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This paper reviews the existing hypotheses concerning the cultural shift from the

Ancient Cult (AC) to the Birdman Cult (BC) that occurred on Easter Island (Rapa Nui)

during the last millennium and introduces a holistic new hypothesis called CLAFS

(Climate-Landscape-Anthropogenic Feedbacks and Synergies), which considers a

variety of potential drivers of cultural change and their interactions. The CLAFS hypothesis

can be tested with future paleoecological studies on new sedimentary sequences such

as the new continuous and coherent record encompassing the last millennium from

Rano Kao (KAO08-03) using a combination of pollen, non-pollen palynomorphs (NPP),

charcoal, and fecal lipid analyses, at decadal to multidecadal resolution. The Kao record

should be compared with other continuous records of the last millennium available for

the two other freshwater bodies of the island, Rano Aroi and Rano Raraku, to obtain an

island-wide perspective of spatio-temporal deforestation patterns in relation to climatic

shifts and human activities. The CLAFS hypothesis predicts that the shift from the AC to

the BC was associated with the drying out and deforestation of Rano Raraku (the center

of the AC) by ∼1,570 CE, followed by human migration to Rano Kao (the social center

of the BC), where freshwater and forests were still available. Under the CLAFS scenario,

this migration would have occurred by∼1,600 CE. Findings to the contrary would require

modification and refinement, or outright rejection, of the CLAFS hypothesis and the

consideration of alternate hypotheses compatible with new paleoecological evidence.

Regardless the final results, archeological evidence will be required to link climatic and

ecological events with cultural developments.
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INTRODUCTION

Easter Island (Rapa Nui) is a small and remote Pacific island
of triangular shape (Figure 1) formed by the coalescence of
three submarine volcanoes that emerged from the sea ∼780 kyrs
ago and whose latest major eruption occurred 200–110 kyrs
ago (González-Ferrán et al., 2004; Vezzolli and Acocella, 2009).
Easter Island has been considered a microcosm to illustrate
the potential consequences of the worldwide overexploitation of
natural resources (Diamond, 2005). According to the ecocide
hypothesis, the original Rapanui society caused their own
destruction by resource exhaustion, as manifested in the total
removal of forests that had covered the island formillennia before
human settlement (Flenley and Bahn, 2003). This hypothesis
has dominated the Easter island narrative for decades since its
formulation based on pollen analysis of lake sediments, which
showed an abrupt change from palm to grass pollen, interpreted
as the abrupt replacement of palm-dominated forests by grass
meadows similar to those that cover the island today (Flenley and
King, 1984; Flenley et al., 1991).

Paleoecological reconstructions (notably palynological
analyses to examine vegetation and landscape dynamics
and charcoal analyses to document fire history) have been
instrumental in the study of ecological and cultural change on
Easter Island (Rull et al., 2010). Most paleoecological records
have been obtained using sediment cores from the three natural
freshwater bodies of the island: a mire (Aroi) and two lakes (Kao
and Raraku), all of which are located inside volcanic craters; a
combination that is locally called “rano” (Herrera and Custodio,
2008) (Figure 1). The sedimentary sequences underlying these
water bodies have provided long records extending back to the
last glaciation (Flenley and King, 1984; Flenley et al., 1991; Sáez
et al., 2009; Margalef et al., 2013). However, detailed records
of the last millennia, when the most relevant ecological and
cultural shifts seem to have occurred, are rare, which can be
attributed to intrinsic sedimentary challenges (Rull, 2016b).
Since the earlier studies (Flenley and King, 1984; Flenley et al.,
1991), a major obstacle for paleoecological reconstruction has
been the difficulty in obtaining continuous and chronologically
coherent records, free from sedimentary gaps, and age inversions
(Butler et al., 2004). This has been especially problematic for
the last millennia, where extensive sedimentary gaps have
impeded continuous paleoecological reconstructions (Figure 2).
The apparent abruptness of the island’s deforestation, cited as
supporting evidence for the ecocide hypothesis, is considered to
be an artifact resulting from a sedimentary hiatus that obscured
vegetation shifts occurred between about 4.0–4.2 and 0.8 cal kyr
BP (Mann et al., 2008; Sáez et al., 2009) and created the incorrect
impression that replacement of palm forests by grass meadows
occurred almost instantaneously (Rull et al., 2013).

