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The defense glands in the dorsal prothorax are an important autapomorphic trait of

stick insects (Phasmatodea). Here, we study the functional anatomy and neuronal

innervation of the defense glands in Anisomorpha paromalus (Westwood, 1859)

(Pseudophasmatinae), a species which sprays its defense secretions when disturbed

or attacked. We use a neuroanatomical approach to identify the nerves innervating the

glandmuscles and themotoneurons with axons in the different nerves. The defense gland

is innervated by nerves originating from two segments, the subesophageal ganglion

(SOG), and the prothoracic ganglion. Axonal tracing confirms the gland innervation

via the anterior subesophageal nerve, and two intersegmental nerves, the posterior

subesophageal nerve, and the anterior prothoracic nerve. Axonal tracing of individual

nerves reveals eight identified neuron types in the subesophageal or prothoracic ganglion.

The strongest innervating nerve of the gland is the anterior subesophageal nerve, which

also supplies dorsal longitudinal thorax muscles (neck muscles) by separate nerve

branches. Tracing of individual nerve branches reveals different sets of motoneurons

innervating the defense gland (one ipsilateral and one contralateral subesophageal

neuron) or the neck muscle (ventral median neurons). The ipsilateral and contralateral

subesophageal neurons have no homologs in related taxa like locusts and crickets,

and thus evolved within stick insects with the differentiation of the defense glands. The

overall innervation pattern suggests that the longitudinal gland muscles derived from

dorsal longitudinal neck muscles. In sum, the innervating nerves for dorsal longitudinal

muscles are conserved in stick insects, while the neuronal control systemwas specialized

with conserved motoneurons for the persisting neck muscles, and evolutionarily novel

subesophageal and prothoracic motoneurons innervating the defense gland.
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INTRODUCTION

In stick insects (Phasmatodea), paired exocrine defense glands
are found in the prothorax (Bedford, 1978; Chow, 2008; Bradler,
2009). The gland opening is located at the anterio-dorsal
pronotum. The defense glands are an autapomorphic character
for the Phasmatodea (Grimaldi and Engel, 2005; Bradler, 2009).
Even in the Indian walking stick Carausius morosus which
apparently does not produce defensive secretions (Bässler, 1983;
Carlberg, 1985a), the glands are found in the prothorax albeit
in relatively small size (Marquardt, 1940; Stolz et al., 2015). In
species displaying chemical defense, the paired defense glands
produce the defense fluid from a secretory epithelium lining the
inner gland muscle layers (Happ et al., 1966; Strong, 1975; Eisner
et al., 1997). The defense secretions have been studied for the
biochemical components in detail in different species of stick
insects (e.g., Meinwald et al., 1962; Smith et al., 1979; Chow and
Lin, 1986; Ho and Chow, 1993; Bouchard et al., 1997; Eisner
et al., 1997; Dossey et al., 2006, 2008; Schmeda-Hirschmann,
2006; summarized in Dettner, 2015). In Anisomorpha species,
the principle component of the defense spray is anisomorphal, a
monoterpene dialdehyde (Meinwald et al., 1962) which occurs in
three diastereomers in Anisomorpha buprestoides (Dossey et al.,
2006).

In addition, the importance of chemical defense secretion for
the survival of stick insects has been shown in behavioral assays
as an effective mechanism against predators for several species
(Eisner, 1965; Carlberg, 1981, 1985b,c, 1986a, 1987; Bouchard
et al., 1997; Dossey et al., 2012; but see Nentwig, 1990). The
defense glands can be employed in defense against predators like
birds or rodents by secreting or spraying a repellent or irritating
fluid, or by releasing an odor (Eisner, 1965; Bedford, 1978;
Carlberg, 1986a; Eisner et al., 2005). Secretion release usually
covers parts of the body surface with the fluid, while spraying
release occurs over a distance at potential predators (Carlberg,
1986b; Eisner et al., 1997, 2005; van de Kamp et al., 2015).

Aimed spraying is arguably the most complex among these
chemical defense behaviors. Behavioral experiments have shown
that A. buprestoides can direct the spray from either both glands,
or only a single gland, depending on the direction of contact
(Eisner, 1965). Further, they can spray in an aimed direction at
birds prior to any contact with the insect body (Eisner, 1965). In
general, different sensory stimuli are integrated for fluid ejection
including vision and touch. The chemical defense must thus
be under a neuronal control which goes beyond local, reflex-
like circuits in the prothorax. A previous comparative study
has revealed a complex innervation pattern of the glands by
three peripheral nerves from the subesophageal and prothoracic
ganglion in four species including C. morosus (Stolz et al., 2015).
The most prominent nerve supplying the defense glands, the
Nervus anterior, originates in the subesophageal ganglion (SOG),
and also supplies adjacent thoracic longitudinal muscles (Stolz
et al., 2015). In addition, the intersegmental nerve complex
innervates the glands by the posterior subesophageal nerve and
the anterior prothoracic nerve in most species studied (Stolz
et al., 2015). Between these distantly related groups (Goldberg
et al., 2015), the peripheral nerve pattern is conserved. Notably,

in Peruphasma schultei only the anterior subesophageal nerve
innervates the defense glands, but not the intersegmental nerve
complex (Stolz et al., 2015). Few neuron types located in the SOG
and the prothoracic ganglion have axons in the Nervus anterior
SOG (Stolz et al., 2015).

