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There is increasing recognition of the importance of “positive interactions” among species

in structuring communities. For seabirds, an important kind of positive interaction is the

use of birds of the same species, birds of other species, and other marine predators

such as cetaceans, seals and fishes as cues to the presence of prey. The process by

which a single bird uses, say, a feeding flock of birds as a cue to the presence of prey

is called “local enhancement” or “facilitation.” There are subtly different uses of each

of these terms, but the issue we address here is the ubiquity of positive interactions

between seabirds and other marine predators when foraging at sea, and whether as a

result of their associations the feeding success, and therefore presumably the fitness, of

individual seabirds is increased. If this contention is true, then it implies that conservation

of any one species of seabird must take into consideration the status and possible

conservation of those species that the focal species uses as a cue while foraging. For

example, conservation of great shearwaters (Ardenna gravis), which often feed over tuna

(e.g., Thunnus) schools, should take in to consideration conservation of tuna. Ecosystem

management depends on understanding the importance of such processes; the loss of

biodiversity, and the consequent threat to foraging success, may be a substantial threat

to the stability of marine ecosystems.

Keywords: coevolution, conservation, facilitation, foraging behavior, interspecific associations, local

enhancement, marine predators, seabird

INTRODUCTION

Seabirds benefit from positive interactions when foraging at sea; they use cues from other
individuals, conspecifics or other taxa whether seabirds, fish or marine mammals, to detect food
(Veit, 1999; Grünbaum and Veit, 2003; Silverman et al., 2004; Goyert et al., 2014; Thiebault et al.,
2014a,b). This process is often called “local enhancement” (Thorpe, 1956); the same term may
refer to birds cooperating in the herding of prey in addition to passively providing cues to the
presence of prey. The term “facilitation” means cooperation among species in which only one of
the species receives direct benefit (Stachowicz, 2001; Thiebault et al., 2016). It is unclear for most
seabird aggregations whether one or more species participating in the interaction derive benefit,
however there are important implications; detection of prey may be positively density dependent
through local enhancement (Grünbaum and Veit, 2003). In addition to serving as cues to the
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presence of prey, some marine predators such as dolphins, seals,
tunas and other fishes, drive prey to the surface so that these prey
become more readily available to birds (“facilitation”; Harrison
et al., 1991; International Council for the Exploration of the Seas,
2010; Thiebault et al., 2016). Hence marine predators modify
local resource distributions, with implications for the evolution of
coexisting species and their interdependence (Laland et al., 1999;
Laland and Boogert, 2008).

POSITIVE INTERACTIONS AMONG
MARINE PREDATORS

Mixed-species foraging associations influence the structure
of avian communities since attractions among species lead
to associations that themselves, in the aggregate, constitute
communities (Veit, 1995; Goodale et al., 2010). However,
seabirds have been described as occurring only in temporary
feeding associations (Munn and Terborgh, 1979; Sridhar et al.,
2009) and not influential at the population and community
levels. We suggest otherwise. Because of the ubiquity of positive
interactions (Stachowicz, 2001; Bruno et al., 2003), implications
of associations amongmarine predators in the open ocean should
be re-evaluated. Seabirds observed in foraging associations
derive from all major Orders of marine birds (Procellariiformes,
Pelecaniformes, Charadriiformes) and there are predictable
interspecific associations in different habitats (Hoffman et al.,
1981; Veit and Hunt, 1991; Veit, 1995). Our review here shows
that interspecific foraging associations among seabirds and other
top-level marine predators are an essential component of the life
histories of these organisms influence the population growth of
the constituent species, and therefore the community structure
of the marine systems in which they live.

Most seabirds aggregate in groups. Murphy (1936) observed
that in the Southern Ocean the procellariids are more
frequently in mixed-species associations than apart from them.
Among procellariids and other taxa of seabirds there are
interdependencies that vary among species and ecosystems that
appear to relate to differences in the foraging behavior, flight
dynamics, diving depth and sensory ability, whether vision
(Bretagnolle, 1993) or in the case of procellariids, olfaction
(Hutchison and Wenzel, 1980; Nevitt et al., 1995; Nevitt, 2008).

The procellariids are unusual among birds in the extent
to which they use olfaction to find prey. Nevitt et al. (1995)
demonstrated experimentally that they can detect odor fields
of DMS, a chemical signature of phytoplankton blooms. There
is variation among the procellariids in sensitivity to DMS,
related to flight dynamics and plumage coloration. The most
sensitive species are smaller, more maneuverable, with darker
plumage and more inclined to feed on crustaceans that graze
phytoplankton (Nevitt, 2000; Nevitt et al., 2004; Nevitt and
Bonadonna, 2005; van Buskirk and Nevitt, 2008; Savoca and
Nevitt, 2014). The differing flight behavior and ability to
locate patchy and ephemeral ocean blooms, means that some
species are providing superior information on changing resource
availability. They in turn may benefit from the presence of
other species using differing foraging strategies, for example

diving species that drive prey to the surface. Surface-feeding
storm petrels (Hydrobatidae) or prions (Pachyptila) associate
with cetaceans, but also with petrels (e.g., Procellaria) and
shearwaters (e.g., Puffinus) which are capable of wing propelled
dives to 10s of meters (Weimerskirch and Sagar, 1996). Sooty
shearwaters (Ardenna grisea) combine flight efficiency with
diving adaptations, typically diving to depths of 40–60m, and
documented to reach 70m (Weimerskirch and Sagar, 1996).
Even highly aerial species such as albatrosses make shallow
wing-propelled dives; when pursuit diving light-mantled sooty
albatrosses (Phoebetria palpebrata) reach 12m (Prince et al.,
1994). Thus, seabird species that each use different techniques
for finding prey can enhance their success by benefitting from
the successes of other species. The mixed-species associations of
procellariids, and their associations with other predators such
as marine mammals, are likely to be of critical importance in
structuring the ecosystems in the Southern Ocean, South Atlantic
and South Pacific.

Associations of aerial seabirds and diving species, whether
birds, fish or mammals, are conspicuous worldwide and likely
to include important positive interspecific associations (Evans,
1982; Au and Pitman, 1986; Camphuysen and Webb, 1999; Clua
and Grosvalet, 2001; Davoren et al., 2010; Goyert et al., 2014;
Boyd et al., 2016). The example of diving predators pushing
bait balls of fodder fish to the surface is the most familiar of
interspecific associations of seabirds in the open ocean (Cafaro
et al., 2016). For some surface feeding species this is a critical
source of food, particularly the highly aerial tropical seabird
species such as sooty terns (Sterna fuscata) and great frigatebirds
(Fregata minor) that are likely obligately dependent on tuna
and dolphins for making prey available at the surface (Brewer
and Hertel, 2007). The ubiquity of the associations suggests
a net benefit to flock-joiners despite inevitable competition.
We might quibble about “proving” such net benefit; it seems
prudent at this point to accept that many species worldwide join
feeding flocks and therefore the benefit of joining such flocks
outweighs the potential disadvantage of interference competion
and kleptoparasitism, which would appear to represent obstacles
to success (e.g., Hoffman et al., 1981). Theoretically there is
evidence such associations are beneficial to both diving species
and surface feeding species. Lett et al. (2014) developed models
which showed predators attacking successively both from above
and from the side weremost effective in disrupting schooling fish.
Their results suggest that both surface-feeding species and diving
species should have greater success when foraging together.
Furthermore, a higher frequency of attacks, particularly if varied
in direction in three-dimensional space, would prevent schooling
prey from organizing themselves, and result in higher success rate
among all predators (Lett et al., 2014; Thiebault et al., 2016).