During the last decade, new coring efforts have provided more
complete records for the last millennia. Noteworthy are two
nearly continuous and chronologically coherent sequences from
Aroi and Raraku embracing roughly the last three millennia,
which have allowed the reconstruction of deforestation patterns
across the island and revealed significant spatial heterogeneities
(Cañellas-Boltà et al., 2013; Rull et al., 2015). Such recent studies

FIGURE 1 | Location map and cored lakes. (A) Sketch map of Easter Island

showing the location of the three freshwater bodies cored for paleoecological

studies (Aroi, Kao and Raraku). The position of the island in the Pacific Ocean

is indicated by a red star. (B) Permanent freshwater lakes and mires from

Easter Island (Photos: V. Rull).

have also provided evidence for the potential role of climatic
shifts and climate-human synergies on the island’s ecological and
cultural developments, which has challenged former paradigms
(Rull et al., 2013). Similar paleoecological reconstructions are still
unavailable for Rano Kao, where the attainment of reliable age-
depth models for the last millennia has been hampered primarily
by the occurrence of frequent age inversions (Flenley and King,
1984; Flenley et al., 1991; Butler et al., 2004; Butler and Flenley,
2010; Horrocks et al., 2012b, 2013). Gossen (2007, 2011) obtained
a coherent sequence for the last millennia but paleoecological
analyses similar to those of Aroi and Raraku, useful to unravel
deforestation trends, are unavailable.
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FIGURE 2 | Sedimentary gaps (gray bars) from previous paleoecological

analyses on Rano Raraku sediments, from where most paleoecological

inferences have been obtained. Redrawn from Rull et al. (2013).

In this paper, we introduce the first continuous and coherent
sequence from Rano Kao encompassing the last millennium and
discuss the potential significance of its paleoecological analysis,
which is in progress, for testing previous and novel hypotheses
about deforestation in relation to eventual climate changes
and/or cultural developments (Rull, 2016a). This Kao sequence
will complement the aforementioned Aroi and Raraku records of
the last millennia to provide an island-wide history, capable of
resolving spatio-temporal trends and patterns of deforestation,
as well as addressing questions concerning human occupation
and eventual intra-island migrations. The paper begins with
an account of cultural developments of the last millennium in
relation to ecological shifts, with an emphasis on the island’s
deforestation. The next section discusses the potential role
of climate and climate-human interactions on ecological and
cultural shifts. Then, Rano Kao and its sediments are briefly
introduced and the new continuous record from this lake is
presented, showing the age-depth model and describing the
analyses that are in progress. Finally, the potential significance
of this new record is discussed in light of the hypotheses and
theories previously debated and others that can emerge from the
new sedimentary evidence.

CULTURAL CHANGE AND
DEFORESTATION

Current archeological evidence seems to point to a relatively
recent human settlement of Easter Island by 1,100–1,300 CE
(Hunt and Lipo, 2006; Wilmshurst et al., 2011), although earlier
dates ranging from 800 to 1,000 CE have also been proposed
(Flenley and Bahn, 2003; Vargas et al., 2006). Regarding the
origin of colonizers, the dominant view is that they proceeded
from East Polynesia (Flenley and Bahn, 2003) but potential
contributions from Amerindian cultures cannot be dismissed
(Thorsby, 2016). Therefore, the main cultural developments of
Easter Island seem to have occurred in the last millennium,

during which two major cultural transformations have been
documented. The first was a profound change in lifestyle,
social organization and ritual practices within the Rapanui
society symbolized by the shift from the so called Ancient
Cult to the Birdman Cult (Edwards and Edwards, 2013).
The second cultural change was the consequence of the
arrival of the first Europeans in 1722. In Easter Island, this
date marks the boundary between prehistoric and historical
times.

The Prehistoric Cultural Shift
During the Ancient Cult (AC) phase, the standard
worship subjects were the moais, the iconic megalithic and
anthropomorphic statues that have become the most popular
symbol of Easter Island. The moais represented deified ancestors
and were considered to guarantee land and sea fertility and,
hence, social prosperity (Edwards and Edwards, 2013). The
socio-political center of the AC was Rano Raraku, the quarry
were almost all moais were carved from the relatively soft
volcanic tuff that forms this crater using basalt tools (metals
were not known) obtained from other craters (Gioncada et al.,
2010). During those times, the Rapanui culture flourished and
its society attained its population maximum, estimated to be
approximately 6,000–8,000 inhabitants (range: 3,000–20,000)
(Brandt and Merico, 2015; Puleston et al., 2017). The Rapanui
society was organized into clans (Figure 3) in a hierarchical
pyramidal organization where the maximum authority of the
island, the Ariki Mau, was invariably the chief of the Miru
clan, considered to directly descend from the first Polynesian
settlers. Rapanui society was organized around the moai industry
(carving, transport, and emplacement on their final platforms
or ahu), and people involved in these tasks, especially sculpture
makers, were a privileged class (Flenley and Bahn, 2003). The
process of moai building and the related industry has been called
ahu moai.

The shift to the Birdman Cult (BC) represented a cultural
revolution (Robinson and Stevenson, 2017). The cult of the
moais declined and was eventually abandoned and the religion
became monotheistic, with Make Make as the highest deity.
The hierarchical dynasty-based political system disappeared and
was replaced by a system in which the most powerful people
were the clan chiefs and the warrior leaders (matato’a). In
the BC, the symbols of fertility and prosperity were migratory
birds, notably the sooty tern ormanutara (Onychoprion fuscatus)
nesting on the surrounding islets, which was considered to be
a nexus between the divine and the human worlds (Edwards
and Edwards, 2013). The maximum authority (the Birdman
or tangata manu) or the representative of Make Make on
Earth) was renewed yearly following a competition among
representatives of all clans. The Birdman of the year was the
chief of the clan whose representative (hopu manu) was able
to swim to the Motu Nui islet, obtain the first sooty-tern
egg of the season and carry it back, in intact condition, to
the ceremonial village of Orongo, situated on the SW rim
of the Kao crater (Figures 4, 7). Therefore, the geographical
core of the Rapanui culture shifted from Rano Raraku, the
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FIGURE 3 | Sketch-map of Easter Island showing the clans of the ancient

Rapanui civilization. Redrawn from Routledge (1919).

moai quarry, to Rano Kao, the headquarters of the BC (Kirch,
2000).

