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Earth’s tropical ecosystems have witnessed several extinctions and a dramatic reduction

of the range and abundance of large reptile species, which is directly related to the

rise of early and modern humans. The occurrence of such extinctions, range reduction,

species loss, and the consequences for several paramount ecosystem processes are

poorly documented compared to other large vertebrate species. Here, I reviewed the

literature on the ecological processes performed by large tropical reptile species and

their human-induced widespread demise in order to determine knowledge gaps and

encourage a paradigm shift in understanding on the interactiveness of such species.

The interactions and species involved indicate that large abundant reptiles in the tropics

are important in ecological processes, and can consequently have an important role

in ecosystem function through gene dispersal, nutrient cycling, trophic action, and

ecosystem engineering. These important interactions performed by reptiles are not solely

performed by few species, or geographically restricted to islands, but instead present a

pattern that repeatedly occurs in large reptiles distributed over tropical ecosystems. The

observed tendency of reptiles to be tightly involved in these ecological interactions has

important implications for the ecology of tropical ecosystems. Lost and current ecological

processes performed by large reptiles may be orders of magnitude higher than what is

currently perceived, and the misleading baseline of those processes must be addressed

otherwise we risk losing species and services that are dependent of such interactions.

To fix this bias I suggest: (a) Increase information spreading about Pleistocene-Holocene

reptile extinctions using popular media; (b) Improved exchange between the research

field of megafauna effects in ecosystems and herpetologists working with large reptiles;

(c) Increase research effort on anthropogenic reptile extinctions and their potential

to predict future losses; (d) Address the knowledge gaps, as human-reptile conflict,

chelonian seed dispersal and nutrient movement; (e) Increase quantitative research on

large reptile population ecology, density, and abundance. (f) address the potentially

present or lost ecosystem effects of extant and extinct reptile species. Although the

importance of reptiles in most tropical ecosystems has been perceived as negligible,

this study shows that this may be a misleading paradigm.

Keywords: crocodilians, ecosystem engineer, nutrient transport, quelonians, pollination, seed dispersal,

squamates, top-down regulation
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REPTILES: UNPOPULAR PLAYERS IN
ECOLOGICAL PROCESSES

Due to a set of biogeographical and institutional traits (Diamond,
1998; Acemoglu and Robinson, 2012), most of the world’s
developed countries are present in the northern hemisphere, as
well as the majority of scientific researchers. In the biological
sciences, this has resulted in a disproportionately high level of
research in countries with temperate climates and low levels
of biodiversity. This low level of diversity is particularly true
for reptilian species—which are principally small-sized species
(Makarieva et al., 2005). As the foundations of ecological theory
were largely built on research based in such locations (McIntosh,
1986), there is a historical bias concerning the importance of
reptiles as players in ecological processes. This perspective is
epitomized by a quote concerning sagebrush lizards (Sceloporus
graciosus) from Forbes magazine (Bell, 2011):

“A big remaining question is what to do about those lizards. If

experts on such matters determine they’re just a subspecies of the

common sagebrush lizard, then to hell with them... let them just

drag their scrawny tails out of the way... they’re expendable.”

The vision of reptiles as unimportant, simplistic, peripheral and
expendable proto-animals remains strongly rooted in society.
This vision is mirrored by the small number of tropical ecologists
working on ecological processes performed by reptiles, as well as
in the small attention that the subject receives. Recent efforts by
Rhodin et al. (2015) and Regalado (2015) resulted in the creation
of the first comprehensive compendiums on reptilian extinctions
due to anthropogenic activity. Around 19% of reptilian species
are threatened, with another 21% being classed as data deficient
by the IUCN. In both groups the majority of these species are
present in tropical ecosystems (Böhm et al., 2013). The situation
is further complicated by the disproportionate levels of research
funding and attention received by charismatic species, such as
felids or raptors, and the general disinterest directed toward other
groups, such as amphibians, reptiles, and invertebrates (Bonnet
et al., 2002).

Modern reptiles comprise today’s turtles, crocodilians, snakes,
amphisbaenians, lizards, tuatara, and several extinct relatives.
They do not constitute a monophyletic group, since some reptiles
are more closely related to birds than they are to other reptiles
(Green et al., 2014). There are many groups that are now
extinct, in some cases due to mass extinction events: pterosaurs,
plesiosaurs, ornithischians, sauropods, many theropods, and
squamates (e.g., mosasaurids) are examples (Benton, 2014).
Several living subgroups are recognized (Uetz et al., 2016):
Testudines (turtles and tortoises), ∼350 species; Amphisbaenia
(amphisbaenians), 196 species; Rhynchocephalia (tuataras), 1
species; Squamata (lizards, snakes, and worm lizards), over 9,800
species; Crocodilia (crocodiles, gavials, caimans, and alligators),
25 species. Reptiles represent a great diversity of modern
vertebrates.

Advances in natural history knowledge have done much to
change both the academic and public perception of reptiles,
and nowadays they are better understood as organisms with

sophisticated adaptations for defense, predation, and migration.
It is now known, for example, that reptiles can attack their prey
with great strength and speed (Erickson et al., 2012), or swiftly
incapacitate them using chemically complex venoms (Casewell
et al., 2013). To avoid predators, reptiles can sprint over water
(Aristoff et al., 2011), inject and eject poison (Triep et al., 2013),
or use camouflage to match their environment (Fulgione et al.,
2014). Additionally, skin colors can change to communicate
fitness and emotions (Cook et al., 2013). While some reptiles
can travel over 12,000 km using magnetic fields to navigate,
others can glide through the air onmembranes stretched between
extended ribs (McGuire and Dudley, 2011; Hays and Scott, 2013).
However, despite the discovery and public communication of
such unparralled physical traits there is still little research and
dissemination of the role of reptiles as promoters of ecological
processes.