Species with different sensory modalities, flight behavior or
capacity to search for prey at depth, potentially complement each
other in a search for patchy prey. Seabird species differ in their
ability to find prey either directly or indirectly, by observing
the actions of others (Harrison et al., 1991). These patterns are
not unique to marine birds. Many marine predators that would
appear to be competitors occur predictably in associations (Veit
and Hunt, 1991; Veit, 1995) differ in depths achieved when
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diving, and modes of sensory perception (e.g., dolphins and
tuna).

The associations observed among marine predators are often
both ubiquitous and stable. The drivers generating the positive
interactions between species result in a gradient of possible
interactions (Bronstein, 1994; Stachowicz, 2001), with mutualism
at one extreme and competition and a failure to tap resources
at the other extreme. Associations of marine predators may
not always be profitable, and negative interactions (competition,
kleptoparasitism) may occur, as in terrestrial mixed-species
foraging flocks of birds (Harrison and Whitehouse, 2011).
Natural selection favoring interspecific interactions is likely to
vary greatly through years, seasons and age, and depend on the
presence or absence of particular taxa in foraging associations.
Individual specialization has been documented in many seabird
species, in which some individuals for example, forage in
interspecific associations whereas others forage independently
with implications for relative fitness as resources fluctuate
(e.g., Wells et al., 2016). With more diffuse coevolution,
there may be selection for facultative foraging associations in
many circumstances, but the behavioral patterns observed, and
the ubiquity of feeding associations among pelagic predators,
indicate that strong selection is likely to be operating, and that
there are fitness benefits.

PATTERNS AND VARIATION IN SEABIRD
ASSOCIATIONS

Seabirds occur in different types of feeding associations, reflecting
prey availability and the nature of interspecific relationships
(Table 1). These interspecific associations have been described
and the likely benefits explored (e.g., Ashmole and Ashmole,
1967; Pierotti, 1988; Camphuysen and Webb, 1999). The
patterns appear to vary between polar and tropical regions, and
between nearshore and offshore habitat, reflecting the constraints
on foraging in different marine environments and adaptive
responses.

TROPICAL OCEANS

In tropical oceans, seabirds have varied adaptive interspecific
relationships with other seabird species, with predatory fish
such as tuna, and with cetaceans (Au and Pitman, 1986;
Hodges and Woehler, 1993; Ballance et al., 1997; Weimerskirch
et al., 2004; LeCorre and Jaquemet, 2005; Vaughan et al.,
2007; Thiebot and Weimerskirch, 2013). In the eastern tropical
Pacific the “tuna-dolphin-seabird assemblage” is a conspicuous
feature of the marine community, in which a large diversity
of seabirds associate with yellowfin tuna (Thunnus albacares),
spotted (Stenella attenuata), and spinner dolphins (S. longirostris)
(Ballance et al., 2006). Breeding success and fitness of many aerial
tropical species such as sooty tern, almost certainly depend on
their association with tuna schools, which drive schooling baitfish
to the surface where they can be accessed by the birds (Table 1).
Changing oceanic climate seems likely to threaten to shift bigeye
tuna (T. obesus) range to areas far removed from seabird colonies

and thus threaten the foraging success of birds nesting in these
colonies (Polovina et al., 2011).

The open ocean of the tropics may offer particular challenges
for aerial predators; hydrographic features do not function to
concentrate prey in the same way as on the continental shelf, and
the spatial predictability of prey is lower than in high latitude
waters (Bost et al., 2009; Assali et al., 2017). The capacity of
aerial predators to see each other and interpret the behavior
of conspecifics and other seabirds is potentially important in
providing cues. The diversity of highly aerial tropical seabirds
suggests that there may be an advantage to the efficient coverage
of large distances to locate feeding events; the disadvantage is that
many of these species are limited in their prey capture to the very
surface of the sea. It is a reasonable hypothesis that for many
species there is a high level of dependency on other species which
function to drive prey to the surface (Ashmole and Ashmole,
1967; Au and Pitman, 1986; Ballance et al., 1997).

In the sometimes enormous and species-rich, mixed-species
associations in tropical waters (Au and Pitman, 1986) the
participants may differ as to benefits received, and indeed may
not always benefit. Thiebot and Weimerskirch (2013) found
most seabird species (48 of 71) did not associate with cetaceans,
and those that did appeared to be in opportunitic associations,
diffusely coevolved, rather than in true commensalisms, but
the point we are making is that these positive associations,
obligate or temporary, are likely to enhance fitness. Other
studies have identified strong interspecific attraction between
seabirds and cetaceans (Pitman and Ballance, 1992), and point
to the difficulty in studying the behavior of marine predators
at sea. Shearwaters have been observed joining non-feeding
dolphins; once feeding, dolphin and tuna have been observed
to drive bait fish into a dense ball and hold them near the
surface where they were available to the birds (Martin, 1986).
Some solitary tropical seabirds associate with predatory fish and
dolphins but avoid large interspecific feeding frenzies. This is
the case with tropicbirds, in which two of the three Pacific
species avoid interspecific foraging flocks (Phaethon aethereus
and P. rubricauda) and the third (P. lepturus) is only observed
foraging in very small foraging flocks; these species plunge dive
from considerable height (up to 40m, through half that height in
the case of P. lepturus), and on this basis Spear and Ainley (2005)
attribute their solitary feeding to interference when in flocks.

POLAR SEAS

Species rich, persistent concentrations of top predators have been
found associated with ecologically important ocean features such
as the Antarctic Circumpolar Current (Santora and Veit, 2013)
and South Georgia (Harrison et al., 1991; Silverman and Veit,
2001). The persistent association of multi-species flocks, each
containing species with different foraging techniques, implies
the importance of local enhancement to the component species
of the flocks. Around South Georgia black-browed albatrosses
are leaders in mixed-species flocks feeding on Antarctic krill
(Harrison et al., 1991); they track the movements of fur seals
(Arctocephalus gazella) and penguins, locating ephemeral patches
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TABLE 1 | Inter-specific associations and apparent local enhancement or facilitation.