The timing of the AC-BC shift has been debated for a
long time, mainly on the basis of oral tradition, which may
have been subject to historical biases and distortions (Hunt
and Lipo, 2011). A minimum age could be provided by the
foundation of the ceremonial village of Orongo, the center
of the BC (Robinson and Stevenson, 2017) (Figure 4). The
first excavations, performed by the Norwegian expedition led
by Thor Heyerdahl gave radiocarbon ages between 1,540 and
1,576 CE for the beginning of room construction in Orongo
(Ferdon, 1961). However, these ages have been considered
unreliable due to the lack of accurate sample descriptions
(Robinson and Stevenson, 2017) and dubious stratigraphic
correlations (Golson, 1965). Robinson and Stevenson (2017)
summarized all the reliable chronometric information available
from radiocarbon and obsidian hydration dating (Orliac and
Orliac, 1996; Stevenson et al., 2013) and concluded that the
first petroglyph complexes and stone houses of Orongo are not
older than 1,600 CE and the activities on the site experienced
an intensification in the very late 18th century (Figure 5),
well after the European contact (Robinson and Stevenson,
2017).

Additional evidence of human activity in the Kao catchment
has been found in the lake shores just beneath Orongo
(Figures 4, 7), where pollen, phytolith, and starch analyses of
marginal sediment cores have documented relatively intense
horticultural activity based on cultigens of Polynesian origin
(Horrocks et al., 2012b, 2013, 2016). Unfortunately, sediments
had been mixed by human activity, which has prevented the
development of a reliable chronological model. Therefore, it
is not possible to know whether agricultural activities on lake
terraces predated the foundation of Orongo. In summary,
the available evidence points toward a minimum age of
1,600 CE for the AC-BC cultural shift. According to Van
Tilburg (1996), however, the AC and the BC would have

FIGURE 4 | The ceremonial village of Orongo at the SW rim of the Kao crater.

See Figure 7 for the precise location. (A) Google Earth view showing the

typical ellipsoidal boat-shaped stone houses. (B) Close front view of a typical

stone house (Photo: N. Cañellas).

overlapped for some time and the cultural shift would have
not been abrupt but transitional (Edwards and Edwards,
2013).

The Ecocide Hypothesis
According to the ecocide hypothesis, the AC-BC shift was a
direct consequence of the island’s deforestation. Based primarily
on paleoecological evidence, the proponents of this hypothesis
argue that deforestation commenced by 1,200–1,300 CE and
was complete by 1,400 CE or, at the latest, by 1,600–1,650
CE (Orliac, 2000; Flenley and Bahn, 2003; Mann et al., 2008;
Mieth and Bork, 2010). Mieth and Bork (2010) estimated that,
prior to deforestation, ∼16 million palm trees would have
dominated the forests that covered ∼70% of the island. The
botanical identity of this palm is still a matter of controversy
but the dominant view is that the species was endemic to
Easter Island and is now extinct (Dransfield et al., 1994). In
the ecocide scenario, deforestation would have been part of a
general process of natural resource exhaustion by uncontrolled
exploitation leading to an ecological crash and a profound crisis
of the Rapanui culture (Flenley and Bahn, 2003; Diamond,
2005). Such ecological and cultural collapse would have instigated
a general degradation of Rapanui society characterized by
dramatic demographic reduction due to starvation, social
conflicts and internal warfare, as well as a general and profound
reorganization characterized by the shift to the BC. It has
also been suggested that the abandonment of the moai cult
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FIGURE 5 | Summary of all reliable radiocarbon and obsydian hydration dates

obtained in Orongo. Redrawn from Robinson and Stevenson (2017), after

original data from Orliac and Orliac (1996) and Stevenson et al. (2013).

Radiocarbon dates are expressed as 1 α (brown bars) and 2 α (white bars)

intervals.

included the intentional toppling of these statues, a practice
called huri moai. According to some model-based estimates,
the demographic reduction of Rapanui would have been >80%,
from ∼14,000 to ∼2,000 inhabitants (Brandt and Merico, 2015),
who lived in precarious conditions, mostly inhabiting lava-tube
caves for protection. Some proponents of the ecocide hypothesis
interpret the geographical shift of the Rapanui cultural center
from Raraku to Kao and the onset of the BC as a manifestation
of newly acquired supremacy of western clans over eastern
ones (Figure 3), which had dominated the scene until then,
following internal conflicts (McCall, 1980; Flenley and Bahn,
2003).