A shifting baseline is a change in how a system is measured,
usually when compared to previous reference points, or baselines
(Pauly, 1995). I argue that ecologists have, to date, failed to
identify the correct baseline level of ecosystem interactiveness
for tropical large reptiles (e.g., how abundant and large reptile
species are or were before human exploitation). In consequence,
the baseline they are working from is aberrant and misleading. In
the tropics, the ecological functions of reptiles are as outstanding
as their natural history traits. Reptiles in tropical ecosystems are
not only biodiverse, but sometimes overwhelmingly abundant
in comparison to members of other vertebrate groups (Azevedo
and Murray, 2007). Abundance and large body size have long
been understood as contributing to prominence in ecosystem
processes (Leopold, 1949). Nonetheless, many of these highly
interactive reptile species are either extinct, declining or have
been extirpated over much of their range (Slavenko et al., 2016).
For some reptile groups, anthropogenic extinction has already
eliminated entirely distinct evolutionary orders and most of the
large-sized species (Rhodin et al., 2015). Considering exclusively
squamates, estimates reach as high as the extinction of 53 species
globally in the last century (Alroy, 2015). I intend here to
highlight the effects of past and, likely, future extinctions on
ecological processes. By overcoming the former existing bias that
reptiles have little ecological influence, this can help to define
research and conservation priorities.

With this review I hope to catalyze a paradigm shift. My
objective is to show that many reptiles have an important
role in ecosystem function, clarifying conservation priorities.
Specifically, I intend to accomplish this by (A) providing
contemporary researchers with a single and accessible reference
to the main ecological functions associated with large, abundant
tropical reptiles; (B) discussing what is currently known
regarding diversity loss associated with the ecological functions
that reptiles perform.

REPTILES AS ECOLOGICAL PLAYERS

I intend to demonstrate the ecological importance of reptiles
in four main ecological functions and processes (Figure 1): (1)
The role of reptiles as gene transporters through the processes
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FIGURE 1 | Examples of reptiles’ roles in regulating ecological processes: In (A) an alligator (Alligator mississipiensis) lies in the hole it built to spend the dry season

(Palmer and Mazzotti, 2004)—as this also serves as water source to many other species, the reptile is acting as an ecosystem engineer (Photo: Anita Gould). (B) A

Burmese python (Python molurus) feeds on a spotted deer (Axis axis); pythons are known to exert top down pressure (Dorcas et al., 2012), limiting prey species

population sizes (Photo: Rakesh Kumar Dogra). Lizards can act as pollinators (Olesen and Valido, 2003); (C) a green anole (Anolis carolinensis) feeds on umbrella tree

(Schefflera actinophylla) nectar (Photo: Leigh Hilbert). Tabuleiro do Embaubal, Brazil in (D)—Twenty thousand nesting Amazon giant river turtle (Podocnemis expansa)

aggregate on this one beach each year (Miorando et al., 2015), representing a considerable nutrient input and transfer from the aquatic to terrestrial ecosystem

(Photo: S. Nascimento).

of seed dispersal, pollination, and epibiosis; (2) The function
of reptiles as ecosystem linkers and their involvement in the
transport of nutrients from freshwater and marine ecosystems
to terrestrial ones; (3) Reptiles as trophic agents through the
exertion of top-down pressure on prey or vegetation, and by
acting as prey themselves; (4) Reptiles as ecosystem engineers that
can increase biodiversity in providing refuges or reproduction
sites to other species. Finally, I discuss how to readdress the issue
of the limited research effort on the ecological roles of reptiles in
tropical ecosystems.

Reptiles as Gene Transporters
Pollination and seed dispersal are two fundamental aspects of
plant biology in which animal involvement can both increase
genetic diversity, and reduce mortality (Vranckx et al., 2012).
Although seed dispersal is key to maintaining plant diversity,
seed dispersal by reptiles (saurochory) is sometimes regarded
as a rare phenomenon (Valido and Olesen, 2007). This notion
is challenged by growing evidence of reptiles as seed dispersers
(González-Castro et al., 2015), especially because of the tendency
for most reptiles to gulp fruits whole, which provides little
opportunity for seed damage.

South American river turtles consume fruits, and these can
then be dispersed along water margins (Moll and Jansen, 1995)
or carried further during long-distance migrations (Kubitzki
and Ziburski, 1994). Amazon giant river turtles (Podocnemis
expansa, up to 55 kg; Smith, 1979) are known seed dispersers and

migrate great distances between feeding and nesting grounds.
This species was considered overwhelmingly abundant in the
past (Von Humboldt, 1877), but has declined due to hunting
and egg collection. All three continental tortoises in South
America (Chelonoidis carbonarius, 5.9 kg; C. chilensis 1.7 kg; and
C. denticulatus, 6.4 kg) are known seed dispersers (Varela and
Bucher, 2002; Strong and Fragoso, 2006). Moreover, they can
reach high densities; up to 125 animals/km2 for C. carbonarius
and C. denticulatus combined (Moskovits, 1988), and go up
to 54 kg in the largest species, C. denticulatus (Pritchard and
Trebbau, 1984). The two large and widely distributed lizard
genera in the Neotropics, tegu, and iguana lizards (Tupinambis
and Iguana), also disperse seeds (Benítez-Malvido et al., 2003; de
Castro and Galetti, 2004), and occur at high densities, reaching
83 and 122 individuals/km2 for tegus and iguanas, respectively
(Munoz et al., 2003; Bovendorp et al., 2008).

Asiatic species like the forest tortoise (Manouria emys, up
to 37 kg) and northern river terrapin (Batagur baska, up to
30 kg) are potential seed dispersers (Standford et al., 2015) but
this remains uninvestigated. Although they are the largest hard-
shelled chelonian species in Asia, both lack reliable population
estimates, but are under extinction risk (IUCN, 2000; ATTWG,
2016). Asiatic frugivorous lizards like the Philippine varanids
(Varanus bitatawa, V. mabitang, and V. olivaceus) reach up to
10 kg and act as seed dispersers (Bennett, 2014). All Philippine
varanids are considered under risk by the IUCN (Gaulke and
Demegillo, 2008).
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In Africa, the huge and widely-distributed leopard tortoise
(Stigmochelys pardalis; up to 48 kg), and spurred tortoise
(Centrochelys sulcata; up to 93 kg) are both potential seed
dispersers (Milton, 1992). While the role of leopard tortoise as
a seed disperser has been investigated, any effort has been made
to characterize the seed dispersal potential in spurred tortoises.
Reported densities of leopard tortoises reach 85 individuals/km2

(Mason et al., 2000). There are no population records for
spurred tortoise density, though wild populations in its native
Sahel are now scarce, and it is considered Vulnerable (IUCN,
1996). Some smaller African reptiles, such as spiny tailed
lizards (Uromastyx aegyptia, up to 3 kg), are seed dispersers in
desert environments (Wilms and Wagner, 2009), and can reach
densities of 400 individuals/km2 (Kordges, 1998) but suffer from
extensive persecution (Figure 2C) and are considered Vulnerable
by IUCN (Wilms et al., 2012).

