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In social evolution theory, unconditional cooperation has been seen as an evolutionarily

unsuccessful strategy unless there is a mechanism that promotes positive assortment

between like individuals. One such example is kin selection, where individuals sharing

common ancestry and therefore having the same strategy are more likely to interact with

each other. Conditional cooperation, on the other hand, can be successful if interactions

with the same partners last long. In many previous models, it has been assumed that

individuals act conditionally on the past behavior of others. Here I propose a new model

of conditional cooperation, namely the model of coordinated cooperation. Coordinated

cooperation means that there is a negotiation before an actual game is played, and that

each individual can flexibly change their decision, either to cooperation or to defection,

according to the number of those who show the intention of cooperation/defection.

A notable feature of my model is that individuals play an actual game only once but

can still use conditional strategies. Since such a negotiation is cognitively demanding,

the target of my model here is exclusively human behavior. I have analyzed cultural

evolutionary dynamics of conditional strategies in this framework. Results for an infinitely

large population show that conditional cooperation not only works as a catalyst for

the evolution of cooperation, but sustains a polymorphic attractor with unconditional

cooperators, unconditional defectors, and conditional cooperators being present. A finite

population analysis is also performed. Overall, my results provide one explanation of why

people tend to take into account others’ decisions even when doing so gives them no

payoff consequences at all.

Keywords: conditional cooperation, evolutionary game theory, negotiation, replicator dynamics, finite population

1. INTRODUCTION

Prevalence of altruistic traits in nature has been an evolutionary paradox since Darwin (1859). It
is because defectors, also called cheaters or free-riders, avoid the cost of cooperation but enjoy its
benefit, and hence act detrimentally against evolution of cooperation. Now there is a consensus
among evolutionary biologists that positive assortment is a key to its evolution (Lehmann and
Keller, 2006; Nowak, 2006b; West et al., 2007; Fletcher and Doebeli, 2009). Positive assortment
means cooperators are more likely to meet and interact with other cooperators than by chance, and
so are defectors.

A viscous population (Hamilton, 1964; Taylor, 1992; Wilson et al., 1992) provides an excellent
occasion for such positive assortment to occur. Limited dispersal creates an environment where
those who share the common ancestry tend to cluster in a spatially structured population. In such
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a situation, whether kin recognition is present or not, cooperation
with neighbors tends to result in cooperation with another
cooperator. This process is known as kin selection.

In contrast, conditional cooperation is another mechanism
to achieve positive assortment (Fletcher and Doebeli, 2009).
The success of the famous Tit-for-Tat strategy (Axelrod and
Hamilton, 1981; Nowak and Sigmund, 1992) and other variants
(Nowak and Sigmund, 1993) suggests that helping only those
who have helped in the past (Trivers, 1971; Axelrod, 1984;
Alexander, 1987; Nowak and Sigmund, 2005) is a strong
driving force for the evolution of cooperation. In these
cases, positive assortment does not necessarily mean genetic
assortment but means behavioral assortment; whatever different
genetic architecture is behind cooperation, those who behave
cooperatively at a phenotypic level come together and interact
with each other.

A vast majority of previous models of evolution of conditional
cooperation has assumed repeated interactions, where the same
group of individuals interact repeatedly, or, in the case of indirect
reciprocity, one repeatedly interacts with different others, but
their past history of actions is available as reputation. In either
case, it is a well established fact that a long repetition is a key to
success (Nowak, 2006b).

However, an experiment suggests that people behave
conditionally on others’ choices even in a one shot interaction
(Fischbacher et al., 2001). In their four-player public goods game
experiment, Fischbacher et al. (2001) asked each of the four
players to submit a contribution table, which describes howmuch
one would like to contribute to a public good for all 21 possible
average contributions by the other three players. If one assumes
that everyone should behave rationally, two predictions follow.
Firstly, the best choice is to contribute nothing irrespective of
others’ decisions. Secondly, and more interestingly, there should
be no incentives at all to base one’s contribution on others’,
because the game used in that experiment was a linear public
goods game. To understand the second point more, here is the
payoff function used in their experiment;

πi = 20− gi + 0.4

4
∑

j = 1

gj, (1)

where πi is the payoff of i-th player, and 0 ≤ gj ≤ 20
is j-th player’s contribution to a public good. This functional
form clearly suggests that for each additional unit amount
of contribution, i-th player loses 0.6 units irrespective of
others’ decisions and hence that taking others into account
makes no sense. Despite these predictions, Fischbacher et al.
(2001) found that a significant fraction of participants made
a positive contribution in this experiment, and that 50% of
participants were “conditional cooperators” who monotonically
increased their contribution with increased average contribution
by the others. Interestingly, they also found the existence of
“unconditional defectors” who persistently contributed nothing.

The experiment by Fischbacher et al. (2001) suggests that
people have strong preference to coordinate their behavior with
others, if possible, even in a one-shot interaction. One may

think that a one-shot interaction in the real world is truly “one-
shot” in the sense that no communication outside the game
is allowed, but it is not necessarily true. There is sometimes a
stage of negotiation or discussion by the participants before the
actual game is played, where they talk with each other and can
coordinate their behavior. One good example is international
negotiation about the global climate change, where many hours
of discussion are performed before participants finally decide
whether or not to cooperate (Smead et al., 2014).

The aim of this paper is to explicitly model the process of
negotiation that occurs prior to the game to understand its
potential role in the evolution of cooperation. In that sense, my
model is specific to human behavior because it is hard to imagine
that non-human animals are engaged in negotiation before social
interactions. I am in particular interested in whether it explains
the emergence and maintenance of conditional cooperators in a
linear public goods game. As a result of my analysis, I find that
conditional cooperators and unconditional ones are sustained in
the population through frequency dependent selection for a wide
range of parameters. I will also discuss my model limitations in
Discussion.