Here, we study the neuronal innervation of the defense glands
in further detail in the species Anisomorpha paromalus, which is
closely related to A. buprestoides (Bradler, 2009). The aim of this
study is (1) to document the innervation pattern of the defense
gland for a species from a genus which has a strong spraying
defense behavior from prominent defense glands (Eisner, 1965),
(2) to identify the particular neurons which innervate the defense
gland muscles in nerves which also target adjacent muscles (Stolz
et al., 2015), and (3) to compare the innervation in A. paromalus
to the closely related P. schultei (both Pseudophasmatinae;
Goldberg et al., 2015) for the functional specialization on the
N. ant. SOG innervation. We use axonal tracing of individual
nerve branches from the Nervus anterior SOG to differentiate
the neuronal innervation of the defense gland and of the dorsal
longitudinal muscles (or neck muscles, Honegger et al., 1984).
Comparison of thesemotoneurons in stick insects to homologous
neurons in related species of cockroaches (Davis, 1983) and
locusts (Altman and Kien, 1979; Honegger et al., 1984) reveals
neurons which have evolved with the development of the defense
glands. This comparison of identified neurons (Goodman et al.,
1979; Hoyle, 1983; Arbas et al., 1991; Kutsch and Breidbach,
1994) allows to identify the evolutionary novel nerve cells in stick
insects which underlie chemical defense.

MATERIALS AND METHODS

Animals
Anisomorpha paromalus (Westwood, 1859)
(Pseudophasmatinae) were reared in a crowded lab culture
of females and males at the Institute for Animal Physiology,
Justus-Liebig-University, Gießen. Animals were kept under a
12:12 light-dark regime. They were fed with Ligustrum leaves ad
libitum. Only adult individuals were used in this study.

Scanning Electron Microscopy
The gland opening was documented by scanning electron
microscopy from specimens stored in 70% ethanol (Carl Roth,
Karlsruhe, Germany). Thoraces were isolated from the rest
of the body and cut in the middle with scissors. They were
dehydrated in a graded ethanol series (Carl Roth, Karlsruhe,
Germany). The preparations were critical point-dried (BAL-TEC,
Balzers, Liechtenstein) and sputter-coated with gold (SCD 004
SputterCoater, Balzers), and viewed and documented with a
Phillips XL 20 SEM.

Dissection Procedures
Prior to preparation of the glands and the nervous system,
insects were cold-anesthetized for 10min at 4◦C. The dissection
procedures followed those established for other species (Stolz
et al., 2015), cutting the insects open with scissors on the
dorsal side of the thorax and head capsule, and flattening them
out in glass dishes which were filled with Sylgard (Sylgard

Frontiers in Ecology and Evolution | www.frontiersin.org 2 November 2017 | Volume 5 | Article 151

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Strauß et al. Defense Gland Innervation in Anisomorpha

184, Suter Kunststoffe AG, Fraunbrunnen, Switzerland) with
insect pins. The esophagus and gut were removed with scissors,
and the ganglia and peripheral nerves were thus exposed
for neuroanatomical investigations from the dorsal side. The
preparations were covered with Carausius saline with pH = 7.4
(0.00684 mol/l NaCl; 0.01744 mol/l KCl; 0.00748 mol/l CaCl2 × 2
H2O; 0.01844 mol/l MgCl2 × 6 H2O; 0.00198 mol/l Tris; Weidler
and Diecke, 1969; Bässler, 1977). This dissection procedure was
also followed in preparations for axonal tracing (see below).

Neuroanatomy and Axonal Tracing
Gland Innervation Pattern
To document the peripheral nerves innervating the defense
gland, these structures were stained in situ. The preparations
were shortly incubated for 20–40 s with Janus Green B solution
(Sigma-Aldrich, St. Louis, Missouri; used 0.02% in Carausius
saline). Janus Green B stains the fine peripheral nerves and
other tissues. The Janus Green B solution was used at storage
temperature of 4◦C, and quickly washed out after incubation
using Carausius saline.

Axonal Tracing Experiments
To reveal the gland innervation by specific nerves and the somata
located in the central nervous system of neurons with axons
in these nerves, axonal tracing was used. Again, the tracing
procedures were carried out in situ following the dissection
described above (for details see Stolz et al., 2015). Neurobiotin
was used as tracing solution (5%, dissolved in Aqua dest.; Vector
Laboratories, Burlingame, CA, USA). The different nerves taking
up the tracing solution were cut with iridectomy scissors (see
schematics in Figures 7, 8). Preparations were incubated at
4◦C for 4 days in a moist chamber. Ganglia were then taken
out and fixed in 4% paraformaldehyde (Sigma Chemicals, St.
Louis, Missouri, USA) dissolved in phosphate buffer (0.04 mol/l
Na2HPO4; 0.00574 mol/l NaH2PO4 × 2 H2O) for 1 h. They
were subsequently rinsed in phosphate buffer and stored in
PBST buffer (0.1369 mol/l NaCl, 0.0027 mol/l KCl, 0.01 mol/l
Na2HPO4, 0.00176 mol/l KH2PO4, all substances from Merck,
Darmstadt, Germany; and 0.1% Triton X-100, Roth, Karlsruhe,
Germany; with pH = 7.2). The uptake of neurobiotin in neurites
and somata was visualized as described previously (Stolz et al.,
2015) using the Avidin-Biotin kit (Vectastain ABC Kit PK-
6100; Vector Laboratories, Burlington CA) and DAB solution
(Vectastain DAB kit SK-4100; Vector Laboratories) according to
manufacturers’ instructions.

Histology of the Defense Glands
After axonal tracing, the defensive glands were dehydrated in
a graded ethanol series (30% ethanol to 96% ethanol) followed
by two changes of 99.9% 2-propanol, each step for several
hours at room temperature. The tissues were then embedded in
Histosec R© (Merck, Darmstadt, Germany) and 10µm sections
were made with a Leitz rotary microtome and mounted on glass
slides (SuperFrostTM, Carl Roth, Karlsruhe, Germany). Sections
were deparaffined with Roti R©-Histol (Carl Roth, Karlsruhe,
Germany) and rehydrated in a descending ethanol series.