On tropical islands, giant tortoises are frequently the
main seed dispersers (Blake et al., 2012). Many of these
species have already been exterminated (Rhodin et al., 2015):
five became extinct after human colonization of the Pacific
Ocean’s Mascarene Islands (Cylindraspis triserrata, C. vosmaeri,
C. peltastes, C. inepta, and C. indica), while two were lost on
Madagascar (Aldabrachelys grandidieri and A. abrupta), and
seven from the Caribbean archipelago (including Chelonoidis
alburyorum, C. cubensis, and five other undescribed species),
and four from the Galápagos (Chelonoidis abingdoni, C. nigra,
C. phantastica, and Chelonoidis sp.). These past losses are

currently impacting seed dispersal on the islands of Madagascar
and Mauritius; respectively, baobab and ebony species are at
risk due to the absence of their co-evolved chelonian dispersers
(Moolna, 2008; Andriantsaralaza et al., 2014). Since 57% of
Earth’s tortoises, including several large-sized continental species,
were extirpated ormade extinct by early ormodernHomo species
during the Pleistocene (Rhodin et al., 2015), similar effects in
other ecosystems may have occurred or may still be occurring.

Evolutionary unique groups of giant tortoises were also
eliminated during human colonization of Sahul (present New
Guinea, Australia, and Tasmania, before sea levels rose).
The 200 kg-plus Meiolanidae, a family of horned tortoises,
were giant herbivores. Anthropogenic causes meant they had
disappeared long before we could understand their ecological
role in ecosystems. Insular seed disperser extinctions were not
restricted to tortoises: the giant iguanas (Brachylophus gibbonsi,
Lapitiguana impensa) of Tonga and Fiji archipelagos in Pacific
also vanished upon human colonization, causing disruption to
the island’s seed dispersal ecology (Meehan et al., 2002).

Pollination by reptiles (Figure 1C), although mostly restricted
to insular lizards, is a widespread phenomenon occurring on
islands in all tropical seas and includes at least 50 gecko
species (Godínez-Alvarez, 2004). Low abundances of insect,
both as prey and pollinators, probably drove insular lizards to
consume fruit pulp and nectar. This, combined with density
compensation, niche expansion, and low predation pressure, has
resulted in lizards being important pollinators on many island

FIGURE 2 | Examples of reptiles’ roles imperiled by human activities: (A) By-catch events drown up to 9,000 olive ridley turtles per year in Odisha, India (Behera et al.,

2016)—sea turtles provide important surfaces for encrusting epibionts (Bjorndal and Jackson, 2003; Photo: Supraja Dharini). Crocodilians are important nutrient

linkers (Nell and Frederick, 2015), and (B) shows a broad-snouted caiman (Caiman latirostris) with tail amputed while it was alive (Photo: Andrei Jara). Ecosystem

engineers such as spiny tailed lizards (Uromastyx aegyptia) create burrows that offer refuge to other species in their native desert landscapes (Williams et al., 1999);

they are, however, are hunted in their hundreds for meat, as seen in (C) (Anonymous photo). Reptiles can be important predators, yet, they are widely feared (Shankar

et al., 2013); (D) shows the snake-eating king cobra (Ophiophagus hanna), killed by local villagers in India (Photo: Eastern Ghats Wildlife Society).
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ecosystems. Given their restricted distributions and vulnerability
to introduced species, insular lizards are a highly threatened
taxa (Olesen and Valido, 2003). The largest skink on Earth,
Chioninia coctei, went extinct after European colonization of
Cabo Verde (Vasconcelos et al., 2013). Several other extinctions
have occurred between pollinating lizards, including gecko
pollinators as Phelsuma edwardnewtoni and P. gigas in the
Mascarene archipelago (Hansen et al., 2006).

When the area for colonization is limited, the encrustation
of other animals may become a viable strategy for sessile
and sedentary marine animals. Reptiles generally have a
hard tegument and can consequently act as habitat for
epibionts—organisms that live on the surface of others. Barnacles
(infraclass Cirripedia) are found on all species of marine turtles
(Hayashi, 2012). As a result, sea turtles are known to play key
roles in barnacle phylogeography (Pinou et al., 2013).

Crocodilians that inhabit brackish waters can also play host
to barnacles and epibionts, and these have been found on
Crocodylus porosus (Monroe and Garrett, 1979), Crocodylus
acutus (Cupul-Magaña, 2011), and subtropical species as
Alligator mississippiensis (Nifong and Frick, 2011). Barnacles have
also been found on unexpected hosts such as brackish water
turtles (Arndt, 1975; Seigel, 1983; Cedillo-Leal et al., 2013), and
marine snakes, which are associated with 48 barnacle species
(Pfaller et al., 2012).

In sea turtles, barnacles are only one of the many associated
epibionts, and more than 200 species have been found on a
single turtle species (Frick et al., 2004). A known epibiont
of sea turtles are remoras (Echeneidae), which have been
recorded associating with all sea turtles (Lazo-Wasem et al.,
2011). Sessile forms include algae, bryozoans, cnidarians,
foraminiferans, mollusks, poriferans, and tunicates. Sedentary
species include amphipods, polychaete worms, and tanaids.
The minitature reef produced by sessile and sedentary epibiota
creates conditions for colonization by motile organisms
such as annelid worms, copepods, echinoderms, decapods,
dipterans, ostracods, platyhelminth worms, protozoans,
sipunculid worms, and peracarids, which sometimes results in
the formation of an ecosystem on the turtle hard integument
(Frick et al., 2004).

Organism movement by reptiles is likely to have several
benefits for the associating species: (a) seed survival is greater
away from the parent plant (Fricke et al., 2013); (b) pollination
enhances the volume, speed, and synchrony of fertilization
(Kormann et al., 2016); (c) epibiosis allows species that attach
to reach specific sites that are favorable for survival, such as
nutrient- or prey-rich microhabitats (Hayashi and Tsuji, 2007).
Finally, at larger scale, these movements may allow associated
organisms to colonize vacant habitats and, or, new regions.
However, many of the reptiles performing gene transport roles
in tropical regions are threatened with extinction (Figure 2A) or
are already extinct—with severe knowledge gaps on role of gene
dispersal at Table 1.

