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Species Distribution Models (SDMs) have been reported as a useful tool for the risk

assessment and modeling of the pathways of dispersal of freshwater invasive alien

species (IAS). Environmental DNA (eDNA) is a novel tool that can help detect IAS at

their early stage of introduction and additionally improve the data available for a more

efficient management. SDMs rely on presence and absence of the species in the study

area to infer the predictors affecting species distributions. Presence is verified once

a species is detected, but confirmation of absence can be problematic because this

depends both on the detectability of the species and the sampling strategy. eDNA is a

technique that presents higher detectability and accuracy in comparison to conventional

sampling techniques, and can effectively differentiate between presence or absence

of specific species or entire communities by using a barcoding or metabarcoding

approach. However, a number of potential bias can be introduced during (i) sampling,

(ii) amplification, (iii) sequencing, or (iv) through the usage of bioinformatics pipelines.

Therefore, it is important to report and conduct the field and laboratory procedures

in a consistent way, by (i) introducing eDNA independent observations, (ii) amplifying

and sequencing control samples, (iii) achieving quality sequence reads by appropriate

clean-up steps, (iv) controlling primer amplification preferences, (v) introducing PCR-free

sequence capturing, (vi) estimating primer detection capabilities through controlled

experiments and/or (vii) post-hoc introduction of “site occupancy-detection models.”

With eDNAmethodology becoming increasingly routine, its use is strongly recommended

to retrieve species distributional data for SDMs.

Keywords: aquatic freshwater invasive species, barcoding, metabarcoding, environmental DNA, environmental

sampling, independent evaluation

INTRODUCTION

Current policies on invasive alien species (IAS) depend on the availability and quality of data used
for their risk assessment (Groom et al., 2017). Species Distribution Models (SDMs) use available
data of invasive species and are one of the most widely used tools for risk assessment, predicting
species distribution and pathways of dispersal (Jiménez-Valverde et al., 2011).

This methodology relates the distribution data of the IAS (e.g., presence and absence records) in
the study area with a set of independent spatially explicit variables to explain and predict the range
expansion of the species. However, there are limitations on these approaches because of two main
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reasons: (i) confirmed absences are desirable but scarce in
available databases, and (ii) independent data for evaluation
is normally not available. The consideration of absences has
been reported to provide more accurate predictions of the
actual distribution of IAS (Václavík and Meentemeyer, 2009).
Therefore, there is a need for tools that allow the recording of
presence and absence and a faster compilation of independent
data to test spatially explicit models. Efficient spatial monitoring
of invasive species vectors of introduction, further dispersal as
well as initial detection of newly present species, are crucial for
species management as are prevention, control and eradication.

In the recent years, a new environmental molecular tool
has been developed- environmental DNA (eDNA). eDNA refers
to DNA which can be extracted from environmental samples
without separation of specific organisms from the environment
(Taberlet et al., 2012). eDNA contains both cellular as well as
extracellular DNA from all kinds of organisms. It is subject to
high levels of degradation but can be preserved in nature from
few weeks up to hundreds of thousands of years (Thomsen and
Willerslev, 2015). The ability to detect species through eDNA
water samples is relatively novel and has proved as a useful tool
for the detection of aquatic IAS (Dejean et al., 2012; Goldberg
et al., 2013; Nathan et al., 2014). It can be applied for the
detection of a number of specific IAS (barcoding), or detecting
multiple IAS as part of whole communities (metabarcoding).
New revolutionary techniques for eDNA are being developed
on a daily basis with the aim to provide a number of useful
information such as, presence or absence of the species (Ficetola
et al., 2008), density assessments (Moyer et al., 2014), population
dynamics (Sigsgaard et al., 2016), sex (Nichols and Spong,
2017), hybridization process between subspecies, (Uchii et al.,
2016; Goricki et al., 2017), spatial representativeness (Civade
et al., 2016; Bista et al., 2017) and ability to amplify whole
mitochondrial genome (Deiner et al., 2017b). A wide range
of eDNA detection possibilities is currently limited. Knowing
what are the limitations of eDNA methods is key to successful
estimation of species presence (or absence) and estimations of
their biological characteristics.

APPROACH

Nowadays, useful information on IAS within SDMs is in the
detection of presence and absence of the species (Ficetola et al.,
2008). In this article, we discuss the range of possibilities and
limitations with regard to reporting IAS presence or absence
using eDNA in freshwater ecosystems in order to obtain
additional and more accurate distribution data to be used in the
SDMs.