Species associationa Location (region/habitat) Local

enhancement/

facilitationb

References

Sula spp., wedge-tailed shearwater (Ardenna

pacifica), spotted dolphin (Stenella attenuata),

spinner dolphin (S. longirostris), yellow-finned tuna

(Thunnus albacares)

Tropical Pacific/ open ocean 1, 2 Au and Pitman, 1986

Parkinson’s petrel (Procellaria parkinsoni),

melon-headed whale (Peponocephala electra), false

killer whale (Pseudorca crassidens)

Tropical Pacific/ open ocean 1, 2, 3 Pitman and Ballance, 1992

Wedge-tailed shearwaters (Ardenna pacifica) and

brown noddies (Anous stolidus), skipjack tuna

(Katsuwonus pelamis)

Tropical Pacific/ open ocean 1, 2 Hebshi et al., 2008

Cory’s shearwaters (Calonectris borealis), great

shearwater (Ardenna gravis), Atlantic spotted

dolphin (Stenella frontalis)

Tropical Atlantic/ Azores–open

ocean

1, 2, 3 Martin, 1986

Cory’s shearwaters (Calonectris borealis), dolphins

(Delphinus and Stenella spp.) and tuna (Thunnus

spp.)

Tropical Atlantic/ Azores - open

ocean

1, 2 Clua and Grosvalet, 2001

Black-browed albatross (Thalassarche melanophris),

Antarctic fur seals (Arctocephalus gazella), macaroni

penguins (Eudyptes chrysolophus), Pachyptila spp.

Antarctic/ shelf South Georgia 1, 2, 3 Harrison et al., 1991

Black-legged kittiwakes (Rissa tridactyla), Aethia

spp., Uria spp.

North Pacific/ Bering Sea - shelf 2, 3 Hunt et al., 1988

Black-legged kittiwakes (Rissa tridactyla), Uria spp. North Pacific/ Bering Sea - shelf 2, 3 Schneider et al., 1990

Black-legged kittiwakes (Rissa tridactyla), Manx

Shearwater (Puffinus puffinus), common guillemot

(Uria aalge)

North Atlantic/Irish Sea 2, 3 Durazo et al., 1998

Northern gannet (Sula bassana), Atlantic

white-sided dolphins (Lagenorhynchus acutus),

harbor porpoise (Phocoena phocoena), minke

whale (Balaenoptera acutorostrata)

North Atlantic/ Gulf of St.

Lawrence

1, 2 Guse, 2013

Black-legged kittiwake (Rissa tridactyla), northern

fulmar (Fulmarus glacialis), red phalarope

(Phalaropus fulicara), thick-billed murre (Uria lomvia),

California gray whale (Eschrichtius robustus)

North Pacific/ Bering Sea - shelf 3 Obst and Hunt, 1990; Grebmeir

and Harrison, 1992

Glaucous-winged gull (Larus glaucescens),

rhincerous auklet (Cerorhinca monocerata)

North Pacific, continental shelf 1, 2 Grover and Olla, 1983

Leach’s storm petrel (Oceanodroma leucorhoa).

Manx shearwater (Puffinus puffinus), Pilot Whale

(Globicephala melas), Bottlenose Dolphins (Tursiops

truncatus)

NE North Atlantic open ocean 1, 2, 3 Skov et al., 1995

Black-legged Kittiwakes (Rissa tridactyla), northern

gannets (Sula bassana), minke whales

(Balaenoptera acutorostrata), white-beaked

dolphins (Lagenorhynchus albirostris)

North Atlantic/ North Sea 1, 2, 3 Camphuysen and Webb, 1999

Wilson’s storm-petrels Oceanites oceanicus,

rough-toothed dolphins Steno bredanensis

Brazil–coastal waters 3 Olmos et al., 2013

aSpecies frequently observed together, at core of inter-specific association, not a full list of documented attendants.
bApparent basis of association (1 = inter-specific association aids participant(s) in location of prey patch; 2= prey made available at the surface by diving species; 3 = waste or

fragmented prey made available by messy eater).

of prey driven to the surface, and they in turn are followed by
more than a dozen other seabirds including very large (giant
petrelsMacronectes spp.) and very small species (Wilson’s storm-
petrels Oceanites oceanicus).

Grünbaum and Veit (2003) found that, at South Georgia,
albatross density had a higher impact on feeding rate than
did prey density, indicating, first, the importance of local

enhancement (albatrosses responding to albatrosses) and second,
that at low densities of prey local enhancement may not be
effective. Other evidence suggests that facilitation might be very
important at high prey densities (Hunt et al., 1988; Lett et al.,
2014). Schneider et al. (1990) identified the importance of the
interaction between hydrography and local enhancement as the
result of species associations; they found kittiwakes (Rissa spp.)
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feeding near auks (Uria spp.) on the dead and disoriented
euphausiids accumulating in fine-scale convergences near a sub-
surface feeding frenzy.

NORTH ATLANTIC

Associations of seabirds, and seabirds with cetaceans, within
European waters sometimes generate large aggregations such
as northern gannets (Morus bassanus) and other seabirds with
dolphins (Stenella), and Cory’s shearwaters (Calonectris borealis)
with migrating fin whales (Balaenoptera physalus) in the Bay
of Biscay. These mixed-species associations are more common
in some sea areas than others—for example gannet associations
with marine mammals are more typical of offshore areas
(Camphuysen andWebb, 1999; Camphuysen et al., 2012). Bellier
et al. (2005) tested patterns of aggregation in gannets in the
Bay of Biscay and found evidence for local enhancement. They
found that aggregations formed primarily in areas of high gannet
density, consistent with findings of Grünbaum and Veit (2003).

Gannets in the North Atlantic are strongly associated with
other species which serve as facilitators, driving prey toward
the surface. As in the tropics, tuna (Thunnus alalunga) have
associated predators including dolphins and seabirds, including
gannets (Rogan and Mackey, 2007). Gannets associate with
cetaceans, particularly dolphins, in the productive waters of the
Gulf of St. Lawrence; in an analysis of the relative importance
of various drivers, cetacean abundance was most important,
indicating local enhancement and facilitation is important for
foraging gannets (Guse, 2013). As in the tropical Pacific and
polar oceans, gannets foraging in North Atlantic waters have a
hierarchical search pattern: they occupy physical environment
defined by the ocean currents and oceanographic features such
as hydrographic frontal systems, and then use local enhancement
to detect prey patches (Bellier et al., 2005; Guse, 2013).
Cory’s Shearwaters similarly use a hierarchical pattern of search
strategies while switching between longer and shorter foraging
trips (Paiva et al., 2010).