Reptiles as Nutrient Transporters
Large animals disproportionately drive lateral nutrient
movement, and their widespread demise is disrupting the

processes that result in the efficient distribution of nutrients from
the oceans on to dry land (Doughty et al., 2015), as in aquatic
turtles that lay on land. While biogeochemical cycles determine
the limits of nutrient flows from terrestrial to aquatic ecosystems,
the movements of these organisms can partially reverse this trend
(Helfield and Naiman, 2001). Large reptiles can act as nutrient
transporters in two main ways: (a) through reproduction, when
aquatic reptiles lay eggs in terrestrial environments (Bouchard
and Bjorndal, 2000), and (b) through predation, when aquatic
reptiles are killed and dragged onto land by terrestrial predators
(Veríssimo et al., 2012). Due to reproduction being a risky phase
of aquatic reptile life history, during which predation is common,
those processes are not necessarily separate.

TABLE 1 | Examples of large tropical reptiles as gene transporters.

Ecological

service

Providers sample Potential

measured?

Extinct providers

sample*

SEED DISPERSERS

Neotropical Podocnemis

expansa1

Nine Cyclura species2

No Chelonoidis alburyorum

C. cubensis

Five other undescribed

species

Afrotropical Centrochelys sulcata3

Kinixys erosa4
No Aldabrachelys

grandidieri

A. abrupta

Centrochelys robusta

Indomalayan Manouria emys5

Six Batagur species6
No Megalochelys species

Oceania None living* No Four Meiolania species

Brachylophus gibbonsi

Lapitiguana impensa

POLLINATORS

Atlantic Euprepis atlanticus7

Teira dugesii8
No None

Pacific Microlophus species9

Rhacodactylus

auriculatus10

No None

Indian Phelsuma ornata11 No Phelsuma

edwardnewtoni

P. gigas

SUBSTRATA FOR EPIBIONTS

Atlantic All marine turtles12

Alligator

mississippiensis13

Crocodylus acutus14

Trachemys venusta15

Pseudemys

rubriventris16

Malaclemys terrapin17

Yes None

Pacific All marine turtles12 No None

Indian All marine turtles12

Crocodylus porosus18
No None

*Presumed role inferred by habits of extant species. 1Kubitzki and Ziburski (1994);
2Auffenberg (1982); 3Hansen et al. (2010); 4Hailey et al. (1998); 5Lambert and Howes

(1994); 6Holloway (2003); 7Sazima et al. (2005); 8Olesen and Valido (2003); 9Chamorro

et al. (2012); 10Hopkins et al. (2015); 11Hansen et al. (2006); 12Bjorndal and Jackson

(2003); 13Nifong and Frick (2011); 14Cupul-Magaña (2011); 15Cedillo-Leal et al. (2013);
16Arndt (1975); 17Seigel (1983); 18Monroe and Garrett (1979).
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Reproduction-based nutrient transport can be demonstrated
in the worldwide phenomena of turtles nesting on sandy beaches
(Bouchard and Bjorndal, 2000). These annual events result in the
terrestrial transfer of enormous volumes of nutrients originally
gathered by turtles on aquatic feeding grounds. For example,
the Mexican Pacific population of the olive ridley turtle was
estimated to consist of ∼10 million individuals (Spotila, 2004),
of which some 5 million were likely to be adult females averaging
35 kg (Miller, 1997). Olive ridley turtles breed annually, laying
1–3 clutches averaging 2.8 kg (Elgar and Heaphy, 1989). This
would result in the annual transfer of 14,000–42,000 tons of
egg-based material on to land, a considerable entry of nutrients
for an oligotrophic sand beach. Similarly, in freshwater beaches
of Amazonia (Figure 1D), more than 6,000 giant river turtles,
each weighing around 35 kg, offer an input of more than 16
tons of eggs on a single beach each year (Alho and Pádua,
1982). Considering just the Brazilian population monitored in
a subsample of 120 nesting beaches (Cantarelli et al., 2014),
would give a total of nearly 2,000 tons of eggs. However, these
figures are for only one species and one set of beaches. When the
other six Podocnemididae species of river turtle in Amazonia are
also considered, and the other countries and beaches in which
the species also nest, the annual volume of nutrient transfer
represented by deposited eggs may be relevant to nutrient cycling
in the amazon basin. A ∼50% emergence rate (Hernández and
Espinosa-Blanco, 2010; Brost et al., 2015), indicates that half of
these nutrients will remain to enter terrestrial food chains in both
fresh and saltwater ecotones. Nutrients can also directly enter
into the terrestrial food chains through plant root absorption in
both fresh and saltwater (Stegmann et al., 1988; Hannan et al.,
2007); not to mention the egg shells that are slowly absorbed. If
these figures are amplified to include multiple sea and freshwater
turtle species nesting in multiple beaches around the globe, and
we have a nutrient transport phenomenon of global scale and
impact that may parallel or surpass the much-celebrated salmon-
derived nitrogen-transport system (Helfield and Naiman, 2001).

Since aquatic turtles, most lizards and crocodilians need
to lay their eggs on land, this is far from being a uniquely
South American phenomenon. In Africa, several large aquatic
reptile species, including Nile giant softshell turtles (Trionyx
triunguis, up to 100 kg; Keller, 2005) and Nile crocodiles
(Crocodylus niloticus, averaging 44 kg; Hutton, 1987) are
abundant, widespread and nest on sandy beaches. Meanwhile, in
tropical Asia, sandy beach-nesting species include giant softshell
turtles of the genera Chitra and Pelochelys (which can reach up to
120 kg; Bonin et al., 2006), batagur river turtles, gharials (Gavialis
gangeticus, averaging 31 kg; Whitaker and Basu, 1982) and
mugger crocodiles (Crocodylus palustris, averaging 65 kg; Bayani
et al., 2011). Although the nests of these species have the potential
to transport the embodied nutrients into terrestrial ecosystems,
this widespread phenomenon has been little-addressed. With the
exception of Nile andmugger crocodiles, all of these sand-nesters
are now extirpated throughout most of their ranges, and are all
considered under risk (Stevenson and Whitaker, 2010; Rhodin
et al., 2011).

