes
links between uptake functions such as done for P- and N-uptake
by Pahlow et al.(2013). These assumptions can in part generate
similar results, but may fall short in speci�c situations where they
do not hold as discussed above. Also, they can point to existing
trade-o�s between resource uptake functions but do not disclose
their mechanistic origins.

Our theory does, of course, not rule out former attempts
that are mostly based on more empirical model construction.
Due to its mechanistic nature, the model improves our means
of interpreting data, a point that can be best made along the
application to Scenedesmus. Rhee(1974) and subsequently a
series of scholars (e.g.,Klausmeier et al., 2004b; Saito et al.,
2008) interpreted the observed stoichiometries as strong support
of Liebig's law, while our model assumes a very low degree of
independence (n around one). One clearly has to distinguish
between the degree of co-limitation (heren) determining the
e�ect of quota variation on carbon growth from stoichiometric
response (how N:C and P:C vary with N- and P-limitation).
At low independence, it pays o� to �ll the non-limiting
quota, which in the model yields a symmetric response with
maximized non-limiting quota, while at highn (Liebig), the
non-limiting quota remains poorly constrained, leading to an
asymmetric response, with variable non-limiting quota. Hence,
the symmetric stoichiometric pattern reported byRhee(1974)

indicates strong interrelation of N- and P-cycles, contrary to its
common interpretation.

Another relevant added value of our extension lays in the
consistent formulation of indirect e�ects and internal feed-backs,
which o�ers new perspectives in applying the optimality concept
in realistic set-ups. In most ecosystems more than one resource
constrains primary production in particular on mid- to long-
term time scales, while autotrophic traits are connected to diverse
growth related functions such as nutrient storage or defense, not
only to primary production itself. Optimal strategies thus have
to make the full budget of gains and (the many) indirect costs
as laid out for major ecophysiological traits in the presented
study. The extension of optimality with regard to indirect e�ects
was made possible through the development of the co-limitation
formulation which is based on the synchrony of metabolic sub-
cycles and then used as goal function for trait optimizations.

Moreover, the co-limitation formulation presented here o�ers
a way out from the dichotomy between the serial (Liebig-
type) and simultaneous (product-type), pervasive not only in
discussions of the growth of autotrophs growth (Elser et al.,
2007; Harpole et al., 2011) but also of heterotrophs (Sperfeld
et al., 2015). In fact, the potential of the queuing theory for a
uni�ed representation of di�erent co-limitation strengths have
been recognized previously (O'Neill et al., 1989), but a full
development of the concept is presented for the �rst time here
and follows from the variable synchrony, or, intermittency of
food processing mechanisms recently developed for herbivores
(Wirtz, 2012). A single internal co-limitation function that can
describe a continuous responses spectrum between the product
rule and Liebig law can become a pragmatic tool in many
application �elds.

4.3. Scaling up to Real Ecosystems
Our theory has so far focused on variations in ecophysiological
traits and their short-term phenotypic regulation as typically
observed in the �rst weeks of chemostat experiments. Nutrient
concentrations in real ecosystems including agricultural systems
typically varies at both longer-term (e.g., at seasonal or inter-
annual scales) and shorter term (e.g., at daily scales, after a
mixing event or fertilization). The latter case underlinesthe
relevance of tracing the transient nature of phenotypic plasticity
as seeked by our simulations. Phenotypic plasticity has to
become more explicit in model studies, which has recently been
demonstrated by a global study on oceanic primary production
(Behrenfeld et al., 2015). Large relevance of phenotypic processes
also agrees with the general observation that within-species
variability in autotrophic stoichiometry is of similar relevance to
the one between species (Ågren, 2004; Klausmeier et al., 2004a,
data in Figure 3). However, high plasticity does not exclude
an important role of taxonomy as species succession a�ect
physiology and thus also stoichiometry (Sterner and Elser, 2002).
In the set of culture species compiled here major taxonomic
groups are underrepresented. For example, diatoms usually have
higher P:C than other groups (Quigg et al., 2003) or larger diatom
species invest a much greater fraction of their N pool into Rubisco
than smaller species (Wu et al., 2014). To describe these trends,
also model coe�cients in Table S2 may be more group speci�c—
or should vary at time-scales larger than the few weeks considered
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here. An enlarged set of trait variables is needed to accountfor
non-phenotypic adaptation. Future application of our approach
will thus devise size allometries in ecophysiological coe�cients
such as subsistence quotas and maximal photosynthesis rates
(Litchman et al., 2006). However, optimality in size (or other
master traits) equally requires incorporation of di�erential and
indirect terms. Otherwise the changed sensitivity with respect
to multiple stressors accompanied with trait shifts cannot be
brought in a coherent context (Wirtz, 2013; Smith et al., 2014).