Strong tidal fronts are found around European coasts,
and gannets, shearwaters, kittiwakes and alcids converging on
these good foraging areas may also be benefitting from local
enhancement, as described above in the Bering Sea. At a tidal
front in the Irish Sea surface-feeding species (mostly kittiwakes
Rissa tridactyla) were found feeding in surface convergences
on the accumulating debris resulting from a subsurface feeding
frenzy by Manx shearwaters (Puffinus puffinus), common
guillemots (Uria aalge) and razorbills (Alca torda) (Durazo et al.,
1998).

FUTURE RESEARCH

The challenge is to establish how a bird’s fitness increases through
local enhancement. More achievable would be data showing a
positive relationship between feeding rate (as a proxy for fitness)
and size of flock. Even the latter is difficult, but with the advent of
bird mounted cameras (Tremblay et al., 2014) and GPS tracking
this goal is more and more achievable. Since large feeding flocks

seem to last longer than smaller flocks (pers. obs.; Hunt et al.,
1988; Harrison et al., 1991; Veit et al., 1993), prey capture
probably increases over some range of flock sizes. If this is true,
then certainly population growth rates of seabirds that depend on
finding feeding flocks to find sufficient food need to be linked to
the presence, frequency and size of those flocks (Thiebault et al.,
2016). Irons (1998) found that breeding black-legged kittiwakes
returned to the same feeding areas, and selectively joined flocks in
preferred feeding areas—with preference shown for large flocks,
which were typically associations with diving auks (Uria).

The existence of attractions between species—when other
species do not have similar tendencies toward interspecific
association—represents important evidence in itself. For example
it is likely to be important but rather poorly emphasized that
birds such as kittiwakes are attracted to each other, and to
other marine predators such as cetaceans and predatory fishes.
There is need for greater focus on feeding behavior, and a
greater understanding of requirements for successful foraging
(Camphuysen et al., 2012). In particular, how does enhancement
affect the energetics of seabirds provisioning young? What is
required for recruitment and does enhancement dramatically
improve survival probabilities of some species in the first years
of life? It is counterintuitive that seabirds would benefit in
foraging associations with competitors, and it may be that such
associations are not always profitable. However, such foraging
associations are ubiquitous, sometimes involving enormous
numbers of individual seabirds. It should be possible with
modern technology to quantify the drivers of profitability.

There is merit in the study of patterns in interspecific
associations and evidence of inherent attraction between species
(even out of context of a foraging event), and description of the
foraging behavior of the species (e.g., sensory modalities, flight
or diving behavior). New technology for tracking movements,
recording behavior at sea (e.g., dive depth) and the use of
fatty acid signatures or stable isotopes for evaluating diet offer
opportunities to research the relationships between marine
predators, and differences in trophic flow when they are feeding
with or apart from interspecific associations (e.g., Das et al., 2000;
Weimerskirch et al., 2004; Käkelä et al., 2007; Cherel et al., 2008;
Bost et al., 2009; Phillips et al., 2009; Young et al., 2010; Ceia et al.,
2014).

Comparisons of the foraging behavior of populations of
the same species across different marine communities are of
particular value. If the immediate concern is the conservation
of populations, then the description of species associations,
their frequency and persistence is of immediate value, and such
data are not difficult to acquire from dedicated ship-board
observations (Camphuysen and Webb, 1999; Veit, 1999; Thiebot
and Weimerskirch, 2013; Santora and Sydeman, 2015). We
need additional data on interactions among seabirds and other
marine predators. Understanding patterns in the aggregation of
birds have important implications for designation of protected
areas, and management of species, particularly management of
populations for recovery (Assali et al., 2017).

Niche variation is frequently observed in seabirds, in which
some individuals of a population feed in interspecific associations
and others forage independently (Ceia and Ramos, 2015; Wells
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et al., 2016), and can have a frequency dependent effect with
profound implications for population stability (Bolnick et al.,
2003). Further research is merited measuring the degree of
specialization (Bolnick et al., 2002) and the dependence on
interspecific associations—and the vulnerability of populations if
specialized feeding associations are lost.

CONSERVATION

The frequency and apparent importance of positive interactions
between species across taxa and marine communities provides
a compelling argument for a more ecosystem-level approach to
protecting marine habitats. Ecosystem management depends on
understanding the importance of such processes (Savoca and
Nevitt, 2014). If seabirds are worth protecting, then certainly
other animals that contribute to their acquisition of resources
require protection as well. Seabirds which are dependent mainly
on others as cues for finding food, whether other predators
or conspecifics, may be highly vulnerable with declining
populations; such declines may trigger a rapid, nonlinear crash
below some threshold where they are no longer useful to one
another as cues. The drivers of foraging success are implied by
the behavior of seabirds and other marine predators, but the
vulnerability of populations to changes in the relative abundance
of conspecifics and other apex predators is obscure.

Aggregations of seabirds occur at a number of spatial scales,
indicating the scale of their oceanic habitat, and then within
that aggregations forming as the result of local enhancement
and facilitation (e.g., Weimerskirch et al., 2004; Bost et al., 2009;
Thiebot and Weimerskirch, 2013; Cafaro et al., 2016). In the
case of the first, it is within our power to establish habitat
associations, and define the habitat of a species of seabird at
sea. However local enhancement and facilitation are the products
of the communities, the characteristic combination of species
and their relative abundances. The importance of interspecific
interdependencies represents an obstacle to our ability to
define at sea areas important for seabirds. The importance of
local enhancement and facilitation varies between species (or
sometimes populations), and in some casesmay be a fundamental
characteristic of the species foraging ecology. Understanding this
is important for protecting these species.

It is convincing that populations of cetaceans are important
for foraging seabirds (Evans, 1982; Au and Pitman, 1986; Hodges

and Woehler, 1993; Ballance et al., 1997; Vaughan et al., 2007;
Cafaro et al., 2016); their demise has represented degradation of
seabird foraging habitat. The apex predator guild is important to
the community structure in the tropics and is affected by fisheries
on skipjack (Katsuwonus pelamis) and yellowfin tuna (Hunsicker
et al., 2012), and the ranges of these fishes are likely to change
with climate (Polovina et al., 2011; Furness, 2016). In locations
such as Northern European waters there are many species which
once would have been important in the marine ecosystem as
facilitators that are now missing. The recovery of great whales
regionally in European waters will be a significant development
improving foraging opportunities of species such as gannets and
various procellariids.

Managers of marine resources and conservation biologists
share an interest in predicting the distribution of seabirds,
and in particular establishing what factors are most influential
in attracting birds. In this paper we have considered how
positive interactions result in local enhancement and
facilitation among seabirds and other marine predators,
and how these interactions are of fundamental importance
in understanding survival and reproductive success and
distribution at sea. There are unknown consequences of
biodiversity loss (Worm et al., 2006) and dismissing the
importance of these interspecific associations could have
profound consequences in terms of ecosystem function and
ecosystem services.