Predators can consume aquatic reptiles on a large scale.
Jaguars (Panthera onca) are the largest felids in the Neotropics,

and crocodilians can represent more than 70% of its prey (Da
Silveira et al., 2010). Caimans are consistently killed by jaguars
in Neotropical floodplain habitats as the Pantanal (Azevedo
and Verdade, 2012), Amazon (Emmons, 1987), and Llanos
(Scognamillo et al., 2003). In Central America jaguar prey on
nesting sea turtles. Such nesting events can attract jaguars to
the beach in their dozens, and modify their ranging behavior
(Carrillo et al., 2009; Guilder et al., 2015). So extensive is the
predation that, at some sites, sea turtles can comprise up to
a third of the total annual jaguar diet (Chinchilla, 1997). This
was probably a widespread behavior before human colonization
eliminated the majority of both coastal jaguar populations, and
sea turtle nesting areas.

Once killed by predators, aquatic reptiles are often dragged
for hundreds of meters inland (Carrillo et al., 2009; Azevedo and
Verdade, 2012) where the uneaten remnants of their carcasses
will decay, releasing nutrients in terrestrial ecosystems. As in
other cases, this phenomenon is not restricted to South America.
In the Sundarbans mangrove of India, tigers prey on water
monitors (Varanus salvadorii) that represent as much as 12%
of their diet (Mukherjee and Sarkar, 2013). In Africa, fish
eagles (Haliaeetus vocifer) and crowned eagles (Stephanoaetus
coronatus) are known to prey on the semiaquatic Nile monitor
(Boshoff and Palmer, 1994; Stewart et al., 1997), which in turn
is a predator of crocodile nests and juveniles (Kofron, 1989).
African fish eagles also prey directly on young Nile crocodiles
(Cott, 1961). In Australia, water goannas (Varanus mertensi) are
prey for dingoes (Canis lupus dingo; Sutherland et al., 2011), while
both varanids and dingoes are frequent predators of crocodile
eggs (Somaweera et al., 2011).

With high standing crop and large body size, reptiles may
have a strong positive impact on nutrient flow from aquatic
to terrestrial tropical ecosystems. As consumers of aquatic
organisms and as prey for terrestrial predators, they can act
as important nutrient vectors. While some species may still be
highly abundant in some areas (Campos and Magnusson, 2016),
numerous populations are in severe decline (Thorbjarnarson,
1999; Rhodin et al., 2011). In fact population sizes of both
turtles and crocodilians are now well below the historical
levels witnessed by the first naturalists on scientific expeditions
(e.g., Von Humboldt, 1877), suggesting that for many species
(Figure 2B), current numbers are a mere relic of their former
abundance. In Table 2, further examples of threatened reptiles
providing nutrient movement—as well as current gaps on
knowledge—can be seen.

Reptiles as Trophic Actors
Reptiles can act as top predators in aquatic and terrestrial
ecosystems. Crocodilians are conspicuously present as predators
in aquatic-terrestrial interfaces in the tropical regions of all
continents. Like other predators, crocodilians can exert top-down
pressure on prey species populations (Nifong and Silliman, 2013).
Such interactions have the potential to regulate prey populations,
as well as modulate their access to key resources, such as water
(Doody et al., 2007). Opposed to the opinions of those who study
mammalian carnivores, crocodilians are the largest predators in
tropical regions on all continents. Indeed, within a given area,
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TABLE 2 | Examples of large tropical reptiles as nutrient linkers.

Ecological

service

Providers sample Potential scale

measured?

Extinct providers*

MARINE TO TERRESTRIAL1

Pacific Chelonia mydas

Caretta caretta

Lepidochelys olivacea

Eretmochelys

imbricata

Dermochelys coriacea

No None

Atlantic Chelonia mydas

Caretta caretta

Lepidochelys species

Eretmochelys

imbricata

Dermochelys coriacea

Yes None

Indian Chelonia mydas

Caretta caretta

Lepidochelys olivacea

Eretmochelys

imbricata

Natator depressus

Dermochelys coriacea

No None

RIVER TO TERRESTRIAL2, 3

Neotropical Podocnemis expansa

Caiman latirostris

No None

Afrotropical Crodylus niloticus

Trionyx triunguis

No Voay robustus

Indomalayan Six Batagur species

All softshell turtles

Crocodylus palustris

No None

Oceania Carettochelys

insculpta

Crocodylus johnstonii

No None

WETLANDS TO TERRESTRIAL2, 4

Neotropical Caiman yacare

Podocnemis vogli

Melanosuhus niger

No None

Afrotropical Crocodylus niloticus

Varanus niloticus

No Voay robustus

Indomalayan Alligator sinensis

Crocodylus porosus

Varanus salvator

No Gavialis bengawanicus

Oceania Crocodylus porosus

Varanus mertensi

No Pallimnarchus pollens

*Presumed role inferred by habits of extant species. 1Hannan et al. (2007); 2Vitt and

Caldwell (2013); 3Campos et al. (2016); 4Torralvo et al. (2017).

pythons and crocodilians can surpass mammalian carnivores
both in numbers and biomass by several orders of magnitude
(Campos and Magnusson, 2016; Natusch et al., 2016).

Squamate reptiles, like snakes, are capable of overpowering
bird and mammalian prey (Figure 1B). They are also capable of
strongly impacting avian prey populations (Patten and Bolger,
2003), and intense declines have been recorded where exotic
snakes species have been introduced, as, for instance, on the
island of Guam (Richmond et al., 2014). One could argue that
prey suppression occurred because Guam is an insular ecosystem
with prey communities in delicate equilibrium. However, the
same pattern of decline is seen in species preyed upon by
introduced pythons in Florida’s Everglades. Unlike Guam,

the Everglades is a functionally diverse continental mammal
community composed of large and medium-sized species where
prey declines have been shown by correlational and experimental
methods (Dorcas et al., 2012; McCleery et al., 2015).

