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INTRODUCTION

Climate drives many ecological and evolutionary processes on Earth (Parmesan, 2006). The spatial
and temporal variations of climate determine the velocity of climate change and its impacts on
terrestrial ecosystems (Loarie et al., 2009). Climate variation over the years has been one of
the main drivers of changes in biodiversity (Garcia et al., 2014), vegetation growth (Ray et al.,
2015) and the global carbon cycle (Poulter et al., 2014). Moreover, temporal climate variation
including year-to-year variability can shape local adaptation and natural selection (Frank et al.,
2017; Siepielski et al., 2017) and plays an important role in determining tree mortality thresholds
(Neumann et al., 2017). In addition to its variation over time, climate varies spatially, which is very
important to determine the capacity of species to acclimate across ranges (Valladares et al., 2014),
the effects of climate on species distributions (Elith et al., 2006), the outcome of species interactions
over large spatial scales (Gomez-Aparicio et al., 2011; Alexander et al., 2015), and the distribution
of disturbances such as fire (Krawchuk et al., 2009).

Ecological science is therefore dependent on climate databases covering both time and space.
The two climate databases most widely used in ecology to date are the WorldClim (Hijmans et al.,
2005) and CRU TS datasets (Harris et al., 2014), which differ in their quality of data over time
and space. WorldClim includes climatic means at high resolution (30 arc sec or ∼1 × 1 km) over
a reference period (e.g., 1960-1990), which precludes any study of climate variation as well as the
study of recent climate change. CRU TS provides yearly climate data (from 1901 to the present day)
at 0.5◦ longitude by 0.5◦ latitude resolution (∼50× 50 km), a low spatial resolution that limits our
understanding of spatio-temporal processes at fine scales.

To fill this gap between spatial and temporal climate databases in order to study ecological
processes, we present EuMedClim, a new climate dataset that provides high spatial and temporal
resolution (30 arc sec including monthly, seasonal and yearly time steps) of gridded climatologies
for the years 1901–2014 across Europe and the Mediterranean Basin. We used an anomaly
approach to interpolate spatial yearly climate data of CRU TS (version 3.23) using the climate
surfaces of WorldClim (version 1.4) at 1 km resolution. Evaluation of our downscaled data against
individual weather station data show good agreement between EuMedClim and original databases
(EuMedClim vs. WorldClim for spatial and EuMedClim vs. CRU for temporal) and weather
observations, with a higher accuracy of EuMedClim for the temporal component. EuMedClim thus
provides new perspectives for studying spatio-temporal patterns of ecological and evolutionary
processes at high temporal and spatial resolution for Europe and the Mediterranean Basin.
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DATA GENERATION

Input Datasets
WorldClim version 1.4 (Hijmans et al., 2005) provides global
grids of 1960–1990 average climate for monthly precipitation,
mean, minimum and maximum daily temperatures, and 19
derived bioclimatic variables at 30 arc sec resolution (http://
worldclim.org/version1). The grids were produced by spline
surface fitting spatial interpolation using data on latitude,
longitude and elevation from weather station (Hijmans et al.,
2005).

CRU TS version 3.23 (Harris et al., 2014) provides global
climate grids at 0.5 × 0.5◦ resolution of monthly precipitation,
mean, minimum and maximum daily temperatures for the years
1901–2014 (http://data.ceda.ac.uk/badc/cru/data/cru_ts/cru_ts_
3.23/). The CRU dataset was produced by spatial interpolation
of yearly climate anomalies of weather station data relative to
1961-1990 means (Mitchell and Jones, 2005).

EuMedClim Anomaly Approach From CRU
and Worldclim Climate Databases
The fine 30′ resolution WorldClim data were used to adjust the
coarse spatial 0.5◦ resolution of CRU time series data following an
anomaly approach (Zimmermann et al., 2013; Fréjaville andCurt,
2015; Moreno and Hasenauer, 2015). This approach combines
the temporal information of CRU with the spatial information of
WorldClim, by using climate grids derived from Wordclim as a
reference for the spatial variation and yearly climate from 1901 to
2014 derived fromCRU as a reference for temporal variation. The
final resolution of EuMedClim is 30 arc sec resolution (∼1 km)
for yearly climate grids from 1901 to 2014. The spatial window
of EuMedClim includes Europe and the Mediterranean basin
(extent:−20◦ to 60◦ longitude E; 20◦ to 72◦ latitude N).

The particular procedure for the anomaly method is as
follows: we first averaged yearly data from CRU over the
period 1960-1990 (same reference period as WorldClim data)
and then calculated the differences (anomalies) between CRU
and WorldClim average values over this reference period. CRU
average values were resampled at the WorldClim resolution (30
arc sec) using bilinear interpolation (we named this dataset
the CRU interpolated reference period) for comparison of both
databases. Finally, anomalies between the two datasets were
added to the CRU yearly data to build the EuMedClim dataset at
30 arc sec resolution for the years 1901–2014. This approach uses
the existing high-resolution grids (i.e., WorldClim) to interpolate
coarse-resolution grids (i.e., CRU) with resampling techniques
(bilinear interpolation), instead of using complex regression
models with topography and geographical parameters that are
generally used for the interpolation of irregularly distributed
weather station data (e.g., Hijmans et al., 2005; Feidas et al.,
2014).