For histological staining to analyze the gland muscles,
the sections were also incubated in methanol for 5min at
room temperature and then stained in double concentrated
Giemsa solution (Stock solution from Carl Roth, Karlsruhe,
Germany) for 1 h. Excess staining solution was washed off with
demineralized water, and the slides were next differentiated with
1% (v/v) acetic acid for 3 s and washed with demineralized
water. In addition, gland sections were also analyzed without
counter-staining. These sections were mounted directly after
deparaffination (see below).

Microscopy and Documentation
In Situ Preparations of Peripheral Nerves with Vital

Staining
The stained preparations covered with Carausius saline were
viewed with a Leica dissection microscope and drawn with help
of a Leica drawing mirror. The drawings were scanned and
digitally redrawn using CorelDraw version 11 (Corel, Ottawa,
Canada).

Preparations with Axonal Tracing
Glands were viewed in phosphate buffer with a Leica dissection
microscope and documented by photographs from a Nikon
Digital Sight DS-5M camera (1,280 × 960 pixel) attached to
the microscope. Ganglia with filled nerves were dehydrated in a
graded ethanol series (Carl Roth, Karlsruhe, Germany), cleared
in methyl salicylate (Merck, Darmstadt, Germany). They were
viewed with an Olympus BH-2 microscope, and documented
by photographs from a Leica DFC 7000T digital camera (1,920
× 1,440 pixel) connected to the microscope, using the Leica
Application Suite V4.9.

Histological Sections
Histological sections were dehydrated in 100% xylol (Carl Roth)
and mounted in Entellan R© (Merck, Darmstadt, Germany).
Photomicrographs were taken with a CV12 camera (Olympus
K.K., Shinjuku, Japan) mounted on a BX50 microscope
(Olympus K.K., Shinjuku, Japan). Series of single pictures were
stitched together with the program AutoStitch v2.2 (Brown and
Lowe, 2007).

Terminology
The terminology of peripheral nerves follows Marquardt (1940)
and Honegger et al. (1984). The terminology for thoracic muscles
follows Friedrich and Beutel (2008) and Wipfler et al. (2015) for
the neopteran muscle groundplan in the thorax. For comparison
to Orthoptera, we refer to the muscle descriptions and muscle
terminology by Honegger et al. (1984).

Morphometric Analysis and Statistics
Ganglion areas and neuron soma areas were measured from
digitized photographs of ganglia using the freeware program
ImageJ (https://imagej.nih.gov/ij/). Since animals show a sexual
dimorphism in size, we compared the data between sexes for
SOG area, absolute soma size for two identified subesophageal
neurons (ipsilateral neuron ILN and contralateral neuron CLN,
see results), and the relative soma size for ILN and CLN. The
relative soma size was calculated by dividing the absolute soma
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size by the ganglion area of the respective ganglion. Statistical
analysis used the software GraphPad Prism 4 (GraphPad, San
Diego, CA). Data were tested for normal distribution using the
Kolmogorov-Smirnov (KS) normality test. Since not all data were
normally distributed, we further used the Mann-Whitney test to
compare data from female and male individuals.

RESULTS

Defense Glands and Innervation Pattern
Anisomorpha paromalus shows a notable dimorphism in size
between sexes with females being much larger than males
(Figure 1a). In both sexes, the gland opening is located below
a cuticular ridge at the anterio-dorsal edge of the pronotum
(Figure 1b). This external opening of the ejaculatory duct was
very small and surrounded by membranes (Figure 1c).

In situ preparations showed the paired defense glands in
the dorsal prothorax (Figures 2ai,bi). In both sexes, the long
glands span through the prothorax. For both sexes, the most
obvious innervating nerve to the glands originates from the
SOG (Figures 2aii,bii). This nerve is the subesophageal Nervus
anterior (N. ant. SOG) which originates on each side of the
SOG, runs under a cuticular apodeme on each side of the head
and enters the prothorax toward the gland (Figures 2aii,bii).
During the distance between the SOG and the gland, no further
innervation targets occur. Close to the defense gland, the nerve
splits into two nerve branches which contact the proximal gland
surface. These two branches run on the dorsal and ventral
side of the gland (for overview, see Figures 2, 3; for details
also Figures 5a,c). There are four dorsal longitudinal muscles
in the prothorax of A. paromalus (Figure 4), and their overall
organization resembles that reported for C. morosus (Jeziorski,
1918; Marquardt, 1940). Based on their position and anterior
attachment points at an apodeme behind the head capsule, the
two anterior muscles are Idlm1 (the median muscle) and Idlm2
(the lateral muscle) (Friedrich and Beutel, 2008). In C. morosus,
the more posterior muscles are termed 3a and 3b (Jeziorski,
1918) or D3 and D4 (Marquardt, 1940). These muscles are
more difficult to homologize, since in C. morosus some dorsal
longitudinal muscles are absent in the prothorax (Idlm3, Idlm6;
Jeziorski, 1918; Leubner et al., 2016). By their positions, the two
posterior longitudinal muscles could represent Idlm5 and Idlm6
(Friedrich and Beutel, 2008), or two sets of fibers from Idlm5.
Importantly, the major anterior dorsal longitudinal muscles are
still present in A. paromalus, and locate next to the defense gland
(Figures 4, 5).

The innervation byN. ant. SOG is not exclusively on the gland,
as a further nerve branch splits off from the dorsal branch which
innervates a dorsal longitudinal neck muscle (Figures 5b,c).
The muscle innervated together with the defense gland by N.
ant. SOG (Figures 5b,c) is homologous to muscle Idlm2 in the
neopteran groundplan (Friedrich and Beutel, 2008), and to the
closely aligned muscles 50/51 in Orthoptera by its attachment
sites and position (Altman and Kien, 1979; Honegger et al., 1984).