2. MODEL

2.1. Public Goods Game
I study a linear public goods game played by n(≥ 2) players.
Each player ultimately chooses one action, either cooperation
(hereafter abbreviated as C) or defection (abbreviated as D). Each
cooperator pays the cost c for a public good, but defectors do not.
The total payment is aggregated, multiplied by the factor r, and
equally redistributed to the participants of the game irrespective
of their contribution to the public good. Therefore, when there
are k cooperators and n − k defectors in the game, their payoffs
are given respectively as

WC = −c+
rkc

n
,

WD =
rkc

n
.

(2)

When one pays the cost c, it yields the net benefit of rc to
the group. Equivalently, for each additional contribution c, each
individual obtains the benefit of rc/n. Hereafter I assume 1 <

r < n such that contribution to the public good is beneficial to a
group (i.e., rc > c) but not to an individual (i.e., rc/n < c).

2.2. Strategies
In order to consider coordinated actions by players, here I assume
that players in the game possess a conditional strategy. More
specifically, a player refers to the actions of the other n − 1
players and conditions its own action (C or D) on the number
of cooperators among those n − 1 players. Because the number
of cooperators excluding self can be either 0, 1, · · · , or n − 1
(= n possibilities), a conceivable strategy takes the form of an
n-digit sequence of letters of C or D, the k-th letter (1 ≤ k ≤ n)
of which corresponds to the action prescribed by that strategy
when the number of cooperators excluding self is exactly equal
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to k − 1. For example, CCC· · ·CC is the strategy that always
prescribes cooperation irrespective of others’ actions, which is so
called ALLC strategy. The strategy DDD· · ·DD always defects, so
it is called ALLD strategy. Of course more complicated strategies
are possible; for example, the strategy CDCDCD· · · prescribes
cooperation when the number of cooperators excluding self is
even, and defection when odd. There are 2n possible strategies
in total.

Out of all conceivable strategies, I especially pay attention to
simple ones; those which have a minimum threshold level for
cooperation. In other words, I consider strategies in the form of

D · · ·D
︸ ︷︷ ︸

k

C · · ·C
︸ ︷︷ ︸

n−k

. (0 ≤ k ≤ n) (3)

The strategy represented by Equation (3) cooperates when the
number of cooperators excluding self is at least k, otherwise
defects. Let us call this strategy Ck. Obviously C0 is the ALLC
strategy and Cn is the ALLD strategy. In between are strategies
that cooperate only if some others cooperate. In other words,
the index number k represents the degree of resistance against
cooperation. In the following I will consider only those (n + 1)
strategies, from C0 to Cn.

2.3. How Negotiation Proceeds
Since players condition their actions on other players’ actions,
which in turn are dependent on other players’ actions, it is not
straightforward to predict the final consequence of the game
interaction. Therefore I model the negotiation stage prior to the
actual game in the following way. First, to each of the n players,
his/her initial thought, either C or D, is assigned by some specific
rule. Here, thought means one’s temporal but not final decision,
which is observable to everyone, but does not affect one’s payoff
at all. It is instructive to imagine, for example, n human agents
at a negotiation table. Those agents simultaneously announce
their initial thoughts, and therefore I can assume that perceiving
others’ thoughts is easy and costless. A combination of all players’
thought, that is usually expressed by an n-tuple of C or D, is called
a state. Given an initial state in the negotiation stage, a player is
randomly chosen, and is given an opportunity to change his/her
thought, from C to D, or from D to C, if his/her conditional
strategy prescribes so. For example, if a C3 strategist, currently
having thought C, finds only two other C’s in the group, he/she
changes his/her thought to D, because he/she needs at least three
other C players to keep his/her current thought to play C. This
change of his/her thought is announced to everyone. In the
next step, a player is randomly chosen again for an update, and
this procedure is repeated until no one wants to change his/her
thought. I call such a final state stationary state. In SectionA in the
Supplementary Material I prove that there always exists at least
one stationary state, so this negotiation surely ends. However,
multiple stationary states are possible, and which stationary state
is reached depends on players’ initial thought and the order of
updates. Once a stationary state is reached, all players transform
their thought to an actual action in the public goods game, they
obtain payoffs, and the game ends. Here I exclude the possibility
of lying (that is, one takes the opposite action to his/her thought

at the stationary state in the negotiation), and this point will be
discussed more in Discussion.

2.4. Example
To facilitate a better understanding of the model, consider an
example of the three-person game played by individuals X, Y, and
Z. Suppose that X and Y adopt strategy C1 while Z adopts strategy
C2. Below I will represent the temporal thought of those three
players by a triplet, such as (X, Y, Z) = (D, C, C).

Suppose that the initial state is (D, C, C). If players chosen
randomly in the first four update steps are Y, Z, X, and Z in this
order, the following state transition occurs;

(D, C, C) −−−−−→
Y chosen

(D, C, C) −−−−−→
Z chosen

(D, C,D)

−−−−−→
X chosen

(C, C, D) −−−−−→
Z chosen

(C, C, C). (4)

In the first step Y is chosen. Y finds there is one cooperator, Z,
and that satisfies his threshold. Therefore Y does not change his
thought. In the second step Z is chosen. Z finds there is one
cooperator, Y, but that does not satisfy his threshold. Therefore
Z changes from C to D. In the third step, X is chosen. X finds
that there is one cooperator, Y, and that satisfies his threshold.
Therefore X changes from D to C. In the fourth step, Z is chosen.
In contrast to the second step, Z finds two cooperators, X and Y,
which satisfies his threshold. Therefore Z changes from D to C.
It is easy to see that (C, C, C) is a stationary state for them. Thus
they play an actual public goods game, all of them pay the cost of
cooperation, and enjoy the benefit from the public good.