Gigantism in reptiles is commonly considered an island
phenomenon, a by-product of competition-release; the Komodo
dragons (Varanus komodoensis) being a frequently cited example.
Since body size is such an important factor in species
interactiveness, this misconception must be addressed: (i)
several living giant snake species such as anacondas and
pythons (e.g., Eunectes notaeus, E. murinus, Python molurus,
P. reticulatus, P. sebae) occur in mainland environments,
where they successfully compete with mammalian carnivores;
(ii) Komodo dragons were formerly widespread over Sahul
(Hocknull et al., 2009), where they competed with Thylacoleo
carnifex, an extinct 100 kg-plus marsupial carnivore (Wroe et al.,
1999), so that their current distribution is a misleading relict; (iii)
other species of large lizards occur on mainland Asia, such as the
water monitor, a species that exceeds 20 kg, which is smaller than
only two of southeast Asia’s largest mammalian predators, the
tiger (Panthera tigris, 227 kg) and the leopard (Panthera pardus,
42 kg; Corlett, 2011); (iv) in the early Pleistocene, southeast
Asia had giant species of monitors like Varanus sivalensis that
coexisted with carnivore faunas similar to current ones (Hocknull
et al., 2009). Despite this, reptiles are often completely ignored
as predators in both present (Jorge and Galetti, 2013), and past
ecological communities (Malhia et al., 2016). As suggested from
this brief list, the popular notion of food chain apices occupied
solely by mammalian carnivores must be reassessed in tropical
ecosystems.

Insular giant tortoises are another example of a popular
misconception regarding reptile body size: rather than being a
byproduct of competition release, they evolved from continental
species that were already large (Braithwaite et al., 1973; Pritchard,
1996). For instance, the largest tortoise ever, Megalochelys atlas,
was an early Pleistocene continental species, which disappeared
from mainland Asia and its nearest islands after the arrival of
Homo erectus (Hirayama et al., 2015). An entire genus of extinct
continental tortoises (Hesperotestudo spp.) contained around a
dozen species that all surpassed 100 cm in length. The genus was
exterminated in Central and North America following human
colonization in the Pleistocene (Rhodin et al., 2015). In addition,
it is worth noting that current large-sized continental species like
the african spurred tortoise and the asian forest tortoise are likely
to have reduced in size, as a result of a long history of exploitation
(Lomolino et al., 2001).

Chelonians, popularly regarded as slow moving animals, can
also act as top predators in aquatic ecosystems. The alligator
snapping Turtles (Macrochelys species, 21 kg), snapping turtle
(Chelydra serpentina, 6.2 kg), and several Asiatic giant softshell
turtles (Rafetus swinhoei, Chitra indica, C. chitra, Pelochelys
cantorii, up to 200 kg), can be top consumers of fish, birds
and mammals in aquatic environments, and themselves have no
predators once they have reached adult size (Steyermark et al.,
2008; Corlett, 2011).

As predators, reptiles can also provoke the same types of
human-wildlife conflict as large mammalian carnivores. Small
and large livestock species are common prey for reticulated
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pythons in Southeast Asia (Shine et al., 1998), and for anacondas
in South America (Miranda et al., 2016), while cattle, buffalo
and sheep fall prey to the Burmese python in Pakistan and
India (Goursi et al., 2012; Bhupathy et al., 2014). Crocodiles are
also known to take a toll on livestock in both Asia and Africa
(Butler, 2000; Bhatnagar and Mahur, 2010). Since reptiles do
not possess the same charisma as large carnivores (Bonnet et al.,
2002), this research theme and conservation issue is substantially
under-explored (Figure 2D).

Reptiles can act as scavengers. Varanids in Australia, Asia,
and Africa are consumers of carrion (Shine and Harlow, 1998;
Dalhuijsen et al., 2015), removing flesh from carcasses before
they spread disease and increasing the flux of energy in trophic
cascades. The Nile crocodile plays this role when scavenging the
carcasses of the hundreds of ungulates that die crossing large
rivers during annual migrations, through which they may reduce
the spread of disease and increase water quality (Subalusky et al.,
2017). While ornithologists have quantified the scale of carcass
cleaning service by vultures (Pain et al., 2003), similar knowledge
of carrion use by reptiles is scant. This is an interesting research
gap as well as conservation issue.

As with other processes described here, the action of reptiles
as trophic actors has been severely reduced by extinctions and
extirpations. Several species of crocodilians, for example, are
already lost. The human expansion during the late Pleistocene-
Holocene wiped out the last clade of terrestrial crocodiles
(Mekosuchinae). They disappeared sequentially in Sahul (Sobbe
et al., 2013), New Caledonia (Mead et al., 2009), Vanuatu
(Mead et al., 2009), and Fiji (Irwin et al., 2011) with dates
that corresponded to human arrival on each of these islands,
around 53 and 3 thousand years ago in Australia and elsewhere,
respectively (Roberts et al., 1994; Worthy et al., 1999; Stevenson
et al., 2001; Kinaston et al., 2014). Although Sahul had a terrestrial
predator fauna with large carnivorous mammals and reptiles, on
smaller islands terrestrial mekosuchines were the top predators.
In addition, humans caused the extinction of the Malagasy
horned crocodile (Voay robustus) in the Holocene (Brochu,
2007), and the dramatic range contraction of the (now) Cuban
crocodile (Crocodylus rhombifer), which occurred after human
colonization of the Caribbean islands (Steadman et al., 2015).
Together, these form part of the series of lost top predator
roles played by reptiles. The unique ecological roles filled by
Crocodilians continue under threat, with nine of the surviving
25 modern species considered to be threatened with extinction,
seven of which are recognized as “Critically Endangered” under
the IUCN categorizations.

Squamate reptiles, although capable of sustaining high
cropping rates (Natusch et al., 2016), have also lost several
species. Besides the widespread extirpation of the relictly insular
Komodo dragon, the largest lizard species (Varanus priscus,
averaging 320 kg and toping 7m in length; Molnar, 2004)
was eliminated in Sahul during human colonization (Flannery,
2002). Anthropogenic extinctions of giant snakes are also
known. The last species of the Matsoiid snake family, Wonambi
naracoortensis—a species reaching five meters long—and two
other large species, W. barriei and Yurlunggur camfieldensis,
also became extinct following aboriginal colonization (Flannery,
2002). Finally, the current status of some giant carnivorous turtles

is far from good (Rhodin et al., 2011); hopes for the survival of
the largest of their kind, R. swinhoei, is currently dependent on
the last captive pair. Several other examples of top consumers
roles performed by extinct and extant reptiles and the deart of
knowledge on them can be seen in Table 3.