A further gland innervation originates from the
intersegmental nerve complex, which is formed by three
distinct nerves as they run toward the periphery: the Nervus

FIGURE 1 | (a) Couple of Anisomorpha paromalus with male on top and

female below. (b) The gland opening (white arrow) is located below a cuticular

ridge (arrowhead) at the anterio-dorsal edge of the pronotum. (c) Scanning

electron micrograph of the small release opening (black arrow) surrounded by

membranous structures. Scales: (b) = 4mm; (c) = 250µm.

posterior of the SOG (N. post. SOG), the Nervus anterior of the
prothoracic ganglion (N. ant. T1), and the Nervus transversus (N.
trans.) (Figure 3). From the nerve complex, a thin nerve branch
splits off and contacts the defense gland. This nerve branch
usually contacts the ventral branch of N. ant. SOG at the gland
(Figure 5d). Some variability was found in the innervation by the
intersegmental nerve complex, as an additional second branch
from the intersegmental nerve complex could occur (Figure 5e)
or two branches left the intersegmental nerve complex but fused
into one branch which ultimately contacted the defense gland
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FIGURE 2 | Defense glands in A. paromalus (a) female and (b) male individuals. (ai, bi) Paired defense glands lay dorsally in the prothorax. (aii, bii) The innervation

by a prominent nerve from the subesophageal ganglion (SOG) is similar in both sexes: the nerve (white arrow) runs under a cuticular apodeme (asterisk) toward the

anterior defense gland where it splits into two nerve branches which contact the gland surface (white arrowheads). Scales: female = 4mm, male = 2mm. dg, defense

glands; T1, prothoracic ganglion; SOG, subesophageal ganglion.

(Figure 5f). This overall innervation pattern is identical to the
species studied before (Stolz et al., 2015; Stolz, 2017).

Axonal tracing of different nerves was used to confirm the
individual nerves innervating the gland muscles, in particular
in the intersegmental nerve complex (Figures 6a,e, Table 1).
The two branches of N. ant. SOG form a fine network of
arborizations on the gland surface (Figure 6b). While the ventral
and dorsal branch at the anterior gland run over the gland surface
(Figures 5a, 6b), histological sections of the middle of the gland
showed that the two branches run between the outer longitudinal

muscle layer and the inner ring muscle layer (Figure 6c).
The longitudinal muscles are asymmetrically organized, with
thicker longitudinal muscles at the ventral and dorsal side, and
very thin longitudinal muscles at the medial and lateral side
(Figure 6c). The secretory epithelium lines the inside of the gland
(Figure 6). Sections revealed fine neuronal arborizations mainly
in the outer longitudinal muscles (Figure 6d). A similarly clear
innervation of the ring muscle fibers was not detectable.

In the intersegmental nerve complex, the fine nerve branch
was also confirmed by anterograde axonal tracing toward the
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FIGURE 3 | Schematic of peripheral nerves contacting the defense glands in A. paromalus female (left) and male (right). The defense glands are innervated by the

Nervus anterior of the subesophageal ganglion (N. ant. SOG) and the intersegmental nerve complex (ISN) formed by the Nervus transversus (N. trans.), Nervus

posterior of the subesophageal ganglion (N. post. SOG), and the Nervus anterior of the prothoracic ganglion (N. ant. T1) via a small nerve branch. The N. anterior SOG

splits into a dorsal branch (db) and a ventral branch (vb) which contact the gland muscles. Scales = 2mm. db, dorsal branch of N. anterior SOG; dg, defense glands;

ISN, intersegmental nerve complex; N. ant. SOG, Nervus anterior of the subesophageal ganglion; N. ant. T1, Nervus anterior of the prothoracic ganglion; N. post.

SOG, Nervus posterior of the subesophageal ganglion; N. trans., Nervus transversus; SOG, subesophageal ganglion; T1, prothoracic ganglion; vb, ventral branch of

N. anterior SOG.

FIGURE 4 | Dorsal longitudinal neck muscles in the prothorax of A. paromalus.

Dorsal longitudinal muscles are indicated by hatched lines and color coded for

Idlm1 (green), Idlm2 (magenta), and two posterior muscles (blue). Dotted line

indicates the outline of the head capsule. Scale = 1.5mm. ap, apodeme; dg,

defense gland; SOG, subesophageal ganglion; T1, prothoracic ganglion.

gland (Figure 6f). The nerve terminals occurred also on the
gland surface but have a smaller innervation area. The different
nerves of the intersegmental nerve complex were tested by
individual tracing experiments. The obtained stainings showed
an innervation by N. ant. SOG and N. post. T1, but not by
N. transversus (Table 1). This overall innervation pattern is
consistent with the innervation described for few other species
(Stolz et al., 2015).

Identified Neurons Innervating the Defense
Glands
We used retrograde axonal tracing on the N. ant. SOG and its
nerve branches as well as the nerve branch of the intersegmental
nerve complex to reveal the neurons with axons supplying the
defense gland.

Tracing the complete N. ant. SOG (Figure 7a) stained three
identified neuron types in the SOG (Figure 7bi) and one in the
prothoracic ganglion (T1) (Figure 7bii). The neurons in the SOG
have been termed the ipsilateral neuron (ILN) which has the

largest soma of the neuron types discussed here, the contralateral

neuron (CLN), and the ventral medial neurons (VMN) with
the smallest somata located at the ganglions ventral midline
(Figure 7bi) (see also Stolz et al., 2015). The number of VMNs
can vary from 2 to 4 neurons but is in most preparations 3 VMNs.
The neuron in the prothoracic ganglion has been termed the
prothoracic intersegmental neuron (PIN) (Stolz et al., 2015). No
difference in the neuron sets were found between the sexes.