Potential Applications
eDNA has thus far been mainly used in the early detection
and monitoring of invasive species, contributing to the increase
of IAS presence records. The use of eDNA techniques could
facilitate a more effective method for recording IAS absence
than do regular monitoring surveys or possibly may aid in the
compilation of independent data similar to the approach used
for proving (non)successful eradications (Dejean et al., 2012).

Currently, eDNA research is focusing its effort on the species
detection efficiencies based on the competence of sampling,
amplification and sequencing techniques. A detailed review has
been conducted based on the potential for the future application
of eDNA tool by identifying the proportion of positive detections
of IAS within individual research (Table 1). The review proves
how useful the tool can be dealing with IAS detection. A recent
increase in presented eDNA research conducted on invasive
species is only the tip of the iceberg of what can be achieved for
conservation and IAS management. There is however a number
of limitations that should be remembered before applying eDNA
data to retrieve distribution data for SDMs.

Current Limitations
Freshwater ecosystems, lentic, and lotic, provide excellent study
area for defining the wide range of detection possibilities
of eDNA techniques as well as the limitations. Small-scale
freshwater lentic bodies provide an excellent opportunity to study
eDNA characteristics related to degradation, which can affect
successful detectability of species. Recent studies have tried to
underline degradation rates in correlation to abiotic factors,
such as, (i) most effective water stratum for eDNA detection
(Moyer et al., 2014), (ii) pH, UV-B (Strickler et al., 2015),
(iii) effects of temperature on eDNA degradation (Strickler et al.,
2015; Eichmiller et al., 2016), and (iv) temporal effects (Dejean
et al., 2011). Freshwater lotic bodies can provide important
information due to their longitudinal downstream dynamics,
such as, (i) eDNA persistence in the environment (Jerde et al.,
2016; Wilcox et al., 2016), (ii) residence time of eDNA (Jerde
et al., 2016), and (iii) the ecology of eDNA (Barnes and
Turner, 2016). In case of newly introduced IAS, measures of
low abundances present another limitation (Jerde et al., 2011)
which is highly important when discerning between presence
and absence records. Some of the reported examples are applied
to non-invasive species, but the reason why we focus on IAS is
that time, i.e., rapid response, is key to management, so that an
identified IAS can be eradicated/controlled before any negative
ecosystem impact occurs. Since eDNA can assist in more rapid
detection and early response to IAS invasions than traditional
sampling, this technology most greatly benefits identification of
invasive species.

All the limitations of eDNA that are currently being studied
are crucial for IAS assessment. When monitoring, especially in
a new environment, it is fundamental to detect it at extremely
low abundances and report negative or positive presence. False
positives and negatives are essentially relevant for their use
within SDM and cannot be misjudged, whether they are products
of sampling bias or metabarcoding bioinformatics pipeline.
The distribution patterns and biology of the eDNA is another
important factor influencing the accuracy of information which
is relevant for the distribution of IAS within the models. The
accuracy that we can obtain through eDNA highly depends
on the strategies followed during the fieldwork and through
laboratory protocols. In order to more accurately state the
proportion of the positive (or negative) detections, independent
observations (Steel et al., 2013) would need to become an
essential part of eDNA studies to overcome the bias of false
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positives or negatives. An increased eDNA sampling effort based
on a temporary scale would provide a more accurate proportion
of positive (negative) detections and should be replaced by
research proposed on a single sampling events (Simmons et al.,
2015; Fujiwara et al., 2016; Hänfling et al., 2016). Independent
observations would need to become a necessary procedure
especially when dealing with estimations of newly introduced
species (Jerde et al., 2011) or dealing with the estimations of
successful eradication measures (Dunker et al., 2016).

To avoid bias due to inconsistent use of eDNA tools a
minimum information based on field and laboratory procedures
should always be reported and presented in a consistent manner
as presented by (Goldberg et al., 2016). Pioneers in eDNA
research (Ficetola et al., 2016) highly recommend following
general requirements such as, precautionary approach to avoid
contamination, respecting a general practice of obtaining control
samples, extraction blanks, as well as incorporating PCR positive
and negative controls. In cases of individual species assessment,
parallel mesocom experiments are highly recommended in order
to be able to estimate the limitations of detectability for each
individual primer set. Another method to assess limitations of
primer detections is assessing detectability of the species “in
time” after its removal from the controlled environment. When
working on multiple species assessment using a metabarcoding
approach, it is recommended, to sequence the control samples,
compare the sequencing control outputs with the actual samples,
and if none of the last achieve high quality sequence reads by
appropriate clean up steps; removal of singletons, chimeras, as
well as including a record of removed sequences (Deiner et al.,
2017a). Bias due to universal primer preferential amplifications
of species can alter the relative abundance of individual species
eDNA (Deiner et al., 2017a). A PCR-free method, namely
sequence capturing offers promising solutions in order to avoid
amplification bias (Shokralla et al., 2016).