Despite of the many explicitly resolved resources, number of
parameters is small (Table S2). Notably, model applications to
plants (Betula pendula) and unicellular populations use the same
set of equations and functions, and only moderately di�er in
terms of parameterization. Our partitioning scheme still ignores
other relevant physiological functions such as antiviral defense
or assimilation of surrogate resources (e.g., DOP uptake or N2-
�xing) but the multi-variable structure o�ers a suitable template
to integrate additional stressors, pathways, and internal protein
demands. The model implementation comes at the cost of
employing non-standard derivative terms as documented in the
Supplementary Material, but overall follows a simple numerical
integration scheme. This can be seen as an advantage compared
to approaches such as ofTalmy et al. (2013) who set up a
genetic algorithm to solve the resource allocation problem.High
generality of our formalism can be advantageous when assessing
implications of regulated multi-elemental stoichiometry for
biogeochemical cycles across a wider range of habitats.

5. CONCLUSION

In this study, we present a process-based model of autotrophic
growth that combines state-of-the-art descriptions of
dynamically adaptive resource allocation (Wirtz, 2003; Wirtz
and Pahlow, 2010), and optimization of nutrient uptake a�nity
(Pahlow, 2005) together with two important novelties: �rst is a
unifying internal co-limitation scheme that eliminates the need
to make an assumption about the degree of co-limitation (as
would be represented typically by the Liebig law or the product
rule) and that links metabolic independence to the capability
of protein synthesis; secondly, a novel extended optimality
approach that fosters the notion of indirect e�ects and marginal
growth bene�ts. The latter derive from a variational principle
and quantify how shifts in physiological traits controllingone
uptake system a�ect the performance of other machineries.
Application of this concept demands a more extensive usage of
di�erential calculus compared to standard modeling approaches,
but on the other hand relieves from assumptions on linkages
between di�erent nutrient uptake systems.

Integration of both concepts, network independence and
extended optimality, accurately reproduces highly diverse
patterns in C:N:P:Si:Chl stoichiometry observed in chemostats.
The unprecedented model skill constitutes the basis for
numerical experiments that unravel the physiological making
of co-limitation strength. Against expectation, regulatory
mechanisms homogenize the e�ect of multiple stressors. Internal
re-partitioning and resource speci�c activity regulation creates

a balance between the stressors, leading to a moderate degree of
co-limitation regardless how independently uptake machineries
operate (in the model). In particular, application of the queuing
function to external resource concentrations emerged as a simple
surrogate model for describing co-limitation in autotrophic
growth, which deserves further testing in future studies. This
surrogate model neglects the description of internal element
quotas, traits, and optimality; in the numerical experiments
shown here, it yet can emulate the growth response across
ambient nutrient levels as predicted by the more complex
model. Identi�cation of the ubiquitous co-limitation pattern
as expressed by such a surrogate model, and its mechanistic
underpinning through network interdependence and optimality,
have major implications for modeling biogeochemical cycles
in aquatic and terrestrial ecosystems. For example, the
old paradigm of the Liebig rule very likely oversimpli�es
linkages between speci�c ecophysiological functions. To assess
consequences of variations in a single driving factor such as
oligotrophication or CO2 fertilization will thus require a more
complete consideration of other growth dependencies than often
made during experiments or modeling. The simple surrogate
model may also be built directly into models which lack an
explicit account of internal stoichiometry such as many food-
web models. Yet, the full approach presented here proved to
be well integrable to a spatially explicit ecosystem model where
it helped to obtain a more accurate and reliable picture of the
nutrient budgets especially in coastal systems (Kerimoglu et al.,
personal communication). The mechanistic autotrophic growth
model thus can serve future studies on the role of acclimative
processes in biogeochemical cycles, particularly in environments
characterized by extreme variations in the availability of
resources.