AUTHOR CONTRIBUTIONS

RV originally conceived of the review paper. RV andNH outlined
the structure of the review and jointly wrote the manuscript.

FUNDING

Review funded through institutions employing authors. RV’s
participation was in part supported by a National Science
Foundation grant to John H. Steele.

ACKNOWLEDGMENTS

This paper benefitted from discussions within the Working
Group on Seabird Ecology of ICES, the International Council for
the Exploration of the Seas (Copenhagen, October 2013).

REFERENCES

Ashmole, N. P., and Ashmole, M. J. (1967). Comparative feeding essscology of

seabirds of a tropical oceanic island. Bull., Peabody Mus. Nat. Hist. 24, 1–131.

Assali, C., Bez, N., and Tremblay, Y. (2017). Seabird distribution patterns

observed with fishing vessel’s radar reveal previously undescribed sub-meso-

scale clusters. Sci. Rep. 7:7364. doi: 10.1038/s41598-017-07480-6

Au, D. W. K., and Pitman, R. L. (1986). Seabird associations with dolphins and

tuna in the Eastern Tropical Pacific. Condor 88, 304–317. doi: 10.2307/1368877

Ballance, L. T., Pitman, R. L., and Fiedler, F. C. (2006). Oceanographic influences

on seabirds and cetaceans of the eastern tropical Pacific: a review. Prog.

Oceanogr. 69, 360–390. doi: 10.1016/j.pocean.2006.03.013

Ballance, L. T., Pitman, R. L., and Reilly, S. B. (1997). Seabird community

structure along a productivity gradient: importance of competition

and energetic constraint. Ecology 78, 1502–1518. doi: 10.1890/0012-

9658(1997)078[1502:SCSAAP]2.0.CO;2

Bellier, E., Certain, G., Chadoeuf, J., Monestiez, P., and Bretagnolle, V. (2005).

Spatial Pattern in Seabirds’ Distribution: Testing for Influence of Foraging

Strategies. The Case of Northern Gannets in the Bay of Biscay. Copenhagen: ICES

CM 2005/L:13

Bolnick, D. I., Svanbäck, R., Fordyce, J. A., Yang, L. H., Davis, J. M.,

Hulsey, C. D., et al. (2003). The ecology of individuals: incidence and

implications of individual specialization. Am. Nat. 161, 1–28. doi: 10.1086/

343878

Frontiers in Ecology and Evolution | www.frontiersin.org 6 October 2017 | Volume 5 | Article 121

https://doi.org/10.1038/s41598-017-07480-6
https://doi.org/10.2307/1368877
https://doi.org/10.1016/j.pocean.2006.03.013
https://doi.org/10.1890/0012-9658(1997)078[1502:SCSAAP]2.0.CO;2
https://doi.org/10.1086/343878
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Veit and Harrison Interactions among Seabirds

Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M., and Svanbäck, R. (2002).

Measuring individual-level resource specialization. Ecology 83, 2936–2941.

doi: 10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2

Bost, C. A., Cotté, C., Bailleul, F., Cherel, Y., Charrassin, J. B., Guinet,

C., et al. (2009). The importance of oceanographic fronts to marine

birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376.

doi: 10.1016/j.jmarsys.2008.11.022

Boyd, C., Grünbaum, D., Hunt, G. L. Jr., Punt, A. E., Weimerskirch, H., and

Bertrand, S. (2016). Effects of variation in the abundance and distribution

of prey on the foraging success of central place foragers. J. Appl. Ecol. 54,

1362–1372. doi: 10.1111/1365-2664.12832

Bretagnolle, V. (1993). Adaptive significance of seabird coloration: the case of

Procellariiformes. Am. Nat. 142, 141–173. doi: 10.1086/285532

Brewer, M. L., and Hertel, F. (2007). Wing morphology and flight behavior of

Pelecaniform seabirds. J. Morph. 268, 866–877. doi: 10.1002/jmor.10555

Bronstein, J. L. (1994). Conventional outcomes in mutualistic interactions. TREE

9, 214–217. doi: 10.1016/0169-5347(94)90246-1

Bruno, J. F., Stachowicz, J. J., and Bertness, M. D. (2003). Inclusion of facilitation

into ecological theory. TREE 18, 119–126. doi: 10.1016/S0169-5347(02)00045-9

van Buskirk, R. W., and Nevitt, G. A. (2008). The influence of

developmental environment on the evolution of olfactory foraging

behaviour in procellariiform seabirds. J. Evol. Biol. 21, 67–76.

doi: 10.1111/j.1420-9101.2007.01465.x

Cafaro, V., Angeletti, D., Bellisario, B., and Macali, A. (2016). Habitat overlap

between bottlenose dolphins and seabirds: a pilot study to identify high-

presence coastal areas in the Tyrrhenian Sea. J. Mar. Biol. Assoc. UK 96,

891–901. doi: 10.1017/S0025315415001447

Camphuysen, C. J., Shamoun-Baranes, J., Bouten, W., and Garthe, S. (2012).

Identifying ecologically important marine areas for seabirds using behavioural

information in combination with distribution patterns. Biol. Cons. 156, 22–29.

doi: 10.1016/j.biocon.2011.12.024

Camphuysen, C. J., and Webb, A. (1999). Multi-species feeding associations in

North Sea seabirds: jointly exploiting a patchy environment.Ardea 87, 177–198.

Ceia, F. R., Paiva, V. H., Garthe, S., Marques, J. C., and Ramos, J. A. (2014).

Can variations in the spatial distribution at sea and isotopic niche width be

associated with consistency in the isotopic niche of a pelagic seabird species?

Mar. Biol. 161, 1861–1872. doi: 10.1007/s00227-014-2468-9

Ceia, F. R., and Ramos, J. A. (2015). Individual specialization in the foraging

and feeding strategies of seabirds: a review. Mar. Biol. 162, 1923–1938.

doi: 10.1007/s00227-015-2735-4

Cherel, Y., Le Corre, M., Jaquemet, S., Menard, F., Richard, P., and Weimerskirch,

H. (2008). Resource partitioning within a tropical seabird community:

new information from stable isotopes. Mar. Ecol. Prog. Ser. 366, 281–291.

doi: 10.3354/meps07587

Clua, E., and Grosvalet, F. (2001). Mixed-species feeding aggregations of dolphins,

large tunas and seabirds in the Azores. Aquat. Living Resour. 14, 11–18.

doi: 10.1016/S0990-7440(00)01097-4

Das, K., Lepoint, G., Loizeauà, V., Debacker, V., Dauby, P., and Bouquegneau,

J. M. (2000). Tuna and dolphin associations in the North-East Atlantic:

evidence of different ecological niches from stable isotope and heavy metal

measurements. Mar. Pollut. Bull. 40, 102–109. doi: 10.1016/S0025-326X(99)

00178-2

Davoren, G. K., Garthe, S., Montevecchi,W. A., and Benvenuti, S. (2010). Influence

of prey behaviour and other predators on the foraging activities of a marine

avian predator in a Low Arctic ecosystem. Mar. Ecol. Prog. Ser. 404, 275–287.

doi: 10.3354/meps08370

Durazo, R., Harrison, N. M., and Hill, A. E. (1998). Seabird observations at

a tidal mixing front in the Irish Sea. Estuar. Coast. Shelf Sci. 47, 153–164.

doi: 10.1006/ecss.1998.0339

Evans, P. G. H. (1982). Associations between seabirds and cetaceans: a review.