Cultural Resilience and the Historical
Genocide
An alternative hypothesis is that deforestation was not caused
directly by humans but by massive consumption of palm fruits by
rats, thus preventing forest regeneration. This idea is based on the
frequent occurrence in soils and archeological sites of endocarps
of palm fruits with rat gnaw-markings (Hunt, 2006, 2007; Hunt
and Lipo, 2011). Rats would have been of Polynesian origin,
likely transported by the first settlers (West et al., 2017). In this
scenario, the timing of deforestation does not differ considerably
from that of the ecocide hypothesis. Regardless of the ultimate
cause of deforestation, a number of researchers dismiss the
occurrence of social crisis following forest clearing and argue
that the Rapanui were resilient to forest removal and remained

healthy until European contact (Hunt and Lipo, 2011; Boersema,
2015; Jarman et al., 2017). Analysis of widespread land-use
evidence and radiocarbon dates from archeological sites across
the island support this hypothesis and suggest that the ancient
Rapanui developed sustainable agricultural practices and did not
experience a social crisis prior to Europen arrival (Stevenson
and Haoa-Cardinali, 2008; Mulrooney, 2013; Stevenson et al.,
2015). According to this view, the cultural collapse of Rapanui
society was in fact a genocide, which started with the European
arrival and was the outcome of direct violence, the introduction
of unknown epidemic diseases (smallpox, syphilis, tuberculosis),
and slave trading (Hunt and Lipo, 2011). Such post-contact
cultural and demographic degradation of the Rapanui society
has been confirmed by historical documents (Routledge, 1919;
Métraux, 1940) and seems to have been especially intense during
the 19th century (McCall, 1980; Fischer, 2005; Boersema, 2015).
In this scenario, the AC-BC shift, the deforestation and the
collapse of the ancient Rapanui culture are separate events that
are not causally linked. A pre-contact population reduction
is not dismissed but is attributed to land-use heterogeneities
leading to an eventual decline in food production, rather than
to a hypothetical island-wide pre-contact collapse, as proposed
by the ecocidal theory (Stevenson et al., 2015; Puleston et al.,
2017).

Other Hypotheses
Other hypotheses have been proposed to explain cultural changes
on the Rapanui during the last millennium. For example, a
theory combining elements from both the ecocide and genocide
hypotheses was developed by Brandt and Merico (2015), who
modeled the demographic evolution of Rapanui society since
1,200 CE and suggested an initial population decline around
1,400 CE, likely linked to deforestation, and a second decline by
1,800 CE, as a consequence of European contact. Others contend
that the collapse of Rapanui society would have occurred in a
short time period between European contact (1,722 CE) and the
visit of Captain Cook (1,774 CE). This is based on the respective
navigation logs, the first reporting a healthy society still practicing
moai worship and the second documenting a depauperate island
with toppled moais. Some speculate that the change must have
been due to a catastrophic event between the times of the two
visits, such as an internal war (Fischer, 2005; Hunt and Lipo,
2011).

CLIMATIC AND ECOLOGICAL SHIFTS

The hypotheses discussed above attributed ecological and
cultural changes on Easter Island to anthropogenic causes
and this has become the prevalent narrative. McCall (1993)
speculated that climatic changes, especially eventual Little Ice
Age (LIA) droughts, should also have had a role. However, this
proposal was ignored or explicitly dismissed owing to the lack
of empirical support (Flenley and Bahn, 2003). However, the
intensification of coring campaigns and paleoecological studies
during the past decade have challenged this paradigm (Rull
et al., 2013, 2016). For example, Mann et al. (2008) and Sáez
et al. (2009) interpreted the sedimentary gap recorded in the
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Raraku peaty sediments between about 4.0–4.2 and 0.8 cal kyr
BP (Figure 2) as evidence for drought and lowered lake levels,
which would have caused subaerial exposure and erosion of
former wetland sediments. The fairly continuous Raraku and
Aroi records obtained later closed the sedimentary gap and
allowed for refined paleoecological interpretation, with authors
proposing the existence of two episodes of drought at about
880–1,170 CE and 1,570–1,720 CE, respectively (Cañellas-Boltà
et al., 2013). The first encompassed most of the Medieval Climate
Anomaly (MCA) and the second occurred during the LIA (Rull
et al., 2016), supporting the initial proposal of McCall (1993),
that there is a connection between climatic severity and Rapanui
societal changes. However, the link between environmental and
cultural shifts remained unclear (Rull, 2016a). Palynological
analysis of the Raraku and Aroi continuous sequences provided
more information in this regard.

In the Raraku catchment, a significant forest reduction
coinciding with the continuous presence of charcoal was
recorded shortly after the MCA drought (880–1,170 CE)
(Figure 6) and was interpreted as anthropogenic forest clearing
using fire (Cañellas-Boltà et al., 2013). The timing is consistent
with early deforestation hypotheses and the evidence for burning
points toward clearance by humans, rather than deforestation by
rats. However, forest removal was not complete and open palm
woodlands remained around the lake. It is possible that drought
would have increased vegetation flammability by increasing the
accumulation of dead biomass or by decreasing the moisture
content of live biomass (Bond and Keane, 2017), thus facilitating
burning practices. The anthropogenic hypothesis is reinforced
by the fact that climatic dryness did not affect the open palm

woodlands that covered Rano Aroi area, which was likely
inhabited by those times (Horrocks et al., 2015; Rull et al., 2015).