AUTHOR CONTRIBUTIONS

KW has conceptually designed the work and produced all model
data and diagrams. KW and OK jointly interpreted the data and
wrote or edited the text.

FUNDING

The work was supported by the Helmholtz society via the
program PACES, by the German Research Foundation (DFG)
within the Priority Program DYNATRAIT, by the German
Federal Ministry of Research and Education in the framework
projects MOSSCO and BIOACID.

ACKNOWLEDGMENTS

We thank three reviewers for valuable suggestions to improvethe
manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fevo.
2016.00131/full#supplementary-material

Frontiers in Ecology and Evolution | www.frontiersin.org 14 November 2016 | Volume 4 | Article 131



Wirtz and Kerimoglu Optimality and Variable Co-limitation in Stoichiometry

REFERENCES

Ågren, G. I. (2004). The C: N: P stoichiometry of autotrophs–theory
and observations.Ecol. Lett. 7, 185–191. doi: 10.1111/j.1461-0248.2004.
00567.x

Ågren, G. I., Wetterstedt, J. Å., and Billberger, M. F. K. (2012). Nutrient limitation
on terrestrial plant growth – modeling the interaction between nitrogen and
phosphorus.New Phytol.194, 953–960. doi: 10.1111/j.1469-8137.2012.04116.x

Arrigo, K. R. (2005). Marine microorganisms and global nutrient cycles. Nature
437, 343–348. doi: 10.1038/nature04159

Behrenfeld, M. J., O'Malley, R. T., Boss, E. S., Westberry, T. K., Gra�,
J. R., Halsey, K. H., et al. (2015). Revaluating ocean warming impactson
global phytoplankton.Nat. Clim. Change6, 323–330. doi: 10.1038/nclimate
2838

Bloom, A. J., Chapin, F. S., and Mooney, H. A. (1985). Resource limitation in
plants–an economic analogy.Ann. Rev. Ecol. Syst.16, 363–392. doi: 10.1146/
annurev.es.16.110185.002051

Bonachela, J., Allison, S., Martiny, A., and Levin, S. (2013). A model for variable
phytoplankton stoichiometry based on cell protein regulation.Biogeosciences
10, 4341–4356. doi: 10.5194/bg-10-4341-2013

Bougaran, G., Bernard, O., and Sciandra, A. (2010). Modeling continuous cultures
of microalgae colimited by nitrogen and phosphorus.J. Theor. Biol.265,
443–454. doi: 10.1016/j.jtbi.2010.04.018

Boyd, P. W. and Hutchins, D. A. (2012). Understanding the responses of ocean
biota to a complex matrix of cumulative anthropogenic change.Mar. Ecol.
Progr. Ser.470, 125–135. doi: 10.3354/meps10121

Buitenhuis, E. T., Timmermans, K. R., and de Baar, H. J. (2003). Zinc-bicarbonate
colimitation of Emiliania huxleyi. Limnol. Oceanogr.48, 1575–1582. doi: 10.
4319/lo.2003.48.4.1575

Claquin, P., Martin-Jézéquel, V., Kromkamp, J. C., Veldhuis, M. J. W., and Kraay,
G. W. (2002). Uncoupling of silicon compared with carbon and nitrogen
metabolisms and the role of the cell cycle in continuous cultures ofThalassiosira
pseudonana(Bacillariophyceae) under light, nitrogen, and phosphorus control.
J. Phycol.38, 922–930. doi: 10.1046/j.1529-8817.2002.t01-1-01220.x

Cox, D. R. and Smith, W. L. (1991).Queues. Boca Raton, FL: Chapman &
Hall/CRC.