Mamm. Rev. 12, 187–206. doi: 10.1111/j.1365-2907.1982.tb00015.x

Furness, R. W. (2016). “Impacts and effects of ocean warming on seabirds,” in

Explaining Ocean Warming: Causes, Scale, Effects and Consequences, eds D.

Laffoley and J. M. Baxter (Gland: IUCN), 271–288.

Goodale, E., Beauchamp, G., Magrath, R. D., Nieh, J. C., and Ruxton, G. D. (2010).

Interspecific information transfer influences animal community structure.

TREE 25, 354–361. doi: 10.1016/j.tree.2010.01.002

Goyert, H. F., Manne, L. L., and Veit, R. R. (2014). Facilitative interactions among

the pelagic community of temperate migratory terns, tunas and dolphins.Oikos

11, 1400–1408. doi: 10.1111/oik.00814

Grebmeir, J. M., and Harrison, N. M. (1992). Seabird feeding on benthic

amphipods facilitated by gray whale activity in the northern Bering Sea. Mar.

Ecol. Prog. Ser. 80, 125–133. doi: 10.3354/meps080125

Grover, J. J., and Olla, B. L. (1983). The role of the rhinoceros auklet (Cerorhinca

monocerata) in mixed-species feeding assemblages of seabirds in the Strait of

Juan de Fuca, Washington. Auk 100, 979–982.

Grünbaum, D., and Veit, R. R. (2003). Black-browed albatrosses foraging on

Antarctic krill: density-dependence through local enhancement? Ecology 84,

3265–3275. doi: 10.1890/01-4098

Guse, N. (2013).Habitat Selection and Foraging Ecology of Seabirds in the Gulf of St

Lawrence. Dissertation. Christian-Albrechts-Universität zu Kiel (Keil).

Harrison, N. H., Whitehouse, M. J., Heinemann, D., Prince, P. A., Hunt, G. L.

Jr., and Veit, R. R. (1991). Observations of multi-species seabird flocks around

South Georgia. Auk 108, 801–810.

Harrison, N. M., and Whitehouse, M. J. (2011). Mixed-species flocks:

an example of niche construction? Anim. Behav. 81, 675–682.

doi: 10.1016/j.anbehav.2011.01.013

Hebshi, A. J., Duffy, D. C., and Hyrenbach, K. D. (2008). Associations between

seabirds and subsurface predators around Oahu, Hawaii. Aquat. Biol. 4, 89–98.

doi: 10.3354/ab00098

Hodges, C. L., and Woehler, E. J. (1993). Associations between seabirds and

cetaceans in the Australian sector of the southern Indian Ocean. Mar. Ornith.

22, 205–212.

Hoffman, W., Heinemann, D., and Wiens, J. A. (1981). The ecology of seabird

feeding flocks in Alaska. Auk 98, 437–456.

Hunsicker, M. E., Olson, R. J., Essington, T. E., Maunder, M. N., Duffy, L. M., and

Kitchell, J. F. (2012). Potential for top-down control on tropical tunas based on

size structure of predator—prey interactions.Mar. Ecol. Prog. Ser. 445, 263–277.

doi: 10.3354/meps09494

Hunt, G. L. Jr., Harrison, N. M., Hamner, W. M., and Obst, B. S. (1988).

Observations of a mixed-species flock of birds foraging on euphausiids near

St Matthew Island Bering Sea. Auk 105, 345–349. doi: 10.2307/4087500

Hutchison, L. V., and Wenzel, B. M. (1980). Olfactory guidance in foraging by

Procellariiforms. Condor 82, 314–319. doi: 10.2307/1367400

International Council for the Exploration of the Seas (2010). Report of the Working

Group on Seabird Ecology (WGSE). Copenhagen: ICES CM 2010/SSGEF

(Accessed Mar 15-19, 2010).

Irons, D. B. (1998). Foraging area fidelity of individual seabirds in relation

to tidal cycles and flock feeding. Ecology 79, 647–655. doi: 10.1890/0012-

9658(1998)079[0647:FAFOIS]2.0.CO;2

Käkelä, A., Furness, R. W., Kelly, A., Strandberg, U., Waldron, S., and Käkelä, R.

(2007). Fatty acid signatures and stable isotopes as dietary indicators in North

Sea seabirds.Mar. Ecol. Prog. Ser. 342, 291–301. doi: 10.3354/meps342291

Laland, K. N., and Boogert, N. J. (2008). Niche construction, co-evolution and

biodiversity. Ecol. Econ. 69, 731–736. doi: 10.1016/j.ecolecon.2008.11.014

Laland, K. N., Odling-Smee, J., and Feldman, M. W. (1999). Evolutionary

consequences of niche construction and their implications for ecology. Proc.

Natl. Acad. Sci. U.S.A. 96, 10242–10247. doi: 10.1073/pnas.96.18.10242

LeCorre, M., and Jaquemet, S. (2005). Assessment of the seabird community of the

Mozambique Channel and its potential use as an indicator of tuna abundance.

Estuar. Coast. Shelf Sci. 63, 421–428. doi: 10.1016/j.ecss.2004.11.013

Lett, C., Semeria, M., Thiebault, A., and Tremblay, Y. (2014). Effects of

successive predator attacks on prey aggregations. Theor. Ecol. 7, 239–252.

doi: 10.1007/s12080-014-0213-0

Martin, A. R. (1986). Feeding association between dolphins and shearwaters

around the Azores Islands. Can. J. Zool. 64, 1372–1374. doi: 10.1139/z86-205

Munn, C. A., and Terborgh, J.W. (1979).Multi-species territoriality in Neotropical

foraging flocks. Condor 81, 338–347. doi: 10.2307/1366956

Murphy, R. C. (1936). Oceanic Birds of South America. New York, NY: American

Museum of Natural History.