It is notable that in the transition shown in Equation (4),
individual Z made two changes, from D to C and from C to D.
Such a transition is possible depending on the order of updates.
In addition, it is not difficult to see that (D,D,D) is another
stationary state. For example, if players randomly chosen in the
first two steps are Z and Y in this order, the following transition
occurs, leading to no cooperation.

(D, C, C) −−−−−→
Z chosen

(D, C,D) −−−−−→
Y chosen

(D,D,D). (5)

2.5. Initial State
As I have seen above, initial states have a great impact on the
consequence of negotiation. Players may have predisposition
either toward C or D, but here I assume that each player
independently has initial thought C with probability p, and initial
thought D with probability 1 − p. When p = 0, it means that
the default action is D. This is true when cooperation takes the
form of active contribution; cooperation means doing something
and defection means doing nothing. For example, monetary
investment to a public good often takes this form. In contrast,
p = 1 means that the default action is C. This is true when
defection takes the form of active exploitation; defection means
doing something and cooperation means doing nothing. Forest
conservation can be a good example of this. Cutting trees and
selling timber is exploitative defection, whereas not cutting trees
is passive cooperation. Therefore I cannot necessarily set the
value of p a priori. Instead, I treat p as my model parameter.
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Another rationale behind the parameter p, especially when it
is between 0 and 1, is that it reflects some uncertainty in the game.
It could be the case that players do not perfectly know the payoff
structure of the game at the beginning, in which case they may
temporarily choose either one of the actions.

Although the value of p can possibly be chosen independently
and strategically by different strategies, here I assume for
simplicity that p is common among all the strategies. Therefore
p is not an evolutionary trait but a model constant in this paper.

2.6. Population Game and Evolutionary
Dynamics
So far I have explained the public goods game played by n players,
but I will also consider a population of players. Suppose that
there is a population of players of size M (either infinitely large
or finite). For each public goods game n players are randomly
chosen from the population, they play a one-shot public goods
game with a negotiation stage described above, and return to the
population. Such n-person games are played many times, and
each individual obtains an average payoff per game, which I will
denote by w.

Time change of frequencies of strategies can be studied by
evolutionary dynamics, which are based on a simple criterion that
successful strategies increase in frequency. Note that equations
of evolutionary dynamics can describe both genetic evolution, in
which information is transmitted through genetic materials, and
cultural evolution, in which information such as ideas or norms
can be transmitted culturally, in a quite similar form (Traulsen
et al., 2009, 2010); here it is natural to consider cultural evolution.
For an infinitely large population, M = ∞, the evolutionary
dynamics of (n + 1) strategies, from C0 to Cn are described by
the replicator equation (Taylor and Jonker, 1978; Hofbauer and
Sigmund, 1998; Nowak, 2006a);

ẋk = xk(wk − w), (6)

where xk and wk are the frequency and the average payoff of
strategy Ck, respectively. The average payoff in the population,
w, is calculated as w ≡

∑n
ℓ=0 xℓwℓ. The dynamics is defined in

the n-dimensional simplex, Sn+1, where xk’s are non-negative and
they sum up to unity.

For a finite population, M < ∞, a frequency-dependent
Moran process (Nowak et al., 2004) and pairwise comparison
processes (Traulsen et al., 2005, 2007) are standard models
to describe its evolutionary dynamics. Similarly to the infinite
population case, players are engaged in many n-person games
and obtain average payoffs. In each elementary step of updating,
two players are randomly chosen from the population (with
replacement). The first player compares his payoff with that of
the second player. Let 1 be the payoff of the second player minus
that of the first. Then the first player copies the strategy of the
second player with probability

1

1+ exp[−s1]
, (7)

otherwise he stays with the current strategy. Here, the parameter
s > 0 is called intensity of selection (or inverse temperature).

TABLE 1 | Stationary states in the two-person game.

Composition of players Stationary states Probability of occurrence

(C0, C0) (C, C) 1

(C0, C1) (C, C) 1

(C0, C2) (C, D) 1

(C1, C1)
(C, C) p

(D, D) 1− p

(C1, C2) (D, D) 1

(C2, C2) (D, D) 1

The functional form of Equation (7) comes from the Fermi
distribution function in physics (Traulsen et al., 2006, 2007), so
this process is sometimes referred to as Fermi process (Traulsen
and Hauert, 2009). Equation (7) suggests that the first player is
more likely to copy the strategy of the second player if the payoff
difference, 1, is larger.

Because of a finite population size, once all players adopt the
same strategy, no other strategies can invade the population.
Such a phenomenon is called fixation. In order to avoid fixation
of strategies, I consider mutation in strategies. With a positive
probability,µ > 0, the first player who is chosen in an elementary
step of updating changes his strategy to another random strategy,
irrespective of the payoff difference, 1. Under the limit of
µ → 0, a newly arising mutant in a resident population either
goes to extinct or takes over the whole population before a next
mutant arises. Such limit is sometimes referred to as adiabatic
limit (Sigmund et al., 2010, 2011). In the adiabatic limit only
possible transitions are those from onemonomorphic population
to another, so fixation probabilities between two strategies
characterize the process (see Section B in the Supplementary
Material).