Daines, S. J., Clark, J. R., and Lenton, T. M. (2014). Multiple environmental
controls on phytoplankton growth strategies determine adaptive responses of
the N:P ratio.Ecol. Lett.17, 414–425. doi: 10.1111/ele.12239

Danger, M., Daufresne, T., Lucas, F., Pissard, S., and Lacroix,G. (2008). Does
Liebig's law of the minimum scale up from species to communities?Oikos117,
1741–1751. doi: 10.1111/j.1600-0706.2008.16793.x

Elri�, I. R. and Turpin, D. H. (1985). Steady-state luxury consumptionand the
concept of optimum nutrient ratios: a study with phosphate and nitrate limited
Selenastrum minutum(chlorophyta).J. Phycol.21, 592–602. doi: 10.1111/j.
0022-3646.1985.00592.x

Elser, J. J., Bracken, M. E., Cleland, E. E., Gruner, D. S., Harpole, W.S., Hillebrand,
H., et al. (2007). Global analysis of nitrogen and phosphorus limitation of
primary producers in freshwater, marine and terrestrial ecosystems.Ecol. Lett.
10, 1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x

Fleming, R. H. (1940). The composition of plankton and units for reporting
populations and production.Proc. of the Sixth Paci�c Sci. Congr.3, 535–540.

Flynn, K. J. (2008). The importance of the form of the quota curve and control of
non-limiting nutrient transport in phytoplankton models.J. Plankton Res.30,
423–438. doi: 10.1093/plankt/fbn007

Friend, A. D. (1991). Use of a model of photosynthesis and leaf microenvironment
to predict optimal stomatal conductance and leaf nitrogen partitioning. Plant
Cell Environ.14, 895–905. doi: 10.1111/j.1365-3040.1991.tb00958.x

Garcia, N. S., Bonachela, J. A., and Martiny, A. C. (2016). Interactions between
growth-dependent changes in cell size, nutrient supply and cellular elemental
stoichiometry of marineSynechococcus. ISME J.10, 2715–2724. doi: 10.1038/
ismej.2016.50

Geider, R. J. and La Roche, J. (2002). Red�eld revisited: variability of C [ratio] N
[ratio] P in marine microalgae and its biochemical basis.Eur. J. Phycol.37, 1–17.
doi: 10.1017/s0967026201003456

Geider, R. J., MacIntyre, H. L., and Kana, T. M. (1998). A dynamicregulatory model
of phytoplanktonic acclimation to light, nutrients, and temperature.Limnol.
Oceanogr.43, 679–694. doi: 10.4319/lo.1998.43.4.0679

Harpole, W. S., Ngai, J. T., Cleland, E. E., Seabloom, E. W., Borer, E. T., Bracken,
M. E. S., et al. (2011). Nutrient co-limitation of primary producer communities.
Ecol. Lett.14, 852–62. doi: 10.1111/j.1461-0248.2011.01651.x

Healey, F. P. (1985). Interacting e�ects of light and nutrient limitation on the
growth rate ofSynechococcus linearis(Cyanophyceae).J. Phycol.21, 134–146.
doi: 10.1111/j.0022-3646.1985.00134.x

Hessen, D. (1992). Nutrient element limitation of zooplankton production. Am.
Nat.140, 799–814.

Hilbert, D. W. (1990). Optimization of plant root/shoot ratios and internal
nitrogen concentration.Ann. Bot.66, 91–99.

Hillebrand, H., Steinert, G., Boersma, M., Malzahn, A., Léo Meunier, C., Plum, C.,
et al. (2013). Goldman revisited: faster growing phytoplankton has lower N:P
and lower stoichiometric �exibility.Limnol. Oceanogr.58, 2076–2088. doi: 10.
4319/lo.2013.58.6.2076

Hollinger, D. Y. (1996). Optimality and nitrogen allocation in a tree canopy.Tree
Physiol.16, 627–634.

Ingestad, T., Hellgren, O., and Lund-Ingestad, A. B. (1995).Data-Base for Birch at
Steady–State. Report 75, Sveriges Lantbruksuniversitet, Uppsala.

Ingestad, T. and Lund, A.-B. (1979). Nitrogen stress in birch seedlings.
Physiol. Plant.45, 137–148.