Reptiles as Ecosystem Engineers
An ecosystem engineer is any organism that creates or
significantly modifies habitat structure, and as a result is
important for maintaining the biodiversity of the environment
in which it lives (Samson and Knopf, 1996). Some herbivorous
reptiles can have a profound effect on vegetation. The grazing
and browsing impact of large tortoises, for example, can intensely
impact vegetation composition and structure (Hamann, 1993).
Giant tortoises on oceanic islands can have a great impact
on their environments and exert top-down pressure, and have
been described as ecosystem engineers (Gibbs et al., 2010).
Considering that giant tortoises were—and in some places are—
conspicuous elements of continental faunas the possible impacts
of their loss must be assessed.

A similar relationship of habitat engineering is known
from marine ecosystems. The seagrass (Thalassia testudinum)
is heavily grazed by the green turtle (Chelonia mydas). As a
result, the seagrass productivity and composition is positively
affected by grazing (Moran and Bjorndal, 2005). In a similar
way, the hawksbill turtle has a role as a sponge predator,
with preference for overabundant aggressive sponges such as
Chondrilla nucula. The predation by Hawksbill Turtles affects
reef diversity and succession by influencing space competition
(Bjorndal and Jackson, 2003). As the Green and Hawksbill turtles
are severely overexploited, their regulatory impact on marine
ecosystems has been much reduced.

Another means by which reptiles can act as ecosystem
engineers is via their burrows, which can provide shelter for
other species. Burrowing reptiles are recognized in several
dry environments (Kinlaw, 1999), and their burrows are
used by a wide diversity of animals: over 300 species have
been recorded using those of the gopher tortoise (Gopherus
polyphemus, Kinlaw and Grasmueck, 2012), including burrowing
owls (Athene cunicularia), eastern diamondback rattlesnakes
(Crotalus adamanteus) and marsh rabbits (Sylvilagus palustris).
While the gopher tortoise is the best-studied burrow-providing
reptile, ecosystem engineering through burrows can potentially
occur in several other species, including the burrowers bolson
tortoises (Gopherus flavomarginatus), Mohave desert tortoises
(G. agassizii) and Sonoran desert tortoises (G. morafkai) in
North America and red-footed tortoises in South America.
Spurred tortoises in Africa can dig burrows that are both
extensive and complex, but whose effects on other species are
still unknown (Kinlaw and Grasmueck, 2012). Spurred tortoise
burrows have great ecosystem engineering potential, as they are
huge, up to 15m long (Devaux, 2000) and occur in Sahel semi-
desert landscapes, where cover is otherwise scarce. Ecosystem
engineering also occurs with smaller reptilian species: <1 kg
spiny tailed lizards dig burrows in coverless arid environments
and have been shown to be ecosystem engineers by providing
shelter to a variety of other organisms (Wilms et al., 2010).
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TABLE 3 | Examples of reptiles as trophic agents.

Ecological

service

Providers sample Potential scale

measured?

Extinct providers*

GRAZING, BROWSING, AND TRAMPLING

Neotropical1, 2 Chelonoidis species

Iguana species

Nine Cyclura species

No Chelonoidis species

Hesperotestudo

species

Afrotropical3 Centrochelys sulcata

Stygmochelys pardalis

No Five Cylindraspis

species

Aldabrachelys species

Centrochelys species

Indomalayan4 Manouria emys

Manouria impressa

No Megalochelys species

Manouria punjabiensis

Oceania None alive No Four Meiolania species

Brachylophus gibbonsi

Lapitiguana impensa

TOP PREDATORS

Neotropical5 Eunectes murinus

Melanosuchus niger

Crocodylus rhombifer

No None

Afrotropical6 Crocodylus niloticus

Python sebae

Tronyx triunguis

No Voay robustus

Indomalayan7 Crocodylus porosus

Python reticulatus

Chitra chitra

No Gavialis bengawanicus

Rafetus swinhoei

Oceania8 Crocodylus porosus

Varanus giganteus

No Varanus priscus

Mekosuchus species

Volia athollandersoni

SCAVENGERS

Neotropical9 Tupinambis lizards

Crocodylus

intermedius

No None

Afrotropical6 Crocodylus niloticus

Varanus niloticus

No Voay robustus

Indomalayan10 Varanus salvator

Crocodylus palustris

No None

Oceania11 Crocodilus porosus

Varanus gouldii

No Varanus priscus

Mekosuchus species

Volia athollandersoni

*Presumed role inferred by habits of extant species. 1Froyd et al. (2014); 2Rodda et al.

(2001); 3Burney et al. (2012); 4Lambert and Howes (1994); 5Cavalcanti et al. (2016);
6Ashton (2010); 7Fredriksson (2005); 8Hanson et al. (2015); 9Sazima and D’Angelo

(2013); 10Shine et al. (1996); 11Doody (2009).

Crocodilians can act as providers of shelter, digging extensive
burrow systems in those areas of Asia, Africa, and North
America where avoiding seasonal harshness requires aestivation
(Whitaker et al., 2007; Brito et al., 2011).While such burrowsmay
include galleries several meters deep, their use by other species
is little known. During the dry season in the Everglades, wallow
holes created by alligators (Figure 1A) act as a refuge for several
species of fishes, birds, and aquatic reptiles, providing areas of
deeper water that sustain populations until they can colonize
more extensive water bodies at the onset of the next high water
season (Palmer and Mazzotti, 2004).

Another way in which crocodilians can act as ecosystem
engineers is via the mounds of rotting vegetation they assemble
for egg laying. The subtropical american alligator nest mounds

are used by other reptiles as nesting habitats. They include
eight turtle species, two snakes and two lizards, which all lay
their eggs in alligator mounds (Deitz and Hines, 1980; Kushlan
and Kushlan, 1980; Elsey et al., 2013). While some species
do this facultatively, the Florida red-bellied turtle (Chrysemys
rubriventris) is a specialist mound-nester, and a single alligator
nest mound may hold up to 200 of their eggs (Deitz and
Hines, 1980). This phenomena is mirrored by amazonian yellow-
spotted river turtles (Podocnemis unifilis), which sometimes nest
in black caiman (Melanosuchus niger) mounds (Maffei and Da
Silveira, 2013), and by basilisks (Basiliscus vittatus) and red-eared
sliders (Trachemys scripta) which lay eggs in the nest mounds of
Morelet’s crocodile (Crocodylus moreletii; Platt et al., 2008). The
apparent reduced richness of commensals in the nests of species
other than alligators may be related to the fact that alligators are
the best studied crocodilian species, suggesting that the subject
merits further research in other crocodilians.

