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Autopolyploids present several challenges to researchers studying population genetics,

since almost all population genetics theory, and the expectations derived from this theory,

has been developed for haploids and diploids. Also many statistical tools for the analysis

of genetic data, such as AMOVA and genome scans, are available only for haploids

and diploids. In this paper, we show how the Analysis of Molecular Variance (AMOVA)

framework can be extended to include autopolyploid data, which will allow calculating

several genetic summary statistics for estimating the strength of genetic differentiation

among autopolyploid populations (FST, ϕST, or RST). We show how this can be done by

adjusting the equations for calculating the Sums of Squares, degrees of freedom and

covariance components. The method can be applied to a dataset containing a single

ploidy level, but also to datasets with a mixture of ploidy levels. In addition, we show

how AMOVA can be used to estimate the summary statistic ρ, which was developed

especially for polyploid data, but unfortunately has seen very little use. The ρ-statistic can

be calculated in an AMOVA by first calculating amatrix of squared Euclidean distances for

all pairs of individuals, based on the within-individual allele frequencies. The ρ-statistic is

well suited for polyploid data since its expected value is independent of the ploidy level,

the rate of double reduction, the frequency of polysomic inheritance, and the mating

system. We tested the method using data simulated under a hierarchical island model:

the results of the analyses of the simulated data closely matched the values derived from

theoretical expectations. The problem of missing dosage information cannot be taken

into account directly into the analysis, but can be remedied effectively by imputation of

the allele frequencies. We hope that the development of AMOVA for autopolyploids will

help to narrow the gap in availability of statistical tools for diploids and polyploids. We also

hope that this research will increase the adoption of the ploidy-independent ρ-statistic,

which has many qualities that makes it better suited for comparisons among species

than the standard FST, both for diploids and for polyploids.

Keywords: genetic differentiation, population structure, FST, double reduction, polysomic inheritance, polyploidy,

AMOVA

INTRODUCTION

Autopolyploidy is an important, but often overlooked, aspect of the evolution of all major groups
of Eukaryotes-plants, animals, and fungi- and may constitute an underappreciated source of
biodiversity (Hardy, 2015). There are many species in which multiple ploidy levels (cytotypes)
exist and often each cytotype itself conforms to the requirements of several widely used species
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concepts (Soltis et al., 2007). Autopolyploidy has many effects
on the mechanisms of evolution, not only because of the
increase in genomic content and the flexibility for developing
new traits (Larkin et al., 2016), but also because, compared to
diploidy, it generates different dynamics of allele frequencies
that interact with various demographic processes, influencing
adaptation and speciation (