Kendall, D. G. (1953). Stochastic processes occurring in the theoryof queues and
their analysis by the method of the imbedded markov chain.Ann. Math. Stat.
24, 338–354. doi: 10.2307/2236285

Klausmeier, C. A., Litchman, E., Daufresne, T., and Levin, S. (2004a). Optimal
nitrogen-to-phosphorus stoichiometry of phytoplankton.Nature429, 171–174.
doi: 10.1038/nature02454

Klausmeier, C. A., Litchman, E., and Levin, S. A. (2004b). Phytoplankton growth
and stoichiometry under multiple nutrient limitation.Limnol. Oceanogr.49,
1463–1470. doi: 10.4319/lo.2004.49.4_part_2.1463

Kooijman, S. A. L. M. (2010).Dynamic Energy Budget for Metabolic Organisation.
Cambridge: Cambridge University Press.

Lenton, T. M. and Watson, A. J. (2007). Biotic stoichiometric controls on the deep
ocean N: P ratio.Biogeosciences4, 353–367. doi: 10.5194/bg-4-353-2007

Litchman, E., Klausmeier, C. A., Miller, J. R., Scho�eld, O. M., andFalkowski,
P. G. (2006). Multi-nutrient, multi-group model of present and futureoceanic
phytoplankton communities.Biogeosciences3, 585–606. doi: 10.5194/bg-3-585-
2006

Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A., Moore, J.K., Levin,
S. A., et al. (2013). Strong latitudinal patterns in the elemental ratios of marine
plankton and organic matter.Nat. Geosci.6, 279–283. doi: 10.1038/ngeo1757

Morel, F. M. M. (1987). Kinetics of nutrient uptake and growth in phytoplankton.
J. Phycol.23, 137–150.

O'Neill, R. V., DeAngelis, D. L., Pastor, J. J., Jackson, B. J., and Post, W. M. (1989).
Multiple nutrient limitations in ecological models.Ecol. Model.46, 147–163.
doi: 10.1016/0304-3800(89)90015-x

Pahlow, M. (2005). Linking chlorophyll-nutrient dynamics to the Red�eld N: C
ratio with a model of optimal phytoplankton growth.Mar. Ecol. Prog. Ser.287,
33–43. doi: 10.3354/meps287033

Pahlow, M., Dietze, H., and Oschlies, A. (2013). Optimality-basedmodel of
phytoplankton growth and diazotrophy.Mar. Ecol. Prog. Ser.489, 1–16. doi: 10.
3354/meps10449

Pahlow, M. and Oschlies, A. (2009). Chain model of phytoplankton P,N and light
colimitation.Mar. Ecol. Prog. Ser.376, 69–83. doi: 10.3354/meps07748

Parker, G. and Smith, J. M. (1990). Optimality theory in evolutionarybiology.
Nature348, 27–33. doi: 10.1038/348027a0

Quigg, A., Finkel, Z. V., Irwin, A. J., Rosenthal, Y., Ho, T.-Y., Reinfelder, J. R.,
et al. (2003). The evolutionary inheritance of elemental stoichiometry in marine
phytoplankton.Nature425, 291–294. doi: 10.1038/nature01953

Red�eld, A. (1958). The biological control of chemical factors in the environment.
Am. Sci.46, 205–221.

Rhee, G.-Y. (1974). Phosphate uptake under nitrate limitation byScenedesmus sp.
and its ecological implications.J. Phycol.10, 470–475.

Rhee, G.-Y. (1978). E�ects of N:P atomic ratios nitrate limitation on algal growth,
cell composition, nitrate uptake.Limnol. Oceanogr.23, 10–25.

Richardson, K., Beardall, J., and Raven, J. A. (1983). Adaptationof unicellular algae
to irradiance: an analysis of strategies.New Phytol.93, 157–191.

Saaty, T. L. (1961).Elements of Queuing Theory, with Applications. New York, NY:
McGraw-Hill.

Frontiers in Ecology and Evolution | www.frontiersin.org 15 November 2016 | Volume 4 | Article 131



Wirtz and Kerimoglu Optimality and Variable Co-limitation in Stoichiometry

Saito, M. A., Goepfert, T. J., and Ritt, J. T. (2008). Some thoughts on the concept
of colimitation: three de�nitions and the importance of bioavailability. Limnol.
Oceanogr.53, 276–290. doi: 10.4319/lo.2008.53.1.0276

Shuter, B. (1979). A model of physiological adaption in unicellularalgae.J. Theor.
Biol.78, 519–552.