In terms of IAS certainty of existence in a non-native
environment, false- positive and false- negative are crucial points
for management and environmental policies (Moyer et al., 2014;
Lahoz-Monfort et al., 2016). Even low rate false- positives
pose a bias toward species specific occupancy (Lahoz-Monfort
et al., 2016). Errors produced during PCR and sequencing are
main source of bias for false- positives whereas false- negatives
normally appear due to bias during sampling. Sampling and PCR
replicates are key to avoid obtaining false presence and absence
and should be routinely corrected with the appropriate statistical
tools referred to “site occupancy-detection modeling” (SODM)
(Lahoz-Monfort et al., 2016). The SODM model shows precise
estimation of the probability for the site occupancy, including
overall probability of detection at sites where the species is
present. The model provides unbiased estimation of occupancy
when properly applied using large amount of initial data, even
with a smaller amount of replications. Researchers (Ficetola
et al., 2016) adopting SODM as part of their eDNA pipeline,
give advice to avoid referring to single occurrences within one
sample as reliable ones. Precautionary measures should be taken
up before coming to conclusions that non-detection of species
corresponds to species absence, and in converse that detections
directly relies to species presence (Roussel et al., 2015) simply

due to eDNA characteristics, such as potential longevity. In order
to overcome the frontiers of eDNA techniques and to make it
generally applicable within the SDM the above consistency is
pivotal within the immense growing body of eDNA literature.

Combination of eDNA and SDMs
The method appears to be highly efficient on bony fish and
amphibians with successful spatial representativeness in lotic
and lentic systems (Civade et al., 2016). It has been shown that
the eDNA samples are able to overcome spatial autocorrelation
biases (Deiner et al., 2016) which are normally a result of
conventional biodiversity assessments. eDNA seasonal diversity
at the ecosystem scales (Bista et al., 2017) are key for more
holistic understanding of the successful invasions of species
within SDMs.

There are many possibilities of using eDNA for SDMs but
currently one of the most important novel uses is a more
precise sampling of absences which is sometimes difficult or
impossible to obtain (Nezer et al., 2017). As commented,
the information regarding species existence in certain system
measured through eDNA can be susceptible to certain bias,
due to eDNA characteristics. However, there exist approaches
within the spatial modeling that might be applied to deal with
the uncertainties from eDNA results. For instance, Dudík et al.
(2006) presented the di-bias approach, which gives a higher
weight in the models to those localities where presences or
absences aremore reliable. In the sameway, those localities where
eDNA is less reliable can receive a lower weight in the models,
such weighting might correspond with the reported detection
rates (Table 1). Therefore, there are possibilities from the SDMs
to deal with the potential bias arising from using eDNA as
a sampling technique which encourage its use despite current
relative limitations. The ability to cope with the limitations and
strength of the combination of these distinct research fields
will benefit from the collaboration between molecular ecologists
and modelers contributing to the evolution of two scientific
disciplines (Coccia and Wang, 2016). Other disciplines apart
from invasion ecology (e.g., biogeography or spatial ecology)
might also benefit from future development of molecular ecology
tools as a sampling technique. Thus, we highly recommend
involving eDNA analysis into spatial models to predict future
invasions and many other ecological processes. For example,
targeting IAS hot spots and vectors of introduction, is a perfect
starting point for detection of IAS and estimation of their future
dispersal within the SDMs. Spatial representativeness of IAS
within the SDMs is key to understanding the ecology behind their
successful dispersal and the management of invasions.

CONCLUSION

Collaboration between modelers and molecular ecologists has
a high potential to overcome the flaws of spatial distribution
patterns due to difficulties or inconsistency in the information
obtained through conventional surveys. The strength of the
information that eDNA can provide is crucial as it fulfills the
previously unidentified absences within the SDMs. The eDNA
method is currently rapidly evolving and in the near future
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a mass of information related to IAS presence, absence as
well as other species specific biological characteristic can be
obtained and applied to, for example, mechanistic SDMs. Thus,
its use is highly recommended with the aim of obtaining species
distribution data for spatial models combining two scientific
fields, useful as a helpful tool for IAS management and relevant
policy requirements.
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