3. TWO-PERSON GAME

3.1. Payoffs
First I study the n = 2 person game. Let ak,ℓ be the payoff of a
Ck player matched with a Cℓ player. There are six different types
of encounters, (C0, C0), (C0, C1), (C0, C2), (C1, C1), (C1, C2),
and (C2, C2). It is easy to confirm that the stationary state of
each encounter except (C1, C1) is unique. According to Table 1,
payoffs are

a0,0 = −c+ rc

a0,1 = −c+ rc a1,0 = −c+ rc

a0,2 = −c+
1

2
rc a2,0 =

1

2
rc (8a)

a1,2 = 0 a2,1 = 0

a2,2 = 0.

On the other hand, the encounter (C1, C1) needs consideration.
There are two stationary states, (C, C) and (D,D). If the initial
state is (C, C) (which occurs with probability p2) or (D,D) (which
occurs with probability (1 − p)2), it is already a stationary
state. If the initial state is (C, D) or (D, C) (which occurs with
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probability 2p(1 − p)), however, who updates first matters. If
the one with thought C is chosen for an update, he changes to
D and mutual defection results. If the one with thought D is
chosen for an update, he changes to C and mutual cooperation
results. These chances are even. Therefore, for the encounter
(C1, C1), the probability that they arrive at mutual cooperation
is p2 + 1

2 · 2p(1 − p) = p, and that of mutual defection is

(1− p)2 + 1
2 · 2p(1− p) = 1− p. As a result, I obtain

a1,1 = p(−c+ rc)+ (1− p) · 0 = p(−c+ rc). (8b)

To summarize, I have obtained the following payoff matrix of the
game;

A =





C0 C1 C2

C0 −c+ rc −c+ rc −c+ 1
2 rc

C1 −c+ rc p(−c+ rc) 0
C2

1
2 rc 0 0



. (9)

3.2. Infinite Population
Evolutionary game dynamics based on the payoff matrix,
Equation (9), are shown in Figure 1 for the three separate cases,
(a) p = 0, (b) 0 < p < 1, and (c) p = 1.

Firstly I look at the two extreme cases. When p = 0
(see Figure 1A), everyone initially chooses defection. Therefore
no cooperation arises unless there is at least one C0 player.
Obviously C1 is invaded by C0, which in turn is invaded by C2.
In the absence of C0 strategy, C1 and C2 are neutral. There is
a continuum of fixed points on the C1-C2 edge, a part of the
segment including the C1 corner consists of unstable fixed points;
introduction of C0 players drives the population away from these
fixed points. The other segment including the C2 corner consists
of stable fixed points. Its mirror image is obtained when one
considers the case of p = 1 (Figure 1C), where C2 invades C0

but it is invaded by C1. The C0-C1 edge consists of unstable and
stable segments.

Dynamics are in between these extreme cases when 0 < p < 1
(see Figure 1B). There is an internal fixed point and myriads of
closed orbits surround it. Strategy C1 invades the population of
C2, which is invaded by C0, which is invaded by C2. The edges
of the simplex constitute a heteroclinic cycle. The frequencies of

strategies at the internal fixed point is given as

(x∗0 , x
∗
1 , x

∗
2) =

(
2p(r − 1)

r
,
2− r

r
,
2(1− p)(r − 1)

r

)

. (10)

It is worthwhile to mention that the two-player game dynamics
are equivalent to the dynamics of ALLC, ALLD, and Tit-For-Tat
(TFT) strategies in a repeated Prisoner’s Dilemma game (Brandt
and Sigmund, 2006; Sigmund, 2010). To see this, consider a
two-person Prisoner’s Dilemma game with the following payoff
matrix;

(
C D

C −C + B −C
D B 0

)

, (11)

where C is the cost and B is the benefit of cooperation, and
consider a repeated game of this Prisoner’s Dilemma with a
discounting factor, δ. ALLC players always cooperate. ALLD
players always defect. TFT players cooperate in the first round,
and then imitate whatever the opponent did in the previous
round. I also consider errors; I assume that an erroneous
defection occurs with probability (1 − k)ǫ when one intends
cooperation, and that an erroneous cooperation occurs with
probability kǫ when one intends defection. Let A′ be the payoff
matrix of this repeated game, each pivot representing a payoff per
round. In the double limit of δ → 1 and then ǫ → 0, it turns to
be

lim
ǫ→0

lim
δ→1

A′ =





ALLC TFT ALLD

ALLC −C + B −C + B −C
TFT −C + B k(−C + B) 0
ALLD B 0 0



, (12)

which is formally equivalent to Equation (9) with the
transformation of B ≡ rc/2,C ≡ c − (rc/2) and k ≡ p (see
Figure 3 of Brandt and Sigmund, 2006). This correspondence
makes sense, because the negotiation stage in my model can be
interpreted as hypothetical rounds of the repeated game where
payoffs are not counted. The limit δ → 1 means that I count
only payoffs in future rounds after a stationary state is reached.

I also find differences between the two models. In my model,
players’ thought is updated asynchronously such that at most one

FIGURE 1 | Replicator dynamics of the two-person game played in an infinitely large population. (A) When p = 0, (B) when 0 < p < 1, and (C) when p = 1. Filled

circles represent Lyapunov stable equilibria, whereas open circles represent unstable ones. Parameter: r = 1.6.