We next used selective filling of N. ant. SOG nerve branches

to distinguish between neurons innervating the defense glands,

the longitudinal neck muscle Idlm2, or both. First, the ventral
or dorsal nerve branches of N. ant SOG were carefully

separated from the anterior gland surface (Figure 7c). For the
ventral branch of N. ant. SOG (n = 15), the tracing revealed

the subesophageal ILN and CLN (Figure 7d) as well as the

prothoracic PIN (not shown). Among these neurons, the PIN
was only stained in 50% of the preparations. This relatively
rare staining was most likely due to the extended distance from
tracing of N. ant. SOG close to the head capsule (Figure 7a)
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FIGURE 5 | Details of the gland innervation in situ. (a) Innervation of the defense gland (dg) by two branches of the N. anterior SOG, the dorsal and ventral branch, in

dorsal view. (b) The dorsal branch innervates both the defense gland by the larger dorsal branch contacting the gland muscle and a dorsal longitudinal muscle (Idlm2)

in the prothorax by a short side branch (black arrowhead), apparent with defense gland turned medially. Longitudinal neck muscle Idlm1 was removed during

preparation. (c) Schematic of the shared innervation of dorsal longitudinal muscle (Idlm2) by the dorsal branch of the N. anterior SOG; the ventral branch exclusively

innervates the defense gland. (d) The intersegmental nerve complex (ISN) usually contacts the defense gland by a fine nerve branch (white arrowhead). The ventral

nerve branch (vb) and the nerve branch from the ISN connect at the gland surface (black arrow). The ISN extends laterally of the defense gland toward a longitudinal

muscle, Idlm1 (black open arrow). (e) A second contact from the ISN can occur further distally on the gland surface (white open arrow). White arrowheads indicate the

fine branch in more anterior position. (f) Two fine branches of the ISN (white arrows) can merge before contacting the gland as a single fiber (white arrowhead), with a

shared contact zone with the N. anterior SOG (black arrow) on the gland surface. Note the ISN extending laterally toward the longitudinal muscle Idlm1 (black open

arrow). db, dorsal branch of Nervus anterior SOG; dg, defense gland; dlm, dorsal longitudinal muscle; ISN, intersegmental nerve complex; N. ant. SOG, Nervus

anterior of the subesophageal ganglion; N. transv., Nervus transversus; vb, ventral branch of N. anterior SOG.

to tracing the ventral branch at the defense gland (Figure 7c).
The subesophageal VMNs were never stained by tracing the
ventral nerve branch of N. ant. SOGwhich innervates the defense

gland. For tracing of the dorsal nerve branch of N. ant SOG
innervating the defense gland (n = 7), the ILN and CLN were
also reliably stained (not shown). In two of these preparations of
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FIGURE 6 | Neural innervation of the defense gland shown by axonal tracing. (a) Schematic for the anterograde tracing of N. ant. SOG toward the defense gland.

Dotted line indicates cut site of the nerve, arrow indicates the direction of axonal tracing. (b) Staining of nerve branches (dorsal branch db, ventral branch vb) and fine

(Continued)
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FIGURE 6 | nerve arborization on the gland muscle after tracing of N. ant. SOG. Cut end of N. ant. SOG is indicated by asterisk. (c) Histological section at the middle

of the gland shows the two nerve branches (arrowheads) between the outer longitudinal muscles (lm) and inner ring muscles (rm). Note the asymmetric organization of

the outer, longitudinal muscle layer. Boxed area is shown in magnification in (d). (d) Detail of muscle layers shows the stained nerve branch (arrowhead) at the border

between longitudinal muscles (lm) and inner ring muscles (rm), and adjacent nerve endings in the outer longitudinal muscles (arrows). (e) Schematic for the

anterograde tracing of the intersegmental nerve complex toward the defense gland. Dotted line indicates cut site of the nerve, arrow indicates the direction of axonal

tracing. (f) Staining of the nerve branch from the intersegmental nerve complex (indicated by asterisk) and nerve arborizations on the gland muscle (open arrows) after

tracing of the intersegmental nerve complex. Scales: (b,f) = 1mm; (c) = 200µm; (d) = 150µm. db, dorsal branch of Nervus anterior SOG; lm, longitudinal muscles;

N. ant. SOG, Nervus anterior SOG; N. ant. T1, Nervus anterior T1; N. post SOG, Nervus posterior SOG; N. trans., Nervus transversus; rm, ring muscles; SOG,

subesophageal ganglion; se, secretory epithelium; t, trachea; T1, prothoracic ganglion; vb, ventral branch of Nervus anterior SOG.

TABLE 1 | Innervation of the defense gland by distinct nerves in A. paromalus.

Nerve Innervation n

Nervus anterior SOG + n = 22

INTERSEGMENTAL NERVE COMPLEX

Nerve branch of intersegmental nerve complex + n = 6

Nervus posterior SOG + n = 5

Nervus anterior T1 + n = 5

Nervus transversus - n = 14

(+) innervation supported by axonal tracing; (–) innervation not supported by axonal

tracing.

the dorsal branch, the VMNs were also stained. Tracing the short
nerve branch innervating the longitudinal neck muscle Idlm2
(Figure 7e; n = 8) stained the VMNs (Figure 7f), but no other
neuron type. These selective backfills suggest that the ILN and
CLN as well as the PIN innervate the defense gland, while the
VMNs innervate the dorsal neckmuscle Idlm2. The joint staining
of ILN, CLN, and the VMNs in a subset of dorsal nerve branch
fills was likely an artifact for the VMNs, due to the close proximity
of the dorsal branch on the gland to the branch innervating the
neck muscle. Based on the tracings of the ventral branch of the
N. ant. SOG and the majority of the dorsal branch of the N. ant.
SOG, the gland innervation by VMNs can be excluded. These
findings provide evidence that distinct sets of neurons with axons
in the N. ant. SOG innervate the defense gland (ILN, CLN, PIN)
and the longitudinal neck muscle (VMNs).

