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Most experimental studies on adaptation to stressful environments are performed under

conditions that are rather constant and rarely ecologically relevant. Fluctuations in natural

environmental conditions are ubiquitous and include for example variation in intensity

and duration of temperature, droughts, parasite loads, and availability of nutrients,

predators and competitors. The frequency and amplitude of many of these fluctuations

are expected to increase with climate change. Tolerance curves are often used to

describe fitness components across environmental gradients. Such curves can be

obtained by assessing performance in a range of constant environmental conditions. In

this perspective we briefly list theoretical and experimental evidence why results obtained

under constant environmental conditions might be misleading for processes in nature

and therefore may not be suitable for predicting fitness and future species distribution

and abundance. We further suggest experimental avenues that can provide a better

foundation for forecasts of the distribution of biota.

Keywords: tolerance curves, constant and fluctuating environments, climate change, species distributions,

environmental stress

Tolerance curves are often used to describe performance or physiological traits across
environments (Sarkar, 2004; Angilletta, 2006, 2009; Stinchcombe et al., 2012). Such curves are
typically obtained by assessing the performance of genotypes in different constant environments;
e.g., at a range of constant temperatures (e.g., Schou et al., 2016). Observations from these
experiments allow researchers to get detailed information on performance across environmental
gradients and they have been proposed to allow spatial and temporal visualization of fitness
components of genotypes, and thereby for example pinpointing species or populations that are
specialists or generalists, and for detecting genotype by environment interactions (Dobzhansky and
Spassky, 1963). Tolerance curves have multiple purposes in diverse biological disciplines and they
seem attractive for predicting performance and distribution of species in more natural fluctuating
environments (Kassen, 2002; Chevin et al., 2010; Schou et al., 2016; Sexton et al., 2016).

PROBLEMS WITH TOLERANCE CURVES

Tolerance curves based on observations from a range of constant environments, which is the
common experimental approach, can however be heavily criticized, both from a theoretical and
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an empirical standpoint, when it comes to predicting
performance in fluctuating environments. Recent papers have
pointed out the problem that tolerance curves are considered
invariant to previous exposures to different environments, speed,
and order of fluctuations (see e.g., Sinclair et al., 2016). From
physiology we know that the speed, amplitude, and duration of
environmental fluctuations strongly affect fitness (Schulte et al.,
2011). For example expression of stress proteins such as heat
shock proteins are prime examples where the expression patterns
differ dramatically in species occupying fluctuating and stable
temperature habitats and also within species, the expression
patterns, and the adaptive importance of the plastic response
differ at constant high and fluctuating high temperatures
(Podrabsky and Somero, 2004; Tomanek, 2010).

Interestingly, when we look back at earlier literature on
experimental evolution in fluctuating environments, the results
indicate that different fluctuations might lead to separate
adaptations that are not visible in traditional tolerance curves
obtained across constant temperatures. For example a study
with ciliates showed no adaptation to fluctuating environments
when measured at constant temperatures, but strains adapted
to rapidly fluctuating thermal environments had increased
expression of the heat shock protein Hsp90, indicating evolution
of tolerance to cope with acute stress (Ketola et al., 2004). From
studies that have tested the effect of evolution in fluctuating
environments on tolerance curves and performance also in
fluctuating environments (Bennett and Lenski, 1993; Leroi
et al., 1994; Kassen and Bell, 1998; Hughes et al., 2007; Ketola
and Saarinen, 2015), only one study shows a positive link
between tolerance curve parameters obtained across constant
environments and the performance in fluctuating environments
(Hughes et al., 2007) and one suggests a strong negative link
(Ketola and Saarinen, 2015).

In addition to empirical evidence, theoretical work suggests
that tolerance curves are poor predictors of performance in
fluctuating environments (Levins, 1968; DeWitt and Langerhans,
2004; Botero et al., 2015). For example, evolutionary theories
predict that responses to fluctuating and constant environmental
conditions will favor genetically determined broad and narrow
tolerance curves, respectively (Slatkin and Lande, 1976; Lynch
and Gabriel, 1987; Gomulkiewicz and Kirkpatrick, 1992;
Gilchrist, 1995). However, the main message from models that
take into account inducible and reversible plastic responses
to environmental fluctuations, in addition to genetically
determined tolerance curves, suggests that inducible plasticity
is superior to genetically fixed strategies (broad or narrow
tolerance curves) under nearly all conditions (Levins, 1968;
DeWitt and Langerhans, 2004), and especially in frequently
fluctuating environments (Padilla and Adolph, 1996). However,
if environmental cues for predicting future environmental
conditions are unreliable inducible plasticity also becomes a
burden (Reed et al., 2010) and risk spreading strategies, such
as bet-hedging are expected to evolve (Levins, 1968; DeWitt
and Langerhans, 2004). Thus, when populations are exposed
to environments with different predictabilities, amplitudes, and
frequencies of fluctuations, different adaptation mechanisms are
expected to operate (Botero et al., 2015).