A subsequent humid phase, between about 1,200 and 1,550
CE, coincided with a significant increase of palm forests in
Rano Aroi but not in Rano Raraku (Figure 6), perhaps due to
the continued human pressure (Rull et al., 2016). Indeed, fires
persisted in Raraku and the first signs of cultivation appeared
around 1,400 CE (Horrocks et al., 2012a). A second deforestation
event, linked to an increase in evidence for burning, took place
in Raraku by 1,450 CE and palm forests disappeared from the
catchment by 1,500 CE (Cañellas-Boltà et al., 2013). In Aroi, wet
climatic conditions and the absence of human settlements, would
have favored palm forest expansion and/or densification.

During the LIA drought (1,570–1,720 CE), the Raraku
catchment was likely devoid of forests and freshwater due to the
combination of former human deforestation practices and the
drought-induced desiccation of the lake (Cañellas-Boltà et al.,
2013). The Aroi forests still remained but were totally removed
by 1,620 CE, also with the aid of fire, roughly a century after
the deforestation around Raraku (Rull et al., 2015) (Figure 6).
During this dry phase, by 1,640 CE, Rano Aroi started to be
cultivated (Horrocks et al., 2015), which suggests the presence
of humans and enough freshwater availability for agriculture. A
subsequent humid phase did not change the situation in Raraku,
where forests did not recover likely due to the continued fires.
A similar situation was recorded in Aroi, where fires peaked at
about 1,720 CE and strongly receded later (Figure 6).

In addition to climate change, other natural hazards such as
regional volcanic eruptions or tsunamis have been considered
potential drivers for ecological and cultural change across the

FIGURE 6 | Summary pollen diagrams of Raraku and Aroi continuous sequences for the last millennia. Redrawn from Cañellas-Boltà et al. (2013) and Rull et al.

(2015). In Raraku, light-colored areas indicate the sedimentary gaps with no pollen data. Red arrows indicate the first evidence of cultivation according to Horrocks

et al. (2012a, 2015). The European contact (EC) is indicated by a dotted blue line.
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Pacific archipelagos, including Easter Island (Margalef et al.,
in press). Evidence for the influence of these environmental shifts
on Easter Island is still to be identified in sedimentary records
but the interest on verifying this possibility is increasing due
to geomorphological and documentary evidence for the impact
of historical tsunamis on some coastal moai complexes (Cortez
et al., 2009).

AN ALTERNATIVE SCENARIO

The combination of the available paleoecological evidence and
the known cultural developments of the ancient Rapanui society
described above may provide a new holistic scenario that
considers climatic changes and human activities, as well as their
corresponding feedbacks and synergies, as the main drivers of
Easter Island’s ecological and cultural change. This proposal
should be considered an integrative hypothesis to be tested
with future studies from the different disciplines involved. The
overall framework for this integrative hypothesis, tentatively
called CLAFS (Climate-Landscape-Anthropogenic Feedbacks
and Synergies), is provided hereafter.

TheMCA drought (880–1,170 CE) roughly coincided with the
time range proposed for initial human settlement. If settlement
was early (i.e., between 800 and 1,000 CE), then significant
deforestation began 200 to 400 years after Polynesian arrival.
This may suggest that resource exploitation had a low impact
on vegetation until 1,200 CE when land-use practices became
unsustainable (Orliac, 2000; Mann et al., 2008; Mieth and
Bork, 2010). If, on the contrary, Polynesian settlement took
place later, between 1,100 and 1,300 CE, deforestation practices
would have started almost immediately in Rano Raraku. The
humid phase between the MCA and the LIA (1,200–1,550 CE)
coincided with the ahu moai practices characteristic of the AC
and the florescence of the ancient Rapanui society. It is possible
that favorable weather conditions promoted human population
growth thus increasing the demand for food and raw materials,
which would have led to the above-mentioned unsustainable
land-use practices and exacerbated deforestation likely due to
positive feedbacks.

The transition from Ancient Cult to Birdman Cult occurred
shortly after the onset of the LIA drought (1,570–1,720 CE),
suggesting a novel hypothesis for the cultural change and the
corresponding geographical displacement of the Rapanui cultural
core (Rull, 2016a). During this drought, Rano Raraku was a very
inhospitable place devoid of forests and freshwater due to the
synergistic action of climatic drought and unsustainable human
practices. As a consequence, lifestyles and cultural developments
characteristic of the ancient Rapanui society that practiced
the AC would have become unworkable. The Rapanuis might
have been forced to abandon the catchment in the search for
freshwater and other natural resources. It is likely that part of
the Rapanui population migrated to Rano Aroi by 1,500–1,600
CE, where forests and freshwater were still available, but the
small size of this catchment would have led to quick resource
exhaustion after 1,620 CE. The other option for relocation was
RanoKao, which contained a large and permanent lake that could

provide freshwater and possibly more extensive forests to exploit.
According to the available chronological evidence, Orongo, the
center of the BC, was founded by 1,600 CE (Robinson and
Stevenson, 2017), shortly after the beginning of the LIA drought,
which is consistent with the idea that the Rapanui migrated in
search of more favorable living conditions. It is also possible that
the environmental deterioration of Rano Raraku contributed to
an eventual superiority of western clans (Figure 3) due to their
permanent freshwater supply from Lake Kao.