Retrograde tracing of the nerve branch from the
intersegmental nerve complex (Figure 8a) also revealed different
neuron types in the SOG and the T1, by the N. post. SOG and the
N. ant. T1. These experiments generally gave lower staining rates
for the SOG, probably due to the thin nerve branch. In the SOG,
a single contralateral neuron was stained (Figure 8bi). In the
prothoracic ganglion, a dorsal unpaired median neuron (DUM),
one contralateral neuron, and one median neuron with a curved
neurite were stained (Figure 8bii). Since the nerve branch from
the intersegmental nerve complex contacts only the defense
gland, the neurons revealed by tracing of this nerve branch can
be assumed to innervate the gland.

Since we noted differences in the soma size for the ILN
between individuals (Figures 9ai,aii; see Supplementary Data),
we measured the SOG sizes and somata sizes for ILN and CLN.
Because the animals and also the subesophageal ganglia differ
in sizes between sexes, we compared data from females and
males. Since not all data tested showed normal distribution (p

= 0.0011–0.1; KS distance = 0.1070–0.3480), we subsequently
used the Mann-Whitney test for comparing data between the
sexes. The absolute area of the SOG was significantly larger in
females than in males (Figure 9b, females: n = 15, males: n =

13; one-tailed Mann-Whitney test: p < 0.0001, Mann-Whitney
U = 9.000). For the ILN and CLN somata, we compared also
absolute somata areas. The somata were significantly larger in
females for both ILN somata (Figure 9c; females: n = 15, males:
n = 13; one-tailed Mann-Whitney test: p = 0.0362, Mann-
Whitney U = 58.00) and CLN somata (Figure 9d; females: n
= 10, males: n = 9; one-tailed Mann-Whitney test: p = 0.0175,
Mann-Whitney U = 19.00). To account for the size differences
between sexes, we calculated relative somata sizes in relation
to the ganglion area. Differences in relative somata sizes were
not significant between sexes for the ILN (Figure 9e; females n
= 15, males = 13; one-tailed Mann-Whitney test: p = 0.4816,
Mann-Whitney U = 96.00) and the CLN (Figure 9f; females: n
= 10, males: n = 9; one-tailed Mann-Whitney test: p = 0.0912;
Mann-Whitney U = 28). We further tested for a correlation
between ILN and CLN somata area and ganglion area. We found
a statistically significant correlation between ILN somata area
and SOG area for female A. paromalus (n = 15; one-tailed
Spearman rank test: p = 0.0099, Spearman r = −0.5929), and
between CLN somata area and SOG area for male A. paromalus
(n = 9; one-tailed Spearman rank test: p = 0.0484, Spearman
r = 0.600). However, no statistically significant correlation was
found for male ILN (n = 13; one-tailed Spearman rank test:
p = 0.0872, Spearman r = 0.4011) and for female CLN (n =

10; one-tailed Spearman rank test: p = 0.3161, Spearman r =

−0.1758).

DISCUSSION

Innervation Pattern of the Defense Gland in
Anisomorpha paromalus
The defense gland of A. paromalus is innervated by three distinct
nerves, via the N. ant. SOG and the intersegmental nerve complex
(N. post. SOG and N. ant. T1). The most prominent nerve is
the N. ant. SOG, while the intersegmental nerve complex forms
a fine nerve branch to the gland. This pattern is also found in
other stick insects from different lineages (Timematidae: Timema
chumash, Timema petita, Lonchodinae:C.morosus,Necrosciinae:
Sipyloidea sipylus; Lanceocercata: Extatosoma tiaratum; Stolz
et al., 2015; Stolz, 2017). The nerve pattern is thus identical
across species irrespective of the particular mode of chemical
defense, or even the lack of defensive secretions (in C. morosus;
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FIGURE 7 | Retrograde axonal tracing of the N. anterior SOG. (a) Schematic for the retrograde tracing of N. ant. SOG toward the central nervous system. Dotted line

indicates cut site of the nerve, arrow indicates the direction of axonal tracing. (b) Stained neuron types after retrograde tracing of N. ant. SOG in the subesophageal

(Continued)
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FIGURE 7 | ganglion (bi) and prothoracic ganglion (bii). Traced nerve N. ant. SOG is indicated by asterisk. (c) Schematic for the retrograde tracing of the ventral

branch of N. ant. SOG toward the central nervous system. Dotted line indicates cut site of the nerve, arrow indicates the direction of axonal tracing. (d) Stained neuron

types after retrograde tracing of the ventral branch of N. ant. SOG (indicated by asterisk). (e) Schematic for the retrograde tracing of the nerve branch of N. ant. SOG

innervating dorsal longitudinal muscle Idlm2 toward the central nervous system. Dotted line indicates cut site of the nerve, arrow indicates the direction of axonal

tracing. (f) Stained neuron types after retrograde tracing of the nerve branch of N. ant. SOG innervating dorsal longitudinal muscle Idlm2 (indicated by asterisk). Scales

= 500µm. CLN, contralateral neuron; ILN, ipsilateral neuron; N. ant. SOG, Nervus anterior SOG; N. ant. T1, Nervus anterior T1; N. post. SOG, Nervus posterior SOG;

N. trans., Nervus transversus; PIN, prothoracic intersegmental neuron; SOG, subesophageal ganglion; T1, prothoracic ganglion; VMN, ventral medial neurons.