Frontiers in Ecology and Evolution | www.frontiersin.org 5 May 2018 | Volume 6 | Article 62

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Ohtsuki Coordinated Cooperation

FIGURE 2 | Time-averaged frequencies of strategies in the Fermi process for

the two-person game for various intensity of selection, s. Dark-colored dotted

lines in the right show the stationary distribution of strategies,

(q0,q1,q2) = ( 14 ,
1
4 ,

1
2 ), predicted by Equation (13) for the adiabatic limit. Note

that there is a considerable overlap between blue (strategy C0) and green

(strategy C1) dots and lines. When s is close to zero, each strategy has

approximately the frequency of one third. Parameters:

M = 36,p = 0.5, r = 1.5 and c = 1.0. Mutation rate was set to µ = 10−4 per

elementary updating step. M elementary steps constitute one generation.

Time average was taken over 108 generations.

player can change his thought (C to D, or D to C) in one updating
event. In contrast, players in the repeated game change their
actions (C to D, or D to C) in a synchronous fashion; each player
takes into account the previous action by the partner. Another
difference is that, while errors are not assumed in my model, the
model of the repeated game does consider erroneous defection
and cooperation. It is interesting that my parameter p, that is the
probability that initial intension is C, correspond exactly to the
parameter k in the repeated game model, which represents the
fraction of erroneous cooperation among all erroneous moves.

3.3. Finite Population
To simplify the analysis, I consider the adiabatic limit, µ → 0,
and strong selection, s → ∞. More precisely speaking, I first take
the limit µ → 0 and then take the limit s → ∞.

Under the adiabatic limit, the population is almost always
monomorphic in strategies. Therefore I can consider the
stationary distribution over the three strategies; namely how
much proportion of time the stochastic game dynamics spends
at each monomorphic state. Let qk (k = 0, 1, 2) represent
the fraction of time that the stochastic process spends at the
monomorphic population of strategy Ck. Calculations in Section
C in the Supplementary Material show that for M ≥ 3, the
following result holds;

(q0, q1, q2) =









( 1
M+3 ,

1
M+3 ,

M+1
M+3 ) if p = 0

( 14 ,
1
4 ,

1
2 ) if 0 < p < 1

( 1
M+4 ,

M+1
M+4 ,

2
M+4 ) if p = 1.

(13)

Computer simulations confirm the validity of this result
(Figure 2). To understand the significance of the result, it is

TABLE 2 | Stationary states in the three-person game.

Composition of players Stationary states Probability of occurrence

(C0, C0, C0) (C, C,C) 1

(C0, C0, C1) (C, C,C) 1

(C0, C0, C2) (C, C,C) 1

(C0, C0, C3) (C, C, D) 1

(C0, C1, C1) (C, C,C) 1

(C0, C1, C2) (C, C,C) 1

(C0, C1, C3) (C, C, D) 1

(C0, C2, C2)
(C, C,C) 1

2p
2 + 1

2p

(C, D, D) − 1
2p

2 − 1
2 p+ 1

(C0, C2, C3) (C, D, D) 1

(C0, C3, C3) (C, D, D) 1

(C1, C1, C1)
(C, C,C) −p2 + 2p

(D, D, D) p2 − 2p+ 1

(C1, C1, C2)
(C, C,C) − 1

2p
2 + 3

2p

(D, D, D) 1
2p

2 − 3
2p+ 1

(C1, C1, C3)
(C, C, D) − 1

2p
2 + 3

2p

(D, D, D) 1
2p

2 − 3
2p+ 1

(C1, C2, C2)
(C, C,C) 1

2p
2 + 1

2p

(D, D, D) − 1
2p

2 − 1
2 p+ 1

(C1, C2, C3) (D, D, D) 1

(C1, C3, C3) (D, D, D) 1

(C2, C2, C2)
(C, C,C) p2

(D, D, D) −p2 + 1

(C2, C2, C3) (D, D, D) 1

(C2, C3, C3) (D, D, D) 1

(C3, C3, C3) (D, D, D) 1

instructive to consider a traditional framework of social dilemma,
where only C0 and C2 strategies are possible. In this case,
irrespective of the value of p, the stationary distribution of the
Fermi process under the adiabatic limit and strong selection is

(q0, q2) = (0, 1). (14)

Equation (13) thus suggests that the existence of coordinated
cooperators, C1, has a great impact on evolutionary dynamics.
For 0 < p < 1, unconditional cooperation (C0) is attained
a quarter of the time during evolution. This is because a C1

mutant in the population of C2 players has 50% chance of
fixation; once a C1 player replicates to two by chance, those two
C1 players have a positive (=p) chance of establishing mutual
cooperation and thus they can outcompete C2 players. However,
C1 players are invaded by C0 players, because a dyad of C1

players sometimes fail to establish mutual cooperation, which
is disadvantageous compared with C0. Obviously C0 is invaded
by C2, and such an evolutionary cycle repeats. In other words,
coordinated cooperators C1 work as a catalyst of cooperation. If
they exist, sociality is promoted and rationality is hindered.

Such an effect is much more dramatic when p = 1. In this
case strategies C0 and C1 are completely neutral to each other,
and the only difference between them is whether or not they can
establish mutual cooperation in the population of C2 without
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being cheated. In fact, strategy C0 is easily exploited by C2 but
C1 is not. Therefore, for a large M, the population is dominated
by C1 most of the time.