Nevitt, G. A. (2000). Olfactory foraging by Antarctic procellariiform seabirds: life

at high Reynolds numbers. Biol. Bull. 198, 245–253. doi: 10.2307/1542527

Nevitt, G. A. (2008). Sensory ecology on the high seas: the odor world of the

procellariiform seabirds. J. Exp. Biol. 211, 1706–1713. doi: 10.1242/jeb.015412

Frontiers in Ecology and Evolution | www.frontiersin.org 7 October 2017 | Volume 5 | Article 121

https://doi.org/10.1890/0012-9658(2002)083[2936:MILRS]2.0.CO;2
https://doi.org/10.1016/j.jmarsys.2008.11.022
https://doi.org/10.1111/1365-2664.12832
https://doi.org/10.1086/285532
https://doi.org/10.1002/jmor.10555
https://doi.org/10.1016/0169-5347(94)90246-1
https://doi.org/10.1016/S0169-5347(02)00045-9
https://doi.org/10.1111/j.1420-9101.2007.01465.x
https://doi.org/10.1017/S0025315415001447
https://doi.org/10.1016/j.biocon.2011.12.024
https://doi.org/10.1007/s00227-014-2468-9
https://doi.org/10.1007/s00227-015-2735-4
https://doi.org/10.3354/meps07587
https://doi.org/10.1016/S0990-7440(00)01097-4
https://doi.org/10.1016/S0025-326X(99)00178-2
https://doi.org/10.3354/meps08370
https://doi.org/10.1006/ecss.1998.0339
https://doi.org/10.1111/j.1365-2907.1982.tb00015.x
https://doi.org/10.1016/j.tree.2010.01.002
https://doi.org/10.1111/oik.00814
https://doi.org/10.3354/meps080125
https://doi.org/10.1890/01-4098
https://doi.org/10.1016/j.anbehav.2011.01.013
https://doi.org/10.3354/ab00098
https://doi.org/10.3354/meps09494
https://doi.org/10.2307/4087500
https://doi.org/10.2307/1367400
https://doi.org/10.1890/0012-9658(1998)079[0647:FAFOIS]2.0.CO;2
https://doi.org/10.3354/meps342291
https://doi.org/10.1016/j.ecolecon.2008.11.014
https://doi.org/10.1073/pnas.96.18.10242
https://doi.org/10.1016/j.ecss.2004.11.013
https://doi.org/10.1007/s12080-014-0213-0
https://doi.org/10.1139/z86-205
https://doi.org/10.2307/1366956
https://doi.org/10.2307/1542527
https://doi.org/10.1242/jeb.015412
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Veit and Harrison Interactions among Seabirds

Nevitt, G. A., and Bonadonna, F. (2005). Seeing the world through the nose of a

bird: new developments in the sensory ecology of Procellariiform seabirds.Mar.

Ecol. Prog. Ser. 287, 292–295. doi: 10.1098/rsbl.2005.0350

Nevitt, G. A., Reid, K., and Trathan, P. (2004). Testing olfactory foraging

strategies in an Antarctic seabird assemblage. J. Exp. Biol. 207, 3537–3544.

doi: 10.1242/jeb.01198

Nevitt, G. A., Veit, R. R., and Kareiva, P. (1995). Dimethyl sulphide as a

foraging cue for Antarctic Procellariiform seabirds. Nature 376, 680–682.

doi: 10.1038/376680ao

Obst, B. S., and Hunt, G. L. Jr. (1990). Marine birds feed at gray whale mud plumes

in the Bering Sea. Auk 107, 678–688. doi: 10.2307/4087998

Olmos, F., Rotenberg, E., and Muscat, E. (2013). A feeding association

between between Wilson’s Storm-petrels Oceanites oceanicus and Rough-

toothed Dolphins Steno bredanensis. Biota Neotrop. 13, 303–307.

doi: 10.1590/S1676-06032013000200030

Paiva, V. H., Geraldes, P., Ramírez, I., Garthe, S., and Ramos, J. A. (2010). How area

restricted search of a pelagic seabird changes while preforming a dual foraging

strategy. Oikos 119, 1423–1434. doi: 10.1111/j.1600-0706.2010.18294.x

Phillips, R. A., Bearhop, S., Mcgill, R. A. R., and Dawson, D. A. (2009).

Stable isotopes reveal individual variation in migration strategies and habitat

preferences in a suite of seabirds during the nonbreeding period.Oecologia 160,

795–806. doi: 10.1007/s00442-009-1342-9

Pierotti, R. (1988). “Associations between marine birds and mammals in

the northwest Atlantic ocean,” in Seabirds and Other Marine Vertebrates:

Competition, Predation and Other Interactions, ed J. Burger (New York, NY:

Columbia University Press), 31–58.

Pitman, R. L., and Ballance, L. T. (1992). Parkinson’s petrel distribution and

foraging ecology in the Eastern Pacific: aspects of an exclusive feeding

relationship with dolphins. Condor 94, 825–835. doi: 10.2307/1369280

Polovina, J. J., Dunne, J. P., Woodworth, P. A., and Howell, E. A. (2011). Projected

expansion of the subtropical biome and contraction of the temperate and

equatorial upwelling biomes in the North Pacific under global warming. ICES

J. Mar. Sci. 68, 986–995. doi: 10.1093/icesjms/fsq198

Prince, P., Huin, N., and Weimerskirch, H. (1994). Diving depths of albatrosses.

Ant. Sci. 6, 353–354. doi: 10.1017/S0954102094000532

Rogan, E., andMackey,M. (2007). Megafauna bycatch in drift nets of albacore tuna

in the NE Atlantic. Fish. Res. 86, 6–14. doi: 10.1016/j.fishres.2007.02.013

Santora, J. A., and Sydeman, W. J. (2015). Persistence of hotspots and variability

of seabird species richness and abundance in the southern California Current.

Ecosphere 6:214. doi: 10.1890/ES14-00434.1

Santora, J. A., and Veit, R. R. (2013). Spatio-temporal persistence of top predator

hotspots near the Antarctic Peninsula. Mar. Ecol. Prog. Ser. 487, 287–304.

doi: 10.3354/meps10350

Savoca, M. S., and Nevitt, G. A. (2014). Evidence that dimethyl sulphide facilitates

a tritrophic mutualism between marine primary producers and top predators.

Proc. Natl. Acad. Sci. U.S.A. 111, 4157–4161. doi: 10.1073/pnas.1317120111

Schneider, D. C., Harrison, N. M., and Hunt, G. L. Jr. (1990). Seabird diet at a front

near the Pribilof Islands, Alaska. Stud. Avian Biol. 14, 61–66.