FIGURE 8 | Retrograde axonal tracing of the intersegmental nerve complex. (a) Schematic for the retrograde tracing of the intersegmental nerve complex toward the

central nervous system. Dotted line indicates cut site of the nerve, arrow indicates the direction of axonal tracing. (b) Stained neuron types after retrograde tracing of

the intersegmental nerve complex in (bi) the subesophageal ganglion with one contralateral subesophageal neuron (CSN), and (bii) the prothoracic ganglion with a

dorsal medial unpaired neuron (DUM), a contralateral prothoracic neuron (CPN), and a neuron located at the midline with a bending neurite (white arrowhead). Scale =

500µm. CPN, contralateral prothoracic neuron; CSN, contralateral subesophageal neuron; DUM, dorsal unpaired median neuron; N. ant. SOG, Nervus anterior SOG;

N. ant. T1, Nervus anterior T1; N. post. SOG, Nervus posterior SOG; N. trans., Nervus transversus; SOG, subesophageal ganglion; T1, prothoracic ganglion.

Carlberg, 1985a). Only in P. schultei (Pseudophasmatinae) is
the innervation exclusively from the N. ant. SOG (Stolz et al.,
2015). Anisomorpha species are very closely related to P. schultei
(Goldberg et al., 2015), but the defense gland innervation is
not specialized exclusively to the N. ant. SOG. Therefore, the
innervation is only simplified in P. schultei. Other species
including A. paromalus have an innervation by three distinct
nerves (Stolz et al., 2015).

The peripheral nerve pattern is conserved also with
respect to related taxa of Orthoptera (Honegger et al.,
1984), Embioptera (Rähle, 1970), and Blattodea (Davis,
1983), where the nerves N. ant. SOG, N. post. SOG, and N.
ant. T1 also innervate dorsal longitudinal (“neck”) muscles.
The transverse nerve as part of the intersegmental nerve
complex does not innervate the defense gland in stick insects
(present study; Stolz et al., 2015). In Orthoptera, it supplies
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FIGURE 9 | Morphometrical analysis of neuronal elements. (a) Examples of ILN size differences between two male individuals. (b) Comparison of subesophageal

ganglion area in females and males; Mann-Whitney test, p < 0.0001. (c) Comparison of ILN soma area in females and males; Mann-Whitney test, p < 0.05.

(d) Comparison of CLN soma area in females and males; Mann-Whitney test, p < 0.05. (e) Comparison in ILN soma relative area in females and males;

Mann-Whitney test, p > 0.05. (f) Comparison in CLN soma relative area in females and males; Mann-Whitney test, p > 0.05. Scales = 500µm. For details, see main

text. CLN, contralateral neuron; ILN, ipsilateral neuron; SOG, subesophageal ganglion; VMN, ventral median neurons. Statistics: *0.05 > p > 0.01; ***p < 0.001.

one to two smaller dorso-ventral muscles (Honegger et al.,
1984).

Identified Neurons Innervating the Defense
Gland and Evolutionary Novelties at the
Cellular Level in a Conserved Innervation
Pattern
Here, we conducted selective retrograde backfills of N. ant. SOG
nerve branches from the defense gland or the Idlm2 neck muscle
to identify the neurons which innervate glandmuscles or thoracic
neck muscles.

Tracing of the complete N. an. SOG reveals the ILN, CLN,
VMNs, and PIN in the central nervous system (Figure 7b),
as in other stick insects (Stolz et al., 2015). In A. paromalus,
tracing the nerve branch of N. ant. SOG innervating the Idlm2
stains exclusively the VMNs. This neuron type is evolutionary
conserved and innervates anterior dorsal longitudinal muscles in
orthopteroid insects (Davis, 1983; Honegger et al., 1984), which
we confirm also for stick insects (Figure 7f).

Tracing of the nerve branches on the defense gland reveals a
subset of these neurons with ILN, CLN, and PIN. These neuron
types are not present when tracing the homologous nerve 6 in
Orthoptera (Altman and Kien, 1979; Honegger et al., 1984) or
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the homologous tergal nerve in cockroaches (Davis, 1983). The
selective backfills thus show that the defense gland and Idlm2
are supplied by distinct neurons. The ILN, CLN, and PIN are
therefore evolutionary novel types of neurons, which evolved in
Phasmatodea with the development of the defense gland (Stolz,
2017). Notably, in the most basal phasmatodean lineage Timema
only the VMNs are present. The ILN varies in soma size between
different species of stick insects, with a larger soma in species
with spraying release of defense secretion (see Stolz et al., 2015).
The prominent ILN is thus likely the main motoneuron to elicit
the gland discharge. The ILN soma size in A. paromalus also
supports this correlation. Comparisons of the ILN and CLN
soma sizes showed no statistically consistent correlation to the
ganglion sizes for females and males, as female CLN soma area
and male ILN soma area showed no significant correlation to
the ganglion area. Only the homogenous relative soma areas
show that differences in ILN and CLN soma sizes between sexes
likely depend on differences in the size of the SOG and hence
body size (Figures 9e,f). In orthopteran insects, large muscles
with a high number of fibers are also innervated by relatively
large motoneurons (Burrows and Hoyle, 1972; Wolf, 2014). Size
differences of the ILN and CLN motoneurons might thus also be
influenced by the size of the defense gland or the muscle layers.
Currently, we also investigate the neuropil areas and tracts with
neurite projections from the ILN/CLN or VMNs in the stick
insect SOG from selective backfill experiments to analyze the
possible functional separation of these neuronal systems in the
central nervous system (Stolz, Strauß, et al., in prep.).