4. THREE-PERSON GAME

4.1. Payoffs
Next I consider the n = 3 person game. Let ak,ℓ1ℓ2 be the
payoff of a Ck player matched with a Cℓ1 player and a Cℓ2

player. Obviously ak,ℓ1ℓ2 = ak,ℓ2ℓ1 holds. In the three-person
game with four different strategies from C0 to C3 there are 20
possible encounters, which are listed up in Table 2. For each case,
the probability with which negotiation reaches each possible
stationary state is calculated (see Section D in the Supplementary
Material). As a result I arrive at the following payoff matrix;

A =










C0C0 C0C1 C0C2 C0C3 C1C1

C0 −c+ rc −c+ rc −c+ rc −c+ 2
3 rc −c+ rc

C1 −c+ rc −c+ rc −c+ rc −c+ 2
3 rc p(2− p)(−c+ rc)

C2 −c+ rc −c+ rc −
p(1+p)

2 c+
p2+p+1

3 rc 1
3 rc

p(3−p)
2 (−c+ rc)

C3
2
3 rc

2
3 rc

1
3 rc

1
3 rc

p(3−p)
3 rc

C1C2 C1C3 C2C2 C2C3 C3C3

−c+ rc −c+ 2
3 rc −c+

p2+p+1
3 rc −c+ 1

3 rc −c+ 1
3 rc

p(3−p)
2 (−c+ rc) −

p(3−p)
2 c+

p(3−p)
3 rc

p(1+p)
2 (−c+ rc) 0 0

p(1+p)
2 (−c+ rc) 0 p2(−c+ rc) 0 0

0 0 0 0 0










.

(15)

Because I assume randommatching of players, the average payoff

of a Ck player is calculated as

wk =

3
∑

ℓ2=0

3
∑

ℓ1=0

ak,ℓ1ℓ2xℓ1xℓ2 , (16)

where xℓ represents the frequency of Cℓ players in the population.

4.2. Infinite Population
As before I consider the replicator equation, Equation (6). Since
the payoff is already quadratic in x, as in Equation (16), the
resulting replicator dynamics are highly non-linear. As a result,
I have to largely rely on numerical simulations to study the
whole dynamics. However, the evolutionary dynamics restricted
on either of the six edges of the simplex S4 are rather easy to study,
because they are essentially reduced to a one-dimensional system.

I will hereafter consider when 0 < p < 1. The analysis in
Section E in the Supplementary Material shows that behavior on
four of the six edges is straightforward; C2 increases on the C3-
C2 edge, C1 increases on the C2-C1 edge, C0 increases on the
C1-C0 edge, and C3 increases on the C0-C3 edge. Therefore, there
always exists a heteroclinic cycle connecting the four vertices of
the simplex: C3 → C2 → C1 → C0 → C3. As for the C0-C2

edge, if

3

2
< r <

3+ 3p

1+ 2p
(17)

holds there exists one unstable equilibrium (which I
hereafter call P02) and the system shows bistability.
If r is smaller than 3/2, strategy C2 dominates C0.
If r is greater than (3 + 3p)/(1 + 2p), strategy C0

dominates C2.
On the C1-C3 edge, in contrast, if

3

2
< r <

6− 3p

3− 2p
. (18)

holds there exists one stable equilibrium (which I hereafter

call Q13) and the system allows the coexistence of the two

strategies. If r is smaller than 3/2, strategy C3 dominates C1. If

r is greater than (6 − 3p)/(3 − 2p), strategy C1 dominates C3.

Numerical simulations suggests that when r < 3/2 the
dynamics either converge to a trimorphic equilibrium or an
evolutionary cycle with strategies C1, C2 and C3 present but
C0 absent (see Figure 3). When r > 3/2, the outcome of
evolutionary dynamics seems to rely on the stability of the
dimorphic rest point, Q13. It is possible to show that Q13 is always
stable against the invasion of C2. However, it is stable against the
invasion of C0 only when r is below some threshold, rc = rc(p).
When 3/2 < r < rc the system converges to the dimorphic
equilibrium, Q13, with strategies C1 and C3 present.When r > rc,
the system converges to a trimorphic equilibrium with strategies
C0, C1 and C3 present but C2 absent. Figure 3 shows the phase
diagram in the (p, r)-space according to this classification as well
as long term consequences of evolutionary dynamics. It is easy
to see there that the instability/stability of Q13 accurately predicts
whether strategy C0 is present or absent after a long run.

4.3. Finite Population
As before I consider the adiabatic limit and strong selection.
The analysis for an infinite population above showed that a
coexisting equilibrium (Q13) can exist on the C1-C3 edge. In
this case a C1 mutant appearing in the finite population of
C3 or vice versa is highly likely to lead the population to a
stable mixture of C1 and C3, and the population will be trapped
for a considerably long time there. Nevertheless stochasticity
eventually causes either one of the strategies to fixate in the
population, and the assumption of the adiabatic limit guarantees
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FIGURE 3 | Long-term consequences of replicator dynamics of the three-person game in an infinitely large population. Numerical calculations were performed from

the initial condition in which all the four strategies were equally abundant (frequency = 1/4). If dynamics converge to a fixed point, its composition of strategies is

shown by a small pie chart. “Cycle" means that the dynamics do not converge but show stable oscillation among three strategies, C1, C2, and C3. The three solid

lines represent r = 3/2, (6− 3p)/(3− 2p) and (3+ 3p)/(1+ 2p), respectively. The dotted line represents r = rc(p), above which the unstable equilibrium Q13 is not

robust against the invasion of C0. Parameters studied: p ∈ {0.1, 0.2, · · · , 0.8, 0.9} and r ∈ {1.2, 1.4, · · · , 2.6, 2.8}.

that no second mutation occurs before the first mutant either
disappears or fixates in the population.