Empirical and theoretical evidence suggests that many
tolerance curves presented in the literature are not good
predictors of fitness in fluctuating environments. However, very
few studies have properly tested the extent of the problem.
Lack of this knowledge is problematic in the broad context
of understanding evolutionary processes in natural systems
and the genetic background for adaptation to environmental
fluctuations. One reason why it is of outmost important to obtain
a better understanding of tolerance curves is that they are often
being used to predict future distributions of species (e.g., Chevin
et al., 2010; Huey et al., 2012; Valladares et al., 2014). Further,
experimental molecular work that aims at elucidating the genetic
architecture of fitness components is typically performed on
populations held in constant environments and therefore may
not detect adaptive genetic variation of relevance for populations
in their natural habitat. Failure to recognize by which means
the genotype, population or species is adapted to environmental
fluctuations will make it hard to predict how e.g. climate
change induced alternations in fluctuations affect biota, and
extinction risks (Botero et al., 2015). Here we present avenues
for how studies can test the value of tolerance curves and
suggest ways that can provide data suitable for predicting
performance in fluctuating environments, and distribution and
abundance of biota in rapidly increasing stressful and fluctuating
environments.

WAYS FORWARD

We argue that it is important to acknowledge the fact that
fluctuating and constant environments have different impacts on
fitness (Ketola et al., 2012; Sinclair et al., 2016), that responses that
are adaptive in fluctuating environments might be maladaptive
in constant environments, and vice versa (Kristensen et al., 2008;
Chevin et al., 2010), and that evolutionary responses to constant
and fluctuating environments can be distinct (Botero et al., 2015;
Melbinger and Vergassola, 2015; Dey et al., 2016).

Therefore, we propose to investigate the validity of current
practices, where data from tolerance curves obtained across a
number of constant environments in the laboratory are used to
predict fitness across constant and fluctuating environments and
future species distributions. Further we suggest that there is a
pressing demand for experiments where the fitness impacts of
different kinds of environmental fluctuations can be evaluated,
and we provide examples and specific recommendations to show
how this can be done.

Experimental Evolution
Theories emphasize that populations can adapt differently
depending on the type of environmental fluctuations (see above).
The experimental evolution setup in which rapidly reproducing
species are let to evolve multiple generations in different kinds
of environments is capable of resolving whether evolutionary
responses to constant and fluctuating environments are similar
and whether adaptations are specific to particular kinds of
fluctuations. For example if experimental bacterial strains can be
identified from each other (Bennett and Lenski, 1993; Ashrafi
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et al., 2017), it allows comparing fitness of the strains in
competition.

For example one can ask if strains adapted to environmental
fluctuations are superior in both constant and in fluctuating
environments, in comparison to strains evolved in a constant
environment. When this information is projected on tolerance
curves obtained at constant environments it unambiguously
indicates if fitness in fluctuating environments is reflected in the
tolerance curves.

Ketola and Saarinen (2015) did not utilize marker strains
and they used fitness surrogates in their experiments. Still, this
study provides insights on the value of tolerance curves obtained
from constant thermal environments. The idea in Ketola and
Saarinen (2015) was to test if fluctuations increased growth or
yield of bacterial clones during fluctuations, which could be seen
as an adaptation to prevailing conditions. Accordingly, strains
evolved in fluctuating regimes had higher growth rate under
fluctuations than strains evolved in constant environments. Thus,
these experimentally evolved bacteria provided clear evidence
for an evolved ability to tolerate fluctuations. However, when
thermal tolerance curves were based on several measurements
obtained across the range of environments experienced during
the process of experimental evolution, no evidence of adaptation
to fluctuations could be deducted from the tolerance curve.
On the contrary, the strains adapted to fluctuations were
outperformed by strains evolved at constant environments.
These data clearly demonstrate that evolutionary processes are
distinct in fluctuating and constant temperature environments.
Recent work on the insect, Drosophila simulans, draws similar
conclusions (Manenti et al., 2016).

We propose that experimental evolution experiments that
test different and ecologically relevant frequencies of variation
are highly needed. Such experiments will resolve if fluctuations
that are fast or slow, frequent or infrequent, predictable or
not, and have high or low amplitude, have their characteristic
adaptations—as theories predict (see above). Such studies will
elucidate if tolerance curves from constant environments fail
to capture adaptations in certain kinds of fluctuations, as we
propose. Based on the reasoning put forward in papers by Schulte
et al. (2011) and Sinclair et al. (2016) it is likely that adaptations
to fast fluctuations are especially hard to observe from tolerance
curves obtained across constant environments. Thus, more
work should be done with different kinds of environmental
fluctuations (Ketola et al., 2004; Buckling et al., 2007; Manenti
et al., 2014), to disentangle critical frequencies, amplitudes, or
predictabilities, where traditional tolerance curves may start to
fail. Experimental evolution studies have a lot to provide in this
context.