We computed and applied the anomalies in different
ways depending on the data characteristics. We used
the difference method (Zimmermann et al., 2013) to
downscale each temperature and water balance variable k:
EuMedClimt,k,i = CRUt,k,i − (CRUref ,k,i − WorldClimk,i), where
CRUt,k,i is the CRU interpolated value at cell i for the year t,

and CRUref ,k,i − WorldClimk,i is the anomaly (difference) at
cell i between CRU and WorldClim mean values of k over the
reference period 1960-1990. The yearly grids of each variable
k derived from CRU data were prior resampled (bilinear
interpolation) to the resolution of WorldClim (30 arc sec).
Similarly, we used the ratio of change method (Zimmermann
et al., 2013) to downscale each precipitation and potential
evapotranspiration variable k (that comprise only positive
values): EuMedClimt,k,i = (CRUt,k,i + 1) × (WorldClimk,i +

0.001)/(CRUref ,k,i + 1), where (CRUref ,k,i+ 1)/(WorldClimk,i+

0.001) is the anomaly (ratio) at cell i between CRU and
WorldClim mean values of k over the reference period. An
increment of 1mm precipitation (or evapotranspiration) was
added to both yearly and reference-period CRU data to avoid
null values in cases where CRUref ,k,i is null (no precipitation
over the reference period at a given location). Similarly, an
epsilon increment (0.001) was applied to WorldClim data to
avoid any infinite values that could result if WorldClimk,i is null.
Finally, downscaled precipitation and evapotranspiration values
in EuMedClim were limited to values ≥0.

Eumedclim Database: Climate Variables
We computed the same bioclimatic variables available from
Worldclim (bio1, 2, 5, 6, 12, 13, 14). In addition, monthly

TABLE 1 | List of yearly climatic variables provided by EuMedClim.

Climatic

variables

Unit Definition

bio1 0.1◦C Annual mean temperature

bio2 0.1◦C Mean diurnal temperature range

bio5 0.1◦C Maximal temperature of the warmest month

bio6 0.1◦C Minimal temperature of the coldest month

tmean.djf 0.1◦C Winter mean temperature (December, January, February)

tmean.mam 0.1◦C Spring mean temperature (March, April, May)

tmean.jja 0.1◦C Summer mean temperature (June, July, August)

tmean.son 0.1◦C Autumn mean temperature (September, October,

November)

bio12 0.1mm Annual precipitation

bio13 0.1mm Precipitation of the wettest month

bio14 0.1mm Precipitation of the driest month

prec.djf 0.1mm Winter precipitation (December, January, February)

prec.mam 0.1mm Spring precipitation (March, April, May)

prec.jja 0.1mm Summer precipitation (June, July, August)

prec.son 0.1mm Autumn precipitation (September, October, November)

pet.mean 0.1mm Annual potential evapotranspiration

pet.min 0.1mm Minimal monthly potential evapotranspiration†

pet.max 0.1mm Maximal monthly potential evapotranspiration*

ppet.mean 0.1mm Annual water balance (precipitation minus potential

evapotranspiration)

ppet.min 0.1mm Minimal monthly water balance†

ppet.max 0.1mm Maximal monthly water balance*

†
Minimal monthly value recorded over the year; *maximal monthly value recorded over

the year.
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FIGURE 1 | Evaluation of the spatial and temporal components of EuMedClim and original gridded datasets against weather station data across Europe and

Mediterranean Basin. For the spatial component, the black line is the 1:1 line. For the temporal component, the number of station and corresponding grid cell (#) used

to compute yearly mean values changes over time as illustrated by the brown dashed line; the dark green line indicates the mean temporal trend computed from

EuMedClim across the cells corresponding to all stations (i.e., independent to station data availability over time and space). Coefficients of determination, errors and

the number of station (and corresponding grid cell) used in evaluation for the spatial component, and Kendall’s coefficients of correlation and errors for the temporal

component are indicated in Supplementary Table 1. Evaluation at individual stations is presented in Supplementary Figure 1.
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temperature and precipitation data from WorldClim were
used to compute seasonal temperature and precipitation
variables, potential evapotranspiration (PET) and water
balance (precipitation minus PET) (Table 1). PET was
calculated using Hargreaves’ equations (1994) modified by
Droogers and Allen (2002) in the R package SPEI (Beguería
and Vicente-Serrano, 2013), from monthly precipitation,
monthly temperature (minimum and maximum) and latitude
coordinates.