Section F in the Supplementary Material shows the full
analysis of the Fermi process. For 0 < p < 1, I find
that the stationary distribution differs between the four
parameter regions shown in Figure 4. Similarly to section 3.3, let
qk (k = 0, 1, 2, 3) be the fraction of time that the Fermi process
spends at the monomorphic population of strategy Ck in the
stationary distribution. For a largeM, the following result holds;

(q0, q1, q2, q3) =















1
16 (5, 4, 1, 6) = (0.3125, 0.2500, 0.0625, 0.3750) (if r >

3+3p
1+2p )

1
18 (5, 5, 2, 6) = (0.2778, 0.2778, 0.1111, 0.3333) (if

7−3p
4−2p < r <

3+3p
1+2p )

1
10 (1, 1, 2, 6) = (0.1000, 0.1000, 0.2000, 0.6000) (if 3

2 < r <
7−3p
4−2p )

1
26 (2, 3, 6, 15) = (0.0769, 0.1154, 0.2308, 0.5769) (if r < 3

2 ).

(19)

Compare this result with the result of a conventional model that
allows only C0 and C3, which is

(q0, q3) = (0, 1). (20)

Obviously the existence of strategies C1 and C2 dramatically
increases the possibility of cooperation. For example, Equation
(19) states that evolution favors strategies other than full
defection (C3) 62.5% of the time when r is large. Remember
that without C1 and C2 full defection (C3) prevails over full
cooperation (C0) because the former exploits the benefit yielded
by the latter. However, as I saw in section 4.2, strategies C1 and

C2 always create an invasion path of C3 → C2 → C1 → C0.
Additionally, when r is large there are other invasion paths, such
as C3 → C2 → C0 and C3 → C1 → C0. These paths contribute
to the evolutionary success of more cooperative strategies. I have
confirmed the validity of the analytical results [Equation (19)]
by computer simulations for parameters that do not allow the
existence of stable equilibrium Q13 in the corresponding infinite
population model (Figures 5, 6). Note that when Q13 exists and
when the population size M is large, it takes enormous time to

numerically confirm Equation (19) due to the reason described in
the beginning of this subsection. Analyses for the cases of p = 0
and p = 1 are found in Section F in the Supplementary Material.

5. DISCUSSION

This paper explicitly models the process of negotiation
among players, including conditional cooperators, to study its
evolutionary consequences. There is much similarity between
my model here and previous models of repeated games. In
particular, my strategy Ck, which changes his/her own thought
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FIGURE 4 | A stationary distribution of the Fermi process of the three-person game in a finite population of size M(≫1). Each small pie chart represents how much

fraction of time the Fermi process stays at each monomorphic state. The three solid lines represent r = 3/2, (7− 3p)/(4− 2p) and (3+ 3p)/(1+ 2p), respectively.

Parameters studied: p ∈ {0.1, 0.2, · · · , 0.8, 0.9} and r ∈ {1.2, 1.4, · · · , 2.6, 2.8}.

FIGURE 5 | Time-averaged frequencies of strategies in the Fermi process for

the three-person game for various intensity of selection, s. Dark-colored

dotted lines in the right show the stationary distribution of strategies,

(q0,q1,q2,q3) =
1
16 (5, 4, 1, 6), predicted by Equation (19) for the adiabatic

limit. When s is close to zero, each strategy has approximately the frequency

of one fourth. Parameters: M = 36,p = 0.5, r = 2.5 and c = 1.0. Mutation

rate was set to µ = 10−4 per elementary updating step. M elementary steps

constitute one generation. Time average was taken over 108 generations.

to cooperation if and only if k or more than k others show the
thought of cooperation, corresponds to strategy Ta proposed by
Boyd and Richerson (1988), which cooperates in the next round
of the repeated Prisoner’s Dilemma game if and only if a or
more than a others play cooperation in the current round. A very
similar formulation is also found in Segbroeck et al. (2012), where

FIGURE 6 | Time-averaged frequencies of strategies in the Fermi process for

the three-person game for various intensity of selection, s. Multiplication factor

is set to r = 1.25. The other parameters are the same as in Figure 5. The

predicted stationary distribution under the adiabatic limit is

(q0,q1,q2,q3) =
1
26 (2, 3, 6, 15) in this case.

their RM strategy cooperates if M or more than M individuals
(including self) cooperated in the previous round. Two major
differences between the current model and those previousmodels
are; that (i) only the final state of negotiation affects one’s payoff
in my model whereas each round of the repeated game yields a
payoff to players in the models of Boyd and Richerson (1988)
and Segbroeck et al. (2012), and that (ii) players update their
thought asynchronously in the negotiation stage in my model
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whereas all players update their actions synchronously in Boyd
and Richerson (1988) and Segbroeck et al. (2012). Conditional
cooperators in my model can detect unconditional defectors
during negotiation at no cost and avoid being exploited by them,
while conditional cooperators in Boyd and Richerson (1988)
and Segbroeck et al. (2012) can detect unconditional defectors
only after being exploited by them in the first round of the
repeated game and hence detection of unconditional defectors
is costly there (compare Figures 2, 3 of Brandt and Sigmund,
2006 to understand how the payoff in the first round qualitatively
changes evolutionary dynamics). Similar phenomena, though the
modeling framework is quite different from the current one, were
found in the continuous-time, two-player “coaction” model by
van Doorn et al. (2014), where the authors found that (i) real
time coaction in response to partner’s behavior (analogous to
my negotiation stage) generally favors cooperation but that (ii)
once delay in information about the behavior of one’s partner
is introduced, as is often the case with discrete-round repeated
Prisoner’s Dilemma games, achieving cooperation becomes more
difficult. Therefore, the introduction of a negotiation stage, if
the possibility of lying is suppressed by some mechanism such
as punishment (Sigmund et al., 2010; Quiñones et al., 2016)
or ostracism (Nakamaru and Yokoyama, 2014), contributes to
enhancing the efficiency of conditional cooperation.