Smith, S. L., Merico, A., Wirtz, K. W., and Pahlow, M. (2014). Leaving misleading
legacies behind in plankton ecosystem modelling.J. Plankton Res.36, 613–620.
doi: 10.1093/plankt/fbu011

Smith, S. L., Pahlow, M., Merico, A., and Wirtz, K. W. (2011). Optimality-based
modeling of planktonic organisms.Limnol. Oceanogr.56, 2080–2094. doi: 10.
4319/lo.2011.56.6.2080

Sperfeld, E., Raubenheimer, D., and Wacker, A. (2015). Bridgingfactorial
and gradient concepts of resource co-limitation: towards a general
framework applied to consumers.Ecol. Lett.19, 201–215. doi: 10.1111/ele.
12554

Sterner, R. W., and Elser, J. J. (2002).Ecological Stoichiometry: The Biology of
Elements from Molecules to the Biosphere. Princeton, NJ; Oxford: Princeton
University Press.

Talmy, D., Blackford, J., Hardman-Mountford, N. J., Dumbrell, A. J., andGeider,
R. J. (2013). An optimality model of photoadaptation in contrastingaquatic
light regimes.Limnol. Oceanogr.58, 1802–1818. doi: 10.4319/lo.2013.58.
5.1802

Tilman, D. (1980). A graphical-mechanistic approach to competition and
predation.Am. Nat.116, 362–393.

Tilman, D., Kilham, S., and Kilham, P. (1982). Phytoplankton community
ecology: the role of limiting nutrients.Ann. Rev. Ecol. Syst.13,
349–372.

Verspagen, J. M., Van de Waal, D. B., Finke, J. F., Visser, P. M.,and Huisman, J.
(2014). Contrasting e�ects of rising CO2 on primary production and ecological
stoichiometry at di�erent nutrient levels.Ecol. Lett.17, 951–960. doi: 10.1111/
ele.12298

von Liebig, J. (1855).Die Grundsätze der Agriculturchemie. Braunschweig: Viewig.
Weber, T. S. and Deutsch, C. (2010). Ocean nutrient ratios governed by plankton

biogeography.Nature467, 550–554. doi: 10.1038/nature09403

Wirtz, K. W. (2000). Simulating the dynamics of leaf physiology and morphology
with an extended optimality approach.Ann. Bot.86, 753–764. doi: 10.1006/
anbo.2000.1230

Wirtz, K. W. (2003). Adaptive signi�cance of C partitioning and SLA regulation in
Betula pendula. Tree Physiol.23, 181–190. doi: 10.1093/treephys/23.3.181

Wirtz, K. W. (2012). Intermittency in processing explains the diversity and shape
of functional grazing responses.Oecologia169, 879–894. doi: 10.1007/s00442-
012-2257-4

Wirtz, K. W. (2013). Mechanistic origins of variability in phytoplankton dynamics:
Part I: niche formation revealed by a size-based model.Mar. Biol. 160,
2319–2335. doi: 10.1007/s00227-012-2163-7

Wirtz, K. W. and Eckhardt, B. (1996). E�ective variables in ecosystem
models with an application to phytoplankton succession.Ecol. Model.92,
33–53.

Wirtz, K. W. and Pahlow, M. (2010). Dynamic chlorophyll and nitrogen:carbon
regulation in algae optimizes instantaneous growth rate.Mar. Ecol. Prog. Ser.
402, 81–96. doi: 10.3354/meps08333

Wu, Y., Jeans, J., Suggett, D. J., Finkel, Z. V., and Campbell, D. A.(2014). Large
centric diatoms allocate more cellular nitrogen to photosynthesis to counter
slower RUBISCO turnover rates.Front. Mar. Sci.1:68. doi: 10.3389/fmars.2014.
00068

Zonneveld, C. (1998). A cell-based model for the chlorophyll a to carbon ratio in
phytoplankton.Ecol. Model.113, 55–70.

Con�ict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or �nancial relationships that could
be construed as a potential con�ict of interest.

Copyright © 2016 Wirtz and Kerimoglu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License(CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. Nouse, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 16 November 2016 | Volume 4 | Article 131