The innervation of the defense gland by the intersegmental
nerve complex is less prominent than the innervation by the
N. ant. SOG, consisting of a rather fine nerve branch. Despite
the small size (compared to the N. ant. SOG), it also contains
neurites from four neuron types. Since this traced nerve branch
from the intersegmental nerve complex contacts only the defense
gland (Figure 8a), these neurons all innervate the defense gland.
They include a known neuromodulatory neuron, the DUM
neuron (e.g., Hoyle, 1978; Duch et al., 1999; Bräunig and Pflüger,
2001), and further motoneurons. The DUM neuron supplying
the defense gland via N. ant. T1 was also found in S. sipylus
(Stolz et al., 2015). It is also found to innervate longitudinal
neck muscles in locusts in Nerve 1 (homologous to N. ant.
T1; Honegger et al., 1984; Kutsch and Heckmann, 1995a) and
in cockroaches in the homologous tergal nerve (Davis, 1983).
SuchDUMorDUM-like neurons innervating dorsal longitudinal
muscles via the intersegmental nerve complexes in different
ganglia are strongly conserved in insects (Heckmann and Kutsch,
1990, 1995). For the N. ant. T1, a single contralateral neuron
or few contralateral neurons in the prothoracic ganglion, which
innervate the longitudinal muscle Idlm1, also occur in locusts
(Honegger et al., 1984; Kutsch and Heckmann, 1995a). In
contrast to the N. ant. SOG, the intersegmental nerve complex
reveals not only a conserved nerve, but also conserved neuron
types to innervate the muscles in the defense gland. In several
species of insects, larger sets of motoneurons innervate muscles
via the intersegmental nerve complex (Storrer et al., 1986;
Heckmann and Kutsch, 1995; Kutsch and Heckmann, 1995b;
Goldammer et al., 2012). Few of such contralateral and median

neurons might have been recruited during the evolution of the
gland, resulting in a specialized system innervated by single
representatives of several identified neuron types.

Gland Muscle Innervation and Muscle
Homologies
The stick insect defense gland is mainly innervated by the
prominent N. ant. SOG, but also by the intersegmental nerve
complex. The innervation by nerves and neurons can be
used to gain insights into the evolutionary origin of the
longitudinal muscles in the defense gland (Table 2). In locusts,
the closely aligned muscle pair 50/51 (Idlm2) is the only
longitudinal neck muscle supplied by the N. ant. SOG, as shown
by retrograde axonal tracing of peripheral nerves (Honegger
et al., 1984). In crickets, an occasional additional innervation
of muscle 65 (Idlm3) by the VMNs was interpreted as a
likely staining artifact (Honegger et al., 1984). This innervation
pattern suggests that the longitudinal gland muscle derives,
at least partly, from the longitudinal neck muscle Idlm2.
This is further supported by the shared innervation of the
defense gland and Idlm2 by nerve branches from the N.
ant. SOG reported here (Figures 6b,c). The intersegmental
nerve complex of Orthoptera innervates the dorsal longitudinal
muscle Idlm1 (Honegger et al., 1984), which is close to Idlm2
(Friedrich and Beutel, 2008; for Timema, see Stolz, 2017).
In A. paromalus and other stick insects, the intersegmental
nerves not only innervate the defense gland, but also Idlm1
(Figures 5d,f; Stolz, 2017). This substantiates that also Idlm1
has contributed to the longitudinal musculature of the defense
gland. The more posterior dorsal longitudinal muscle with
unclear homology to the neopteran groundplan (Friedrich
and Beutel, 2008) are apparently not involved in the gland
muscle set.

Both the N. ant. SOG and the intersegmental nerve
thus innervate dorsal longitudinal muscles and gland muscle
(Figures 5, 6, Table 2). The shared innervation pattern of

TABLE 2 | Summary of identified motoneurons and their muscle targets in the

defense gland system.

Nerve/Neuron

type

Innervated

muscle in

stick insects

Innervated

muscle in

locusts

Innervated

muscle in

crickets

N. ANT. SOG

VMNs Idlm2 Idlm2 Idlm2; possibly also

Idlm3

ILN Defense gland Neuron not present Neuron not present

CLN Defense gland Neuron not present Neuron not present

PIN Defense gland Neuron not present Neuron not present

N. POST. SOG

CSN Defense gland Neuron not present Neuron not present

N. ANT. T1

DUM Defense gland Present, but target

muscle not specified

Axon present

CPN Defense gland Idlm1 Idlm1

Data from locusts and crickets after Honegger et al. (1984).
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longitudinal muscles also found in Orthoptera suggests that both
muscles, Idlm1 and Idlm2, have contributed to the longitudinal
muscle fibers in the stick insect defense gland. Since the muscles
persist in Phasmatodea, it is likely that sets of muscle fibers of
both Idlm1 and Idlm2 contributed to forming the defense gland.

Histological sections from glands after axonal tracing confirm
the innervation of longitudinal muscle fibers (Figures 6c,d). In
frontal sections of the gland, the transversal fibers innervating
ring muscles are more difficult to reveal. Innervation of the ring
muscle might also be finer, but the position of the two main N.
ant. SOG branches between the two muscle layers in the middle
and distal gland indicates that both muscle layers are supplied
by these branches. This would allow a simultaneous activation of
muscle layers for fluid ejection.

CONCLUSION AND OUTLOOK

In sum, the defense gland in A. paromalus is innervated by a
complex set of peripheral nerves (N. ant. SOG, N. post. SOG. N.,
ant. T1). The innervation pattern is identical to other stick insect
species, including C. morosus, a species with relatively small
defense glands which apparently does not produce defensive
secretions. The nerves involved suggest that the defense gland
muscles, at least in parts, derive from the longitudinal neck
muscles Idlm1 and Idlm2. Selective backfills of nerve branches
from N. ant. SOG to the gland or the dorsal longitudinal muscles
reveal a functional specialization for both these systems with
different motoneurons innervating the gland (ILN, CLN, PIN)
and the dorsal longitudinal muscles (VMNs). The ILN, CLN,
and PIN are evolutionary novel motoneurons. This suggests
that they evolved with the evolutionary development of the
defense gland. A similar pattern was shown for two neuron types

from the intersegmental nerves. These neuroanatomical findings
show that the conserved innervation pattern has allowed the
evolution of the gland control by specialization of few additional
motoneurons. It remains to be investigated further how the
different nerves and neuron types independently or together
activate and modulate the gland musculature, and how the
muscle layers coordinate during contraction and fluid ejection.
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