DATA VALIDATION

Technical validation of the spatial and temporal component
of the EuMedClim database was carried out with weather
station data collected by the Climate Research Unit (https://
crudata.uea.ac.uk/cru/data/hrg/cru_ts_3.23/observation.v3.
23/). We compute the annual mean temperature (bio1),
precipitation (bio12), PET (pet.mean) and water balance
(ppet.mean) for the years 1901–2014 using monthly data
of temperature (daily mean, minimal and maximal values)
and precipitation from weather stations. For the spatial
component, we compared the 1960-1990 climatic means
between individual station data and the corresponding grid
cells of EuMedClim, CRU and WorldClim. For the temporal
component, we first compared 1901–2014 yearly values
averaged across stations and the corresponding grid cells
of EuMedClim and CRU. Because monthly values over the
period 1901–2014 were not available across all stations and
years, we selected only the years without missing values for
each station. Hence, each year was potentially represented
by different stations. Second, we compared EuMedClim
and CRU temporal data with each individual weather
station.

Results show good agreement between EuMedClim and
station data for both the spatial and temporal components
(Figure 1, Supplementary Table 1, Supplementary Figure 1).

For the spatial component, the explained variance of
weather observations (1960-1990 means) ranges from 91.4 to
99.4% and Mean Bias Error (MBE) ranges from −4.5mm to
<0.1◦C for annual water balance and annual mean temperature
respectively, with strong agreement for temperature and slight
underestimation of precipitation (Figure 1, Supplementary
Table 1). Obviously, similar errors are reported between
WorldClim and station data (i.e., WorldClim was used to
infer spatial information of EuMedClim) whereas CRU data
shows higher errors that are inherent to its lower spatial
resolution.

For the temporal component comparison, Kendall’s
coefficients indicate very high correlations between EuMedClim
and station data for yearly mean values, ranging from 0.87
to 0.99 for annual PET and mean temperature respectively
(Figure 1, Supplementary Table 1). MBE ranges from −23.6mm
to 8.9◦C for annual water balance and PET respectively, showing
once again a slight underestimation of precipitation. Root
Mean Squared Error (RMSE) between station and gridded
data are similarly low for EuMedClim and CRU, ranging

from <0.5◦C of annual temperature to 35mm of annual
water balance. Over time, both CRU and EuMedClim data
tend to have higher discrepancies with station data at the
beginning of the study period (1901–1930) that may be due
to a lower number of available weather stations (red line,
Figure 1).

Overall, the EuMedClim and individual station time series
show good agreement across Europe and the Mediterranean
Basin in terms of Kendall’s coefficient and RSME values
(Supplementary Figure 1). Kendall’s correlations between
EuMedClim and individual station time series are higher
than 0.89 for 90% of individual stations (vs. 0.89 for CRU)
for annual temperature (bio1), higher than 0.69 (vs. 0.65) for
annual precipitation, higher than 0.71 (vs. 0.68) for annual
PET and higher than 0.73 (vs. 0.70) for annual water balance.
RMSE between EuMedClim and individual station time
series are lower than 0.8◦C for 90% of individual stations
(vs. 2.23◦C for CRU) for annual temperature, lower than
131mm (vs. 252mm) for annual precipitation, lower than
95mm (vs. 171mm) for annual PET and lower than 172mm
(vs. 385mm) for annual water balance. The evaluation at
individual stations shows that EuMedClim quantifies the
temporal climatic variation over Europe and the Mediterranean
Basin similarly to the CRU dataset, but with higher accuracy.
Our evaluation indicates that CRU and EuMedClim have
higher errors in arid areas of North Africa (particularly
for precipitation), where there are the lowest density of
stations.

For each variable provided by EuMedClim (Table 1), the
spatial patterns, temporal trends and the quantification of errors
relative to the original datasets are presented in Supplementary
Figures 2–4 and Supplementary Table 2.

DATA FILES AND R SCRIPTS

The entire climate dataset and corresponding R scripts to
manipulate it are available at http://gentree.data.inra.fr/climate
(Fréjaville, 2017). For each climatic variable, gridded yearly data
from 1901 to 2014 are provided by eight GeoTiff integer data files.
Each file corresponds to one geographical tile, with longitude (◦E)
and latitude (◦N) boundaries given in the file name. The format of
each GeoTiff file is a multi-layer raster (raster brick) containing
114 layers, with the first and the last layer corresponding to the
years 1901 and 2014, respectively. Data must be divided by 10 to
get correct values (in ◦C or in mm).

Three R scripts are available along with the climate data.
Extract_climate_time_series.R downloads yearly data of one
or several climatic variables at the geographical location
(WGS 84) specified by the user. Compute_climate_maps.R
produces climate maps averaged over a given time period
for a given geographical window specified by the user.
Instead of computing average-climate maps, the user may
choose to compute climatic extremes (minimal or maximal
values) over the desired period to study patterns in climatic
extremes. Climate_downscaling_using_anomaly_approach.R
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presents the generic R code used to downscale climate
data.
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