Quantitative Genetic Experiments
There are a large number of quantitative genetic studies exploring
the amount of genetic variation in e.g. heat shock survival or in
tolerance curve parameters (Scheiner, 1993; Kellermann et al.,
2009; Ketola et al., 2014; Kristensen et al., 2015). However,
as stated here the adaptive benefit of heritable variation in
some proxy of fitness in a constant environment might be
minor in fluctuating environments if it is not genetically

correlated with fitness in fluctuating environments (Ketola
et al., 2014; Manenti et al., 2016). What is crucially missing
in most quantitative genetic experiments performed so far is
correlating the abovementioned proxies to fitness in fluctuating
environments. For example, in a massive experiment we reared
half-sib families of D. melanogaster under four different thermal
environments, two constant and two fluctuating temperatures,
and quantified egg-to-adult viability under these four thermal
conditions. Two constant temperatures were used to draw simple
linear tolerance curves and to estimate its parameters. Next
we resolved if these parameters (elevation and the slope) were
genetically correlated with egg-to-adult viability in fluctuating
environments. We found that the elevation was under positive
selection in fluctuating environments but not the slope. However,
interestingly the elevation and the slope together explained a
rather small proportion of the variance in egg-to-adult viability in
fluctuating environments, supporting the idea that the traditional
tolerance curves obtained in constant environments might not be
enough for describing performance when environments fluctuate
(Ketola et al., 2014).

We advocate that quantitative genetic studies aiming at
generating ecologically relevant tolerance curves should use
similar designs but investigate more temperatures, or vary
other environmental components, and a range of different
frequencies and intensities of fluctuations. These should
also involve investigating some proxies of tolerance to fast
environmental changes, for example including measuring
physiological responses to more acute stress like inducible heat
shock proteins, metabolic rate, knock down temperatures, or
chill coma recovery time. Crucially, these proxies, along with
tolerance curve parameters, should also be genetically correlated
with lifetime fitness or survival in different kinds of fluctuating
“test environments” (Ketola et al., 2014) to resolve which of the
proxies are more reliable in predicting tolerances to fluctuations
(Rezende et al., 2010). In addition to classic quantitative genetic
setups (e.g., full-sib half-sib breeding designs, isofemale lines, or
the use of pedigreed populations), using clonal species should
also be considered, as this could be an affordable approach to
conduct these very demanding experiments.

In addition to experiments, data could also be retrieved from
natural populations. Quantitative genetic studies of pedigreed
wild populations have revealed selection on tolerance curve
characteristics (Nussey, 2005; Charmantier et al., 2008; Debes
et al., 2017). Depending if there is between year variation in the
amount of environmental fluctuations, field studies on pedigreed
populations could allow estimating reaction norms for fitness
on the continuum of environmental fluctuations. This approach
serves as an important source of information by answering the
question whether the same genotypes do well in constant and
fluctuating natural environments.

Next Generation Genetics
Omics technologies have a lot to offer in relation to pinpointing
the physiological and genetic architecture of complex traits in
constant and fluctuating environments. For example sequencing
of strains/populations from experimental evolution studies
evolved in constant and fluctuating environments, or testing
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performance of gene knock down/knock in strains in both
types of environments will provide valuable insight into whether
the same or different genes contribute to the tolerance in
fluctuating and constant environments (Sørensen et al., 2016;
Deatherage et al., 2017). Recent work by Sørensen et al. (2016)
is very illuminating in this respect. Exploring gene expression of
D. melanogaster flies exposed to different kinds of environments
revealed that: “transcriptional responses to mean temperature,
acute exposure to heat and fluctuations act through largely
independent mechanisms.” This quote from the paper matches
the take home message that we wish to convey namely that
adaptations to constant and fluctuation environments are partly
under distinct genetic control.

Also the ability to use genomic and other omics approaches
on non-model species is developing rapidly (Shafer et al., 2015).
This provides a range of opportunities to pinpoint genes and
mechanism responsible for fitness and plastic responses in the
field on a wide range of species. This does not leave laboratory
experiments out-of-date but do provide additional opportunities
that should be exploited.

CONCLUSIONS

The ability to predict effects of increasing environmental
fluctuations on fitness traits and the fate of species and
populations in given environments is an important topic within
the fields of ecology, evolutionary biology, and genetics. It is
our impression that there is a misperception among many
researchers that tolerance curves are universal descriptors of
what happens if environments fluctuate. This problem has been
well-described in a few recent papers (Schulte et al., 2011; Sinclair
et al., 2016). We are not suggesting that tolerance curves are
useless as a predictive tool for many purposes, but argue that
we need to perform more ecologically relevant experiments
and test when tolerance curves are predictive of what happens
if environments fluctuate. From a theoretical point of view

fluctuations are acknowledged to impact strongly the directions
and mechanisms of adaptation and empirical work has by and
large neglected this complication.Wythers et al. (2005) illustrated
the importance of adding reality into experimental work on
thermal adaptation. In their study they showed that by allowing
acclimation and other plastic responses to occur in ecosystem
models, they dramatically altered predictions for the productivity
and respiration rates of plants. Others have also shown that
predicted species distributions are sensitive to whether these
complications are taken into account (Duputié et al., 2015).
Such results highlight that experimental work on the ability
of tolerance curves from constant environments to describe
selection pressures in fluctuating environments is highly needed.
The forecast that environmental fluctuations are expected to
increase with current climate change make this effort even more
pressing (Christensen et al., 2013).
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