Silverman, E. D., and Veit, R. R. (2001). Associatons among

Antarctic seabirds in mixed-species feeding flocks. Ibis 143, 51–62.

doi: 10.1111/j.1474-919X.2001.tb04169.x

Silverman, E. D., Veit, R. R., andNevitt, G. A. (2004). Nearest neighbors as foraging

cues: information transfer in a patchy environment. Mar. Ecol. Prog. Ser. 277,

25–36. doi: 10.3354/meps277025

Skov, H., Durinck, J., Danielsen, F., and Bloch, D. (1995). Co-occurrence

of cetaceans and seabirds in the northeast Atlantic. J. Biog. 22, 71–88.

doi: 10.2307/2846074

Spear, L. B., and Ainley, D. G. (2005). At-sea behaviour and habitat

use by tropicbirds in the eastern Pacific. Ibis 147, 391–407.

doi: 10.1111/j.1474-919x.2005.00418.x

Sridhar, H., Beauchamp, G., and Shanker, K. (2009). Why do birds participate in

mixed-species foraging flocks? A large-scale synthesis. An. Beh. 78, 337–347.

doi: 10.1016/j.anbehav.2009.05.008

Stachowicz, J. J. (2001). Mutualism, facilitation and the structure of

ecological communities. Bioscience 51, 235–246. doi: 10.1641/0006-

3568(2001)051[0235:MFATSO]2.0.CO;2

Thiebault, A., Mullers, R., Pistorius, P., and Tremblay, Y. (2014a). Local

enhancement in a seabird: reaction distances and foraging consequence of

predator aggregations. Beh. Ecol. 25, 1302–1310. doi: 10.1093/beheco/aru132

Thiebault, A., Mullers, R., Pistorius, P., Meza-Torres, M., Dubroca, L., Green,

D., et al. (2014b). From colony to first patch: processes of prey searching and

social information in Cape gannets. Auk 131, 595–609. doi: 10.1642/AUK-

13-209.1

Thiebault, A., Semeria, M., Lett, C., and Tremblay, Y. (2016). How to capture fish

in a school? Effect of successive predator attacks on seabird feeding success.

J. Anim. Ecol. 85, 157–167. doi: 10.1111/1365-2656.12455

Thiebot, J.-B., and Weimerskirch, H. (2013). Contrasted associations between

seabirds and marine mammals across four biomes of the southern Indian

Ocean. J. Ornith. 154, 441–453. doi: 10.1007/s10336-012-0909-0

Thorpe, W. H. (1956). Learning and Instinct in Animals. London: Methuen.

Tremblay, Y., Thiebault, A., Mullers, R., and Pistorius, P. (2014). Bird-borne

video-cameras show that seabird movement patterns relate to previously

unrevealed proximate environment, not prey. PLoS ONE 9:e0088424.

doi: 10.1371/journal.pone.0088424

Vaughan, R. L., Shelton, D. E., Timm, L. L., Watson, L. A., and Würsig,

B. (2007). Dusky dolphin (Lagenorhynchus obscurus) feeding tactics and

multi-species associations. New Zeal. J. Mar. Freshw. Res. 41, 391–400.

doi: 10.1080/00288330709509929

Veit, R. R. (1995). Pelagic communities of seabirds in the South Atlantic Ocean.

Ibis 137, 1–10. doi: 10.1111/j.1474-919X.1995.tb03213.x

Veit, R. R. (1999). Behavioral responses by foraging petrels to swarms of Antarctic

krill. Ardea 87, 41–50.

Veit, R. R., and Hunt, G. L. Jr. (1991). Broadscale density and aggregation of

pelagic birds from a circumnavigational survey of the Antarctic Ocean. Auk

108, 790–800.

Veit, R. R., Silverman, E. D., and Everson, I. (1993). Aggregation patterns of pelagic

predators and their principal prey, Antarctic krill, near South Georgia. J. Anim.

Ecol. 62, 551–564. doi: 10.2307/5204

Weimerskirch, H., and Sagar, P. M. (1996). Diving depths of sooty shearwaters

Puffinus griseus. Ibis 138, 786–788. doi: 10.1111/j.1474-919X.1996.

tb08837.x

Weimerskirch, J., LeCorre, M., Jaquemet, S., Potier, M., and Marsac, F.

(2004). Foraging strategy of a top predator in tropical waters: great

frigatebirds in the Mozambique Channel. Mar. Ecol. Prog. Ser. 275, 297–308.

doi: 10.3354/meps275297

Wells, M. R., Angel, L. P., and Arnould, J. P. Y. (2016). Habitat-specific

foraging strategies in Australasian gannets. Biol. Open. 4, 1298–1305.

doi: 10.1242/bio.018085

Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S., et al.

(2006). Impacts of biodiversity loss on ocean ecosystem services. Science 314,

787–790. doi: 10.1126/science.1132294

Young, H. S., McCauley, D. J., Dirszo, R., Dunbar, R. B., and Shaffer, S. A.

(2010). Niche partitioning among and within sympatric tropical seabirds

revealed by stable isotope analysis. Mar. Ecol. Prog. Ser. 416, 285–294.

doi: 10.3354/meps08756

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Veit and Harrison. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 October 2017 | Volume 5 | Article 121

https://doi.org/10.1098/rsbl.2005.0350
https://doi.org/10.1242/jeb.01198
https://doi.org/10.1038/376680ao
https://doi.org/10.2307/4087998
https://doi.org/10.1590/S1676-06032013000200030
https://doi.org/10.1111/j.1600-0706.2010.18294.x
https://doi.org/10.1007/s00442-009-1342-9
https://doi.org/10.2307/1369280
https://doi.org/10.1093/icesjms/fsq198
https://doi.org/10.1017/S0954102094000532
https://doi.org/10.1016/j.fishres.2007.02.013
https://doi.org/10.1890/ES14-00434.1
https://doi.org/10.3354/meps10350
https://doi.org/10.1073/pnas.1317120111
https://doi.org/10.1111/j.1474-919X.2001.tb04169.x
https://doi.org/10.3354/meps277025
https://doi.org/10.2307/2846074
https://doi.org/10.1111/j.1474-919x.2005.00418.x
https://doi.org/10.1016/j.anbehav.2009.05.008
https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2
https://doi.org/10.1093/beheco/aru132
https://doi.org/10.1642/AUK-13-209.1
https://doi.org/10.1111/1365-2656.12455
https://doi.org/10.1007/s10336-012-0909-0
https://doi.org/10.1371/journal.pone.0088424
https://doi.org/10.1080/00288330709509929
https://doi.org/10.1111/j.1474-919X.1995.tb03213.x
https://doi.org/10.2307/5204
https://doi.org/10.1111/j.1474-919X.1996.tb08837.x
https://doi.org/10.3354/meps275297
https://doi.org/10.1242/bio.018085
https://doi.org/10.1126/science.1132294
https://doi.org/10.3354/meps08756
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Positive Interactions among Foraging Seabirds, Marine Mammals and Fishes and Implications for Their Conservation
	Introduction
	Positive Interactions among Marine Predators
	Patterns and Variation in Seabird Associations
	Tropical Oceans
	Polar Seas
	North Atlantic
	Future Research
	Conservation
	Author Contributions
	Funding
	Acknowledgments
	References