It is notable that my model explains the presence of
conditional cooperation not as an evolutionarily stable strategy
(ESS). For example, a classical ESS analysis of the Tit-For-Tat
strategy (Axelrod and Hamilton, 1981) predicts that everyone
should adopt conditional cooperation at an evolutionary
equilibrium. However, recent experiments strongly suggest that
there is wide variation in behavior among people (Fischbacher
et al., 2001; Martinsson et al., 2013). My analysis here, in contrast,
predicts evolutionary coexistence of many types of players. In
fact, I have found, for both two-player and three-player games
and in both infinite and finite population analyses, that the
existence of conditional cooperators creates a cycle of invasion,
in which unconditional defectors are invaded by conditional
cooperators, which are invaded by unconditional cooperators,
which are then invaded by unconditional defectors. As a result,
cooperation is sustained to some degree in the population.
Note that, although my model predicts such cyclical invasion
over time, it should be best interpreted as the possibility of
polymorphism, because the evolutionary model here inevitably
simplifies other factors of human decision making. A similar
evolutionary cycle has been found in Segbroeck et al. (2012).
Conditional cooperators work as an evolutionary catalyst; they
create an evolutionary advantage of being a cooperator, and self-
sustain their presence in the population. This is quite in contrast
to a population with unconditional defectors and unconditional
cooperators only, where defection is a dominating strategy.

As mentioned in the Model section, my negotiation model
makes a very strong assumption; that players can never change
the action (i.e., never tell a lie) once the negotiation reaches a
stationary state. It can be understood such that players make
a commitment before the game is actually played. Recently, a
series of papers analyzed the effect of such pre-commitments
on evolution of cooperation (Han et al., 2013, 2015a,b, 2017a,b;
Sasaki et al., 2015; Han and Lenaerts, 2016) and found that

pre-commitments were effective in enhancing cooperation.
Those works typically assume that players can choose whether
they make a costly commitment before the game. If one breaks
the commitment he or she has to pay a fine. It has been shown
that a large fine enhances the success of commitment strategies
(Han et al., 2013, 2015a, 2017a). Another possible way to suppress
those who make a fake commitment would be to exclude them
from other games in the future. I have not modeled these
“outside-game” possibilities in this paper but have concentrated
on describing the one-shot negotiation game.

Among those papers on pre-commitments, Han et al. (2017a)
has notable similarity to my current model, because both study
public goods games and consider conditional cooperators who
are keen to the behavior of others in the group. Through a finite
population game dynamics analysis, Han et al. (2017a) essentially
found a similar evolutionary cycle, from unconditional defectors
to conditional cooperators, then to unconditional cooperators,
and then to unconditional defectors again. In contrast, there
is a remarkable difference between these two models. In my
model players make “commitments” to cooperate or to defect
depending on the number of other cooperators and defectors
during a process of dynamic negotiation. In the model of Han
et al. (2017a), however, all players except pure defectors first do
make commitments to cooperate, and then count the number
of committers to see if this number exceeds their threshold to
actually play the public goods game.

My model does not rely on the mechanism of direct
reciprocity in the sense that the same individuals do not have
to interact repeatedly. This feature is shared by models of
generalized reciprocity (Hamilton and Taborsky, 2005; Pfeiffer
et al., 2005; Chiong and Kirley, 2015), where individuals
make decisions based on the previous encounter with other
group members. A driving force of evolution of generalized
reciprocity is assortment of cooperative strategies (Rankin and
Taborsky, 2009) based on contingent movement of individuals
between groups (Hamilton and Taborsky, 2005), a small
group size (Pfeiffer et al., 2005) (but see Barta et al. (2011),
where random drift helps generalized reciprocity to overcome
initial disadvantage in a large group), or network structure
(van Doorn and Taborsky, 2012). Generalized reciprocity has
been proposed as a mechanism that does not require high
cognitive ability, and hence is applicable to cooperation by
non-human animals (Rutte and Taborsky, 2007; Schneeberger
et al., 2012; Leimgruber et al., 2014; Gfrerer and Taborsky,
2017) as well as empathy-based cooperation by humans
(Bartlett and DeSteno, 2006; Stanca, 2009). In contrast, a
driving force of cooperation in my model is coordination
of behavior based on negotiation and pre-commitments.
Therefore, its scope of application is rather cognition-
based cooperation (and defection), which characterizes
another aspect of human sociality (Knoch et al., 2006;
Baumgartner et al., 2011; Ruff et al., 2013; Yamagishi et al.,
2016).

A technical advantage of employing the finite population
analysis is that, in contrast to replicator dynamics analysis for an
infinitely large population where outcomes can be dependent on
initial conditions and many complexities can arise due to high
dimensionality, it can predict a stationary probability distribution
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that is independent of initial conditions. There is limitation inmy
analysis based on the adiabatic limit and strong selection, though,
because mutation rate must be unrealistically low for the Fermi
process to reach either end of the C1-C3 edge (i.e., fixation of
one strategy) despite the tendency of evolutionary coexistence
of those two strategies due to negative frequency-dependent
selection. Nevertheless, I believe that this methodology can give
us some insights that would not have been derived by replicator
dynamics analyses.

There is a growing interest in studying negotiation processes
to see how flexibility in behavior shapes an evolutionary outcome
(McNamara et al., 1999; McNamara, 2013; Quiñones et al., 2016;
Ito et al., 2017). My negotiation model here is such an attempt to
reveal the origin of conditional cooperators and to explain why
we observe both cooperation and defection in the real world.
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