The walls of the Rano Kao vent are made of basalt, which is
too hard for moai carving with the rocks available on the island
(the Rapanui was a Neolithic society that did not know metals).
Indeed, stone tools used during the ahu moai phase of statue
carving were obtained in Rano Kao and other quarries, where
basalt was hard enough to sculpt the softer Raraku tuff (Gioncada
et al., 2010; Simpson and Dussubieux, 2018). This could explain,
in part, why the relocation of the Rapanui cultural center to Rano
Kao coincided with the decline of moai carving and the shift to
different ritual practices. The shift to a radically different lifestyle
and social organization requires a more complex explanation. As
we mentioned before, the flourishing of the Rapanui civilization
occurred during a phase of wet climate and the oncoming LIA
drought, along with the deforestation of the craters containing
freshwater, would have been unfavorable for population growth.
In this context, it has been speculated that a more flexible socio-
political organization would have increased human adaptability
to less predictable environmental and probably unprecedented
conditions. The shift from the AC rigid, hierarchical and dynasty-
based political system to the more dynamic BC system, based on
the continuous political renovation has been interpreted in terms
of cultural adaptation to more unpredictable environmental
conditions (Rull, 2016a).

Some archeological evidence for intra-island cultivation shifts
is consistent with this CLAFS view. Stevenson et al. (2015)
suggest that the AC-BC cultural transition was associated with
reductions in land-use intensity in the drier sectors of the
island and in infertile soils from upland areas, which increased
land pressure in other parts of the island. Similar intra-island
migrations, notably from coastal to inland sites, have been
reported for many other Pacific islands by the same LIA times
(Nunn, 2003, 2007; Nunn et al., 2007). From a paleoecological
perspective, a continuous and coherent Kao record similar to
those of Raraku and Aroi is essential to resolve deforestation
trends and patterns over time and across space, in relation to
cultural developments.

LAKE KAO AND THE NEW RECORD

The Lake and Its Sediments
Rano Kao is the largest freshwater body of Easter Island with
about 1,250m diameter and >10m of maximum water depth
(Figure 7). A notable feature of this lake is the presence of
a discontinuous floating mat typically up to ∼3m depth that
forms a mosaic with open water spots all around the lake
surface. The floating mat is dominated by Scirpus californicus
(Cyperaceae) and Polygonum acuminatum (Polygonaceae) a
common association in the island’s freshwater bodies (Zizka,
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1991). According to the available information, this floating
mat formed during the last 900–1,000 years by progressive
accumulation of plant remains; therefore, during roughly the
last millennium, sediments (and therefore proxies for ecological
change) have been accumulating on both the floating mat
(developing a peat-like deposit) and at the lake bottom (as
lacustrine sediments) (Rull, 2016b). It has been suggested that
these two archives have been partially mixed by the eventual
sinking ofmat fragments to the lake bottom, causing the observed
chronological anomalies in the Kao sedimentary sequence (Butler
et al., 2004). This idea is supported by the morphological patterns
of the floating mat mosaic, where the mostly sharp and straight
edges of vegetation patches (Figure 7) suggest disaggregation
and sinking of mat fragments. Therefore, it seems reasonable
to assume that best likelihood for a continuous and coherent
paleoecological record of the last millennium would be found
within the floatingmat, rather than in the lake-bottom sediments.

Eight coring localities within the lake basin have been
documented: six near the lake shores, one close to the lake center,

FIGURE 7 | Rano Kao. (A) Google Earth view of Rano Kao indicating the

coring sites from previous works (white dots) and the locality described in this

paper (yellow star). The ceremonial village of Orongo is also indicated.

Redrawn from Rull (2016b). (B) Close up of the floating mats around the

center of Lake Kao. Note the sharp and angular nature of most mat/water

contacts (Photo: O. Margalef).

and another in an intermediate position (Figure 7). The more
marginal sites have provided composite sequences where the
floating mat overlies the bottom sediments, whereas in more
central localities, the floating mat and the bottom sediment
records are separated by a water column of variable depth, up
to ∼10m. The longest sequences retrieved from the lake are of
∼10 to 20m depth, and have maximum ages between ∼15 and
∼34 cal kyr BP, respectively (Gossen, 2011; Horrocks et al., 2013).
These cores did not reach the bedrock and the total depth of Kao
sediments remains unknown.

The KAO08-03 Core Record
The new sedimentary record reported in this paper (KAO08-03;
27◦ 10′ 57.526′′ S - 109◦ 26′ 7.591′′ W; 109m elevation) was
taken in October 2008 with a Russian corer, on a floating mat
close to the northernmost lake shore (Figure 8). The uppermost
part of the core was water and the sedimentary record started at
80 cm, extending downward until 300 cm, which was the depth
of the floating mat at the coring point. The sediment consisted of
fibrous peat, light to dark brown in color. The core (consisting of
five drives) was sealed and transported to the Institute of Earth
Science Jaume Almera (ICTJA, Spain), where it was preserved in
a cool chamber at 4◦C.

Nine samples were obtained for radiocarbon dating, which
was conducted at the Radiocarbon Laboratory of the Université
Laval (Canada). We used pollen extracts obtained by acid/base
digestion (KOH, HCl and HF) to remove the rejuvenating
effect of eventual incorporation of younger plant material
and/or humic acids percolating through the peat profile
(Vandergoes, 2003). All samples yielded ages corresponding to
the last millennium except one (Table 1), which was considered

FIGURE 8 | Coring the Rano Kao floating mat. (A) Two members of the 2008

expedition (V. Rull and S. Pla) coring the floating mat of Rano Kao with a

Russian corer at site KAO08-03. (B) Drive 2 (131-181 cm) of core KAO08-03

showing the fibrous brown peat.
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TABLE 1 | Results of radiocarbon dating carried out at the Radiochronology Lab of the Université Laval (Canada).

Core sample Lab code Depth (cm) Material 14C yr BP Cal yr BP Range (2σ) Prob.

KAO3-1-24 ULA-5790 106 Pollen residue 305 ± 15 312 289–327 0.805

KAO3-1-43 ULA-5792 125 Pollen residue 290 ± 15 304 283–323 0.988

KAO3-2-39 ULA-5789 141 Pollen residue 355 ± 20 392 350–452 0.816

KAO3-2-20 ULA-5791 160 Pollen residue 470 ± 20 499 468–516 1.000

KAO3-6-15 ULA-5872 196 Pollen residue 695 ± 15 597 563–658 1.000

KAO3-6-35 ULA-5821 216 Pollen residue 885 ± 20 748 720–791 0.967

KAO3-7-16* ULA-5874 247 Pollen residue 5060 ± 20 5755 5658–5891 1.000

KAO3-7-40 ULA-5817 271 Pollen residue 1060 ± 20 934 906–962 0.977

KAO3-8-12 ULA-5873 297 Pollen residue 1165 ± 15 1017 968–1059 1.000

Samples are sorted by total depth. The sample with an asterisk was not used in the age-depth model.

anomalous and was excluded from the age-depth model. This
type of anomalies have been attributed to an increase of
the reservoir effect due to (i) punctual increases of aquatic
plants, (ii) reductions in CO2 exchange with the atmosphere
due to increase of depth-to-surface ratio, (iii) incorporation
of older oxidized organic matter from former shore-lake
lacustrine deposits, and (iv) inflows of CO2-rich waters due
to volcanic degassing or eventual inputs from nearby aquifers
(Philippsen, 2013). In our case, the more probable causes
were (i) and (iii) but more detailed studies are needed for
a sound assessment. Radiocarbon calibration was carried out
with CALIB 7.1 (calib.org/calib) using the SHcal13 database
for the Southern Hemisphere (Hogg et al., 2013). Age-depth
modeling was done using the smooth-spline option (smoothness
0.4) in the Clam.R 2.2 software (Blaauw, 2010). The model
obtained shows strong chronological coherence and continuity,
indicating that the record can provide a detailed and continuous
paleoecological reconstruction for the last millennium, and
can provide comparison with the main cultural and ecological
events discussed above (Figure 9). We also tried the Bayesian
age-depth model called Bacon (using R programming) for
comparison (Blaauw and Christen, 2011). Results are shown
in Figures S1, S2 of the Supplementary Material, where it can
be realized that differences in estimated ages are small and
non-significant.

A total of 107 samples were collected from the core, 55
for palynological analysis and 52 for lipid analysis, providing
an average resolution of <20 years between adjacent samples.
Palynological analysis is in progress at the Laboratory of
Paleoecology of the (ICTJA), and consists of analysis of pollen,
spores, microcharcoal and non-pollen palynomorphs (NPP),
notably the spores of coprophilous fungi. These proxies will
provide information on deforestation, fires, and the eventual
presence of introduced plants and domestic animals (Bennett and
Willis, 2001; Van Geel, 2001; Whitlock and Larsen, 2001). These
samples will also be used to conduct macrocharcoal analyses for a
better record of local fires and also to try to distinguish fuel types
(Aleman et al., 2013), notably palms and grasses. Lipid analysis
is being carried out at the Lamont-Doherty Earth Observatory
(LDEO) of Columbia University (USA). This analysis is aimed
at identifying specific fecal lipids, including 5α-stanols and bile
acids, biomarkers for the presence of humans and/or ruminant

FIGURE 9 | Age-depth model of core KAO08-03 using the smooth-spline

option. See text and Table 1 for more details. The upper part of the figure

shows some significant events discussed in the text. Gray bands are the

droughts recorded at Rano Raraku (Cañellas-Boltà et al., 2013). EIS,

Proposed range for early island settlement (Flenley and Bahn, 2003; Vargas

et al., 2006); LIS, proposed range for late island settlement (Hunt and Lipo,

2006; Wilmshurst et al., 2011); RD, Rano Raraku deforestation (Cañellas-Boltà

et al., 2013), the black dot indicates the first evidence of cultivation (Horrocks

et al., 2012a); AD, Rano Aroi deforestation (Rull et al., 2015), the black dot

indicates the first evidence of cultivation) (Horrocks et al., 2015); OF,

Foundation of the ceremonial village of Orongo (Robinson and Stevenson,

2017); EC, European contact.

livestock (Leeming et al., 1996; Bull et al., 2002; D’Anjou et al.,
2012). Together, this suite of analyses is expected to provide direct
in situ evidence for the level of human activity in and around the
catchment.
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SOME TESTABLE PREDICTIONS

Hypothesis tests that can be conducted with the new Kao record
concern the timing of human occupation and deforestation of
the Kao catchment, whether these events were simultaneous
or not, and the rates at which they occurred. Comparison
of the new Kao records with those from Raraku and
Aroi could provide the pan-island, continuous, and coherent
paleoecological reconstruction of the last millennium. Regardless
the results obtained, further archeological evidence will be
necessary to examine their cultural implications. Among the
predictions of the CLAFS scenario, the following could be
highlighted:

The CLAFS hypothesis predicts that evidence for full
human occupation of the Kao catchment should be found
close to the date of the foundation of Orongo (∼1,600
CE). An earlier occupation cannot be dismissed but, under
the CLAFS hypothesis, this would have been minimal with
a significant increase ca. 1,600 CE. If the Kao catchment
was fully occupied before the LIA drought (1,570–1,720 CE)
and there is no evidence supporting a population increase
at Kao by 1,600 CE, the CLAFS hypothesis should be
reconsidered in favor of alternative hypotheses, such as the
ecocide hypothesis. If a population increase is found to
have occurred later than 1,600 CE, the migration to Kao,
and possibly the onset of the BC, could conceivably have
been influenced by European contact (1,722 CE), as has
been suggested by some researchers (Robinson and Stevenson,
2017).

Regarding deforestation, the CLAFS scenario is compatible
only with spatio-temporal heterogeneities; that is, with different
deforestation timing among Aroi, Raraku and Kao. Evidence
for this already exists for the first two sites, for which the
onset of deforestation appears to have been separated by
several centuries (Figure 6). The CLAFS hypothesis predicts
that deforestation of the Kao catchment coincided with the
intensification of human activity at the site ca. 1,600 CE,
similar to the timing of forest clearing at Aroi. Again, an
earlier deforestation, coeval with that of Raraku, would instead
favor ecocide hypothesis, whereas a later forest clearing,
after the LIA drought, would support the influence of post-
contact events. Under the CLAFS scenario, it is expected that
deforestation and fire occurrence, as inferred from sedimentary
charcoal counts, are strongly related, as has been observed for
Raraku and Aroi (Figure 6). However, while the coincidence
of proxies for fire, deforestation, and human presence
support anthropogenic forest clearing practices, such a co-
occurrence cannot distinguish between the CLAFS and ecocide
hypotheses.

It is important to note that there are no unique predictions
under the CLAFS hypothesis concerning rates of Kao
deforestation and human settlement. Possibilities include (1) fast
and synchronous events, as inferred for Aroi (Figure 6), (2) early

settlement and gradual deforestation, as inferred for Raraku, and
(3) gradual settlement and abrupt deforestation.

ALTERNATIVE SCENARIOS

There also remains the possibility of obtaining unexpected
results. Some of these eventual findings could support the CLAFS
hypothesis while others do not, in which case the working
hypothesis should be reconsidered or reformulated to become
more general. We are not particularly attached to any specific
hypothesis, but rather in the explanation that best fits the
entire body of available evidence. We use the multiple working
hypotheses approach that seeks to explore any reasonable
explanation for observed phenomena and develop every testable
hypothesis (Chamberlin, 1965). In this framework, the CLAFS
model should be viewed as a research tool to be subjected
to scrutiny through hypothesis testing, and improvement or
rejection, just as any other hypothesis. It is possible that
paleoecological analysis of the new Kao record will suggest a
different framework for understanding the complexities of the
Rapanui, thereby promoting new unexpected ideas, in which
case, the results will inspire new opportunities for a better
understanding of Easter Island’s prehistory.

CONTRIBUTION TO GLOBAL DATABASES

The results obtained in this and future research on core KAO08-
03 will be contributed to the EIRA database (https://www.ncdc.
noaa.gov/paleo-search/study/19805) (Rull, 2016b) in the case of
radiocarbon dates, Global Charcoal Database (http://paleofire.
org) for charcoal data and Neotoma (http://neotomadb.org) for
pollen counts.
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