Several species with potential to act as ecosystems engineer
are now threatened or extinct and severe knowledge gaps
remains (Table 4). Do the mounds and holes of the chinese
alligator (Alligator sinensis) have similar effects on the aquatic
communities in the Yangtze River Basin? We may never know,
because these 1.5m, 36 kg animals are functionally extinct in the
wild (Ding et al., 2001). This fate is yet another to be added to
the long list of vanished or functionally extinct reptiles already
cited in this text, that continues to grow every year (Turvey et al.,
2017).

HOW CAN WE REDRESS THIS BIAS IN
CONSERVATION AND RESEARCH
EFFORTS?

In this review I have shown that reptiles in tropical environments
can be large and abundant animals, which consequently
have the potential to regulate several important ecosystem
processes. But since Homo sapiens species’ dispersion during
the Pleistocene-Holocene, many of the larger—and thus most
ecosystem-interactive—reptile species have become extinct. The
continuation of this process has caused extinction and extirpation
of many large modern reptiles, while others are extinct in the wild
or now functionally absent.

In tropical ecosystems reptiles can achieve standing biomasses
that equal or surpass that of any other air-breathing vertebrate
(Campos and Magnusson, 2016; Natusch et al., 2016). We
can only wonder how abundant they were before humanity’s
extraordinary capacity as a predator (Darimont et al., 2015)
overexploited these populations, in many cases terminally. While
reptiles can attain high standing biomasses, population growth is
low—particularly for the large-sized, k-selected species covered
here (Ferreira and Pienaar, 2011). They are also subject to
progressive dwarfism induced by hunting (Lomolino et al., 2001),
and many of the species we now consider large may have been
bigger in the past. Despite this, reptiles are still widely ignored as
megafauna.

Extinctions and extirpations imperil or severely reduce many
of the processes that I have described (Figure 2). Because
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TABLE 4 | Examples of reptiles as ecosystem engineers.

Ecological

service

Providers sample Potential scale

measured?

Extinct providers*

BURROWERS

Neotropical1 Chelonoidis

denticulatus

Tupinambis species

Six Gopherus species

No Hesperotestudo

species

Afrotropical2 Centrochelys sulcata

Crocodylus niloticus

Several Uromastyx

species

No Insular Centrochelys

species

Indomalayan3 Varanus bengalensis

Crocodilus palustris

No None know

Oceania4 Several Varanus

species

No Varanus priscus

NESTING HABITAT

Neotropical5 Alligator

mississipiensis

Yes None know

Afrotropical6 Osteolaemus species No None know

Indomalayan6 Manouria emys No None know

Oceania6 Crocodylus porosus No None know

POOL MAKERS

Neotropical7, 8 Alligator

mississipiensis

Chelonoidis nigra

complex

Yes Several

Chelonoidis nigra

complex species

Afrotropical Cylindraspis species*

Aldabrachelys

species*

No Cylindraspis species

Aldabrachelys species

Indomalayan None know No Alligator sinensis

Oceania None know No None know

*Presumed role inferred by habits of extant or similar species. 1Kinlaw and Grasmueck

(2012); 2Devaux (2000); 3Whitaker et al. (2007); 4King (1980); 5Kushlan and Kushlan

(1980); 6these species build organic matter nests that may be shared by other species

in habitats that are thermally challenging shaded forests or where dry surface is scarce;
7Palmer and Mazzotti (2004); 8Froyd et al. (2014).

reptiles are rarely as noisy as birds or conspicuous as large
mammals, they often pass unnoticed as ecosystem players, even
when they are plentiful. Add to this the general unpopularity
of studying reptiles as performer of ecological processes, and
the result, with few exceptions, is a comparative dearth of
research on their ecological functions. To readdress this bias
and increase awareness of longstanding demise of reptiles, and
highlight their broad and important ecological functions, I
recommend:

a. Increasing efforts in spreading information about
Pleistocene-Holocene reptile extinctions using popular media,
to inspire new scientists on the subject and also increase
funding potential—as Jurassic Park did for paleonthological
research (Stokstad, 1998). For building such links, large
reptile researchers must work on networks with documentary,
popular and rural news teams. Under such a strategy,
conservation biologists and general public may become
equally familiar with the existence of more recent dragon-like
giants.

b. “Cross-pollination” between stablished research field of
megafauna effects in ecosystems and herpetologists working
with large reptiles, as well as with excellent research programs
running on some reptilian megafauna (e.g., Everglades
pythons, Komodo dragons, sea turtles). This strategy has
proven successful in other ecological research fields (Wirsing
and Ripple, 2011).

c. Increasing research effort on anthropogenic reptile extinctions
and their potential to predict the nature of future losses.
Milestone research as recently done by Rhodin et al. (2015)
and Slavenko et al. (2016) merits replication in further reptile
groups and contexts.

d. Address the knowledge gaps. Human-reptile conflict is a
usual problem for every city and rural landscapes on the
tropics. There, anacondas, pythons and crocodilians threaten
human lives and livestock, a problem that has been scantly
addressed by research. Tortoise and turtles are proficuous
seed dispersers and the research produced to date can be
summarized in a metanalysis to identify specific gaps and
conservation priorities, as has been done by Sobral-Souza
et al. (2017) regarding reintroductions. Nutrient movement
performed by land-nesting aquatic reptiles can be accessed by
stable isotope research, replicating the results obtained in sea
turtles (Bouchard and Bjorndal, 2000).

e. Increasing quantitative research on large reptile population
ecology, with emphasis on density, abundance, and biomass;
most threatened species lack any estimates.

f. Further research on the potentially present or lost ecosystem
effects of extant and extinct reptile species. The few, but
exemplary, research programs on sea turtles (Bjorndal and
Jackson, 2003; Heithaus et al., 2014), should be mirrored by
studies on other reptile groups and sites.

Since the charisma of a species seems to be important to
humanity’s willingness to engage in collective effort to preserve it
(Colléony et al., 2017), reptile conservationists have a hard road
ahead. Biodiversity loss in an anthropogenic age of extinctions
is pressing many species groups. Let us not add to reptiles the
pressure of our silence.
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