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Drosophila species have successfully spread and adapted to diverse climates across

the globe. For Drosophila melanogaster, rotting vegetative matter provides the primary

substrate for mating and oviposition, and also acts as a nutritional resource for

developing larvae and adult flies. The transitory nature of decaying vegetation exposes

D. melanogaster to rapidly changing nutrient availability. As evidenced by their successful

global spread, flies are capable of dealing with fluctuating nutritional reserves within

their respective ecological niches. Therefore, D. melanogaster populations might contain

standing genetic variation to support survival during periods of nutrient scarcity. The

natural history and genetic tractability of D. melanogaster make the fly an ideal

model for studies on the genetic basis of resistance to nutritional stress. We review

artificial selection studies on nutritionally-deprived D. melanogaster and summarize

the phenotypic outcomes of selected animals. Many of the reported evolved traits

phenocopy mutants of the nutrient-sensing PI3K/Akt pathway. Given that the PI3K/Akt

pathway is also responsive to acute nutritional stress, the PI3K/Akt pathway might

underlie traits evolved under chronic nutritional deprivation. Future studies that directly

test for the genetic mechanisms driving evolutionary responses to nutritional stress will

take advantage of the ease in manipulating fly nutrient availability in the laboratory.

Keywords: adaptation, artificial selection, evolved traits, experimental evolution, malnutrition, nutritional

deprivation, PI3K/Akt, starvation

INTRODUCTION

The colonization of diverse ecological niches exposes organisms to varied environmental stresses.
These stresses exert selection pressures which might lead to changes in physiology and behavior.
Changes that enhance organismal fitness can result in adaptive evolution, a process by which
selection acts on heritable changes in the genetic architecture of a population. Thus, studies on
how organisms respond to chronic stressors provide valuable insights on adaptation.

Recent advances have uncovered varied responses to stress in different organisms (Badyaev,
2005). Among the limited number of model systems that have been established for these studies,
the vinegar fly, Drosophila melanogaster, remains one of the most tractable. Adaptation to
diverse environmental conditions underlies the successful global spread of Drosophila (Stephan
and Li, 2007), facilitating its dissemination across multifarious ecological habitats (Keller, 2007).
Physiological and behavioral responses have helped the fly adapt to and survive in conditions
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encompassing a wide range of humidity (Matzkin et al.,
2007; Ahuja et al., 2012; Griffin et al., 2016), oxygen
concentration (Romero et al., 2007; Zhou et al., 2007),
temperature (Bochdanovits and de Jong, 2003; Trotta et al.,
2006), and nutrient availability (Kolss et al., 2009). Reproducing
diverse environments in the laboratory has revealed how various
parameters influence different fly traits, but the molecular
mechanisms underlying adaptation to varied habitats are still
unclear.

Due to the ease in which the fly diet can be manipulated
in the laboratory, nutrition has been a major focus in studies
of environmental factors that affect stress-induced acquired and
heritable traits (Rion and Kawecki, 2007). In the wild, Drosophila
larvae develop in ephemeral habitats such as rotting vegetative
matter, resulting in rapid changes to food quantity and quality.
Nutritional stress can include starvation due to food deprivation
and malnourishment due to nutrient imbalance or depletion.
Nutritional scarcity is further exacerbated by competition as
greater larval density depletes scant resources. Moreover, other
species share habitats with Drosophila, resulting in interspecies
competition that further contributes to nutritional stress.

Drosophila larval populations selected on nutrient-poor
food exhibit various behavioral and physiological changes
(Kolss and Kawecki, 2008; Kolss et al., 2009; Vijendravarma
et al., 2011, 2012a,b, 2013; Vijendravarma and Kawecki, 2013).
These changes include altered foraging behavior, accelerated
development, reduced body weight, and smaller body size (Kolss
and Kawecki, 2008; Kolss et al., 2009; Vijendravarma et al.,
2011, 2012b, 2013). These phenotypes are maintained when
selected populations are subsequently raised on a richer diet,
suggesting a genetic basis for these traits (Kolss and Kawecki,
2008; Kolss et al., 2009; Vijendravarma et al., 2012b, 2013).
Interestingly, morphological changes in response to nutritional
stress phenocopy mutants of PI3-kinase (PI3K)/Akt signaling,
a pathway known to be responsive to nutritional status (Chen
et al., 1996; Montagne et al., 1999; Oldham et al., 2000;
Figure 1). Hence, under prolonged malnutrition, we hypothesize
that fly nutrient-sensing pathways might be under selective
pressure.

Genome-wide expression profiles revealed overlapping
changes in gene transcript levels between TOR kinase
null mutants and starved control animals (Li et al., 2010).
Hence, the effects of short-term nutritional stress might
be partially mediated by reduced TOR signaling. Despite
these studies on acute starvation, it remains unknown
whether PI3K/Akt signaling is also altered under chronic
nutritional stress. Future studies using targeted genomic
approaches might reveal the selection of this pathway and
unravel malnutrition-mediated evolutionary responses that
underlie tolerance to nutritional stress. Here, we review
the studies that have evolved phenotypic responses under
chronic malnutrition and highlight the possibility that the
PI3K/Akt pathway is under selection during prolonged
nutritional adversity in flies. These perspectives inform our
understanding of the molecular basis of the physiological
and behavioral changes associated with adaptation to
malnutrition.

BODY SIZE AND WEIGHT

Evolved body size is associated with available nutrition. Flies
selected for 29 generations on low concentration sugar and
protein medium exhibit a number of adaptive consequences,
including smaller body size and reduced weight (Kolss et al.,
2009). Conversely, a quasi-natural selection experiment using a
protein-rich diet favored large flies with greater dry mass and
reduced lipid content compared to controls (Kristensen et al.,
2011). Interestingly, mutations in components of the PI3K/Akt
pathway impede larval growth and also reduce body size. Genetic
manipulations of ILPs, InR, Chico, PI3K, Akt, TOR, S6K, FOXO,
and Slimfast (Figure 1) have all been found to reduce body
weight or size in larvae or adults (Böhni et al., 1999; Montagne
et al., 1999; Oldham et al., 2000; Zhang et al., 2000, 2009;
Britton et al., 2002; Colombani et al., 2003; Hietakangas and
Cohen, 2007; Mattila et al., 2009), mimicking development under
poor nutritional conditions (Kolss et al., 2009; Vijendravarma
et al., 2011, 2012a). Such parallels in the literature bolster
our hypothesis that the nutrition-sensing PI3K/Akt pathway
might be under selective pressure during prolongedmalnutrition.
Changes in body size or weight might be associated with multiple
factors, including the critical size required for initiation of
metamorphosis (Tennessen and Thummel, 2011). Fly growth
during development is characterized by two distinct phases: (1) a
pre-critical-weight phase that can vary in time depending on the
nutritional conditions and (2) a post-critical-weight phase where
nutritional stress can no longer delay pupariation. During the
pre-critical-weight phase, insulin signaling affects development
time but not body size whereas, in the post-critical-weight period,
it affects body size and not development time (Mirth et al.,
2005; Shingleton et al., 2005). Hence, any changes in critical
weight threshold can have a direct impact on both development
time and body size. Interestingly, flies selected under chronic
malnutrition develop more quickly (Kolss et al., 2009), possibly
due to reduced critical size threshold (Vijendravarma et al.,
2012a). Although mutations in PI3K/Akt pathway components
result in a developmental delay (Zhang et al., 2000; Rulifson
et al., 2002; Layalle et al., 2008), shortened development time
in malnutrition-selected populations might be caused by altered
prothoracicotropic hormone signaling, which has been proposed
to regulate critical size upstream of TOR function (Layalle et al.,
2008).

Once critical weight is attained, the prothoracic gland (PG)
induces pupariation through release of ecdysone (Mirth et al.,
2005). Hence, a lowered critical weight threshold results in
earlier release of ecdysone. PG cells grow in size due to an
organ-specific augmentation in PI3K/Akt signaling that results
in strikingly reduced critical weight culminating in an increase
in the basal level of ecdysteroid biosynthesis (Colombani et al.,
2005; Mirth et al., 2005). This consequently results in accelerated
development and reduced body size due to a decrease in cell
number (Colombani et al., 2005;Mirth et al., 2005). Furthermore,
it was shown that the growth rate of flies with an enlarged
PG was dependent on nutritional conditions (Mirth et al.,
2005). Together, these results indicate that PI3K/Akt-mediated
growth of the PG negatively regulates the developmental time
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FIGURE 1 | PI3K/Akt pathway plays a central role in nutrient-mediated cell proliferation and growth. In Drosophila, amino acids, sugars, and fats control the release of

insulin-like–peptides (ILPs), which bind the insulin receptor homolog (InR). Downstream signaling is mediated by insulin receptor substrate (Chico) binding to InR,

followed by recruitment of phosphoinositide-3-kinase (PI3K), which leads to enzymatic conversion of phosphatidylinositol (3,4)-bisphosphate (PIP2) to PIP3. Akt

kinase recognizes PIP3 to control cell proliferation and growth. TOR kinase can also be regulated by the availability of extracellular amino acids which enter the cell via

Slimfast. TOR kinase activation leads to phosphorylation of effectors such as S6 kinase, which stimulates protein translation and cellular growth.

and body size of the fly. These observations might suggest
that increased PG-mediated ecdysone signaling underlies the
physiological phenotypes observed in fly populations under
chronic malnutrition (Kolss et al., 2009; Vijendravarma et al.,
2011, 2012a; Figure 2).

How might PG-mediated ecdysone signaling be enhanced
under malnourished conditions, when PI3K/Akt signaling is
typically reduced? Specific tissues differ in their sensitivity
to nutrients and PI3K/Akt signaling (Shingleton et al., 2005)
to result in organ-specific growth—a phenomenon known as
allometry. Some organs, such as the male genitalia of the fly,
do not reduce in size in response to nutritional stress; they
are insensitive to the nutritional environment (Shingleton et al.,
2005; Shingleton, 2010; Tang et al., 2011). This reduced sensitivity
to nutrition is attained by maintaining high TOR signaling,
or through tissue-specific reduction in the FOXO transcription
factor under low nutritional conditions (Tang et al., 2011;

Koyama et al., 2013). This mechanism would allow organs to
become less sensitive to nutrition in order to mollify the effects
of poor nutrition. Hence, it is possible that, under chronic
nutritional stress, the PGmight be less nutritionally sensitive and
maintain or increase PI3K/Akt signaling, resulting in a relatively
enlarged PG. It will be of interest to test if the expression of
PI3k/Akt signaling components is indeed upregulated under
chronic nutritional stress.

Broad regulatory functions of Akt also include cell growth,
control of apoptosis, and cell proliferation (Manning and
Cantley, 2007). Hence, the PI3K/Akt pathway can directly
impact cell size and number to potentially regulate body size
(Goberdhan et al., 1999; Verdu et al., 1999; Zhang et al., 2000;
Miron et al., 2001). Indeed, mutants of chico show reduced
body size due to a reduction in both cell number and size
(Böhni et al., 1999). In contrast, evolutionary changes in wing
size under chronic malnutrition were mediated entirely by

Frontiers in Ecology and Evolution | www.frontiersin.org 3 April 2018 | Volume 6 | Article 47

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ahmad et al. Traits Evolved Under Nutritional Stress

FIGURE 2 | Proposed model for the development of fly populations selected under chronic malnutrition. Under normal rearing conditions, larvae feed during the

pre-critical phase to achieve critical weight, which results in release of an ecdysone pulse. This hormonal shift ceases larval feeding and drives the larval-to-pupal

transition. Under chronic malnutrition, the prothoracic gland (PG) might become nutritionally desensitized through elevated PI3K/Akt signaling, which consequently

enlarges its size. This lowers the critical weight threshold and results in increased synthesis of ecdysone, driving an early larval-to pupal transition. This shift in the

critical weight threshold results in accelerated development time and lower body size and weight.

reduced cell number (Vijendravarma et al., 2011). These studies
might imply that pathway components upstream or at the
level of Akt might be the targets of selection under nutritional
stress.

FORAGING BEHAVIOR

In addition to physiological responses, foraging behavior is also
influenced in Drosophila exposed to poor nutritional conditions
(Sokolowski et al., 1997; Vijendravarma et al., 2012b). Drosophila
larvae spend most of their time feeding and naturally exhibit
a foraging polymorphism driven by the foraging (for) gene
(Osborne et al., 1997). for encodes a cGMP-dependent protein
kinase (PKG) (Osborne et al., 1997) and has been shown to
alter larval nutrient acquisition in response to food deprivation
(Kaun et al., 2007, 2008). In the presence of food, rovers (forR)
have a longer foraging path and a higher propensity to leave a
food patch as compared to sitters (forS). However, in the absence
of food, these variants do not exhibit any difference in activity
(Sokolowski et al., 1984; Kaun et al., 2007).

The evolution of Drosophila foraging behavior has been
reported under density-dependent selection whereby high larval
density reduces food access and induces nutritional stress on
unsuccessful competitors (Ruiz-Dubreuil et al., 1996; Sokolowski
et al., 1997). Interestingly, the rover phenotype was selected
under high-density rearing (Sokolowski et al., 1997). In contrast,
populations evolved under chronic larval malnutrition without
crowding showed a shorter foraging path length compared to
unselected controls (Vijendravarma et al., 2012b). Thus, the
context of how malnutrition is applied plays a role in the
evolution of behavior. In a competitive environment, greater
mobility increases the likelihood of exploiting heterogeneous
food or finding a better nutritional niche. However, the energetic

cost of locomotion in Drosophila larvae (Berrigan and Pepin,
1995) might not be favorable in a non-competitive context.

Similar to larvae, adult rovers and sitters show variation
in their feeding behaviors. Rover adults exhibit a greater
proboscis extension response to sucrose than sitters under
food deprivation (Scheiner et al., 2004; Hughson et al.,
2017). After sucrose feeding, rover and sitter adults exhibit
different walking patterns—rovers travel further compared to
sitters (Pereira and Sokolowski, 1993). In addition, rovers are
more sensitive to starvation and show extended food search
patterns following food deprivation (Hughson et al., 2017).
Genomic and metabolomic analyses of rover and sitter adults
demonstrated that the insulin-mediated PI3K/Akt pathway
might be responsible for the rover- and sitter-dependent
feeding behaviors under food deprivation (Kent et al., 2009).
Compared to sitters, rovers show higher PI3K/Akt signaling
(Kent et al., 2009). Combining for alleles with PI3K/Akt signaling
mutants changed rover-like behavior into sitter-like behavior in
transheterozygote animals, further suggesting an epistatic link
between the PI3K/Akt and for pathways (Kent et al., 2009).
This also indicates that PI3K/Akt signaling attenuation might
lead to sitter-like behavior under nutrient deprivation, further
supporting our speculation that PI3K/Akt pathway components
might experience selective pressures under chronic malnutrition.
Future work could help assess potential molecular interactions
between the PKG and PI3K/Akt pathways.

LEARNING AND MEMORY

Selection under long-term malnutrition was also reported to
affect the learning ability of Drosophila (Kolss and Kawecki,
2008). Flies reared on a high carbohydrate-low protein diet
exhibit impaired visual learning and memory formation (Xia
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et al., 1997). Conversely, fly populations selected for 51
generations on conditions that improve learning and memory
(Mery and Kawecki, 2002) exhibited reduced larval competitive
ability for a limited food source (Mery and Kawecki, 2003). This
suggests a direct relationship between the availability of nutrients
and learning and memory. However, the underlying mechanism
of the effect of nutritional stress on memory formation is still
unclear.

PI3K/Akt signaling has also been implicated in long-term
memory formation (Chambers et al., 2015). Genetic impairment
of this signaling cascade in Drosophila larval mushroom bodies,
a pair of structures responsible for memory formation, hampers
feeding behavior by causing a reduction in food intake (Zhao and
Campos, 2012). Interestingly, the for rover/sitter polymorphism
has also been shown to mediate associative learning and memory
in Drosophila (Mery et al., 2007). forR flies tend to have weaker
long-term memory compared to that of forS (Mery et al., 2007).
Taken together, these studies further support the idea that there is
a molecular link between the PI3K/Akt and PKG pathways (Kent
et al., 2009) and that PI3K/Aktmight be a possible selection target
under chronic malnutrition.

CANNIBALISM

Drosophila melanogaster is an herbivorous and detritivorous
species which primarily feeds on a rotten vegetative matter
and associated microbes (Carson, 1971; Yamada et al., 2015).
However, under nutritional stress, larvae can cannibalize and
feed on conspecifics (Vijendravarma et al., 2013; Ahmad
et al., 2015). Larvae selected on chronic malnutrition locate
and prey upon conspecific victims more efficiently than non-
selected controls, suggesting that cannibalism is an adaptive
trait (Vijendravarma et al., 2013). Typically, Drosophila is
morphologically ill-equipped to scavenge on a carnivorous
diet. However, feeding exclusively on cannibalistic diet induces
larval mouth hook plasticity by increasing the number of teeth
(Vijendravarma et al., 2013). This allows larvae to puncture a
victim’s cuticle during cannibalism. The adaptive significance
of this plastic phenotype, as well as its molecular basis, are
still not known. Since cannibalistic behavior is reported to
evolve under chronic malnutrition, it will be interesting to
probe if there exists a link between the PI3K/Akt pathway and
cannibalism.

CONCLUSION

Recent studies have exploited the advantages of using Drosophila
to demonstrate evolutionary responses to chronic nutritional
stress (Kolss and Kawecki, 2008; Kolss et al., 2009; Vijendravarma
et al., 2011, 2012a,b, 2013, 2015; Zajitschek and Zajitschek,
2016). However, the genetic and molecular mechanisms
underlying changes in physiology and behavior are still
mostly unknown. By reviewing phenotypic studies of fly
populations under chronic malnutrition, we speculate that
components of the nutrient-sensing PI3K/Akt pathway might
be among the selection targets under nutritional stress; a

number of physiological and behavioral traits that emerge
under nutritional stress parallel those of PI3K/Akt pathway
mutants. If the PI3K/Akt pathway is a target of selective
pressure under chronic malnutrition, genetic signatures of
selection and altered expression of its components could be
revealed by genomic sequencing and expression profiling.
Additionally, proteomic profiles of animals selected under
chronic nutritional stress could be used to identify post-
translational modifications that contribute to alterations of the
PI3K/Akt pathway.

Next-generation sequencing technologies have greatly
facilitated evolve-and-resequence studies, which attempt to
identify genetic variants causative of evolved traits. Recently,
resequenced D. melanogaster strains evolved under low oxygen
levels showed signatures of selection acting on Notch pathway
signaling; follow-up analyses on genetic mutants supported the
idea that the Notch pathway is involved in hypoxic responses
(Zhou et al., 2011). Furthermore, D. melanogaster strains
sequenced after multi-generational exposure to the natural fly
virus, Drosophila C virus (DCV) identified candidate DCV
resistance genes that were subsequently verified in mutational
analyses (Martins et al., 2014). While genome-wide approaches
might uncover pathways that are under selective pressure,
including or independent of PI3K/Akt signaling, there will
still be challenges in identifying candidate genes involved
in polygenic traits. In fact, many evolve-and-resequence
studies using D. melanogaster have highlighted the difficulties
in characterizing experimental evolutionary changes given
the complexities revealed in associating phenotypic output
with specific alterations within the genome-wide databases
(Turner et al., 2011; Turner and Miller, 2012; Reed et al., 2014;
Griffin et al., 2016). Thus, although genomic sequencing could
facilitate future studies of the molecular basis of adaptation
to nutritional stress, a more targeted approach informed by a
comprehensive examination of relevant studies might be more
fruitful.

A major technical issue to overcome is the lack of a
defined standard medium, resulting in the use of different
fly food recipes across labs (Marx, 2015). Varying different
components of fly food can alter the carbohydrate-protein
ratio (Bruce et al., 2013; Tatar et al., 2014; Lee, 2015). These
changes might have large impacts on studies dealing with
selection over multiple generations. Furthermore, altering the
concentration of different nutrients can result in a range
of responses in flies (Lee et al., 2008; Andersen et al.,
2010; Sisodia et al., 2015) and preclude the identification of
specific nutritional changes associated with adaptive responses.
Future studies using chemically defined diets will improve
the comparison of empirical findings across labs (Piper
et al., 2014). A nutritional geometry approach (Simpson and
Raubenheimer, 1999, 2012) might be needed to comprehensively
quantify the specific contributions of macro- or micro-nutrients.
Fortunately, the large number of diets needed for these
types of studies are feasible using Drosophila. The classical
components of the PI3K/Akt pathway are evolutionarily and
functionally conserved in mammals (Oldham, 2011). Therefore,
studies using the fly model may help us better understand
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the molecular basis of development and evolution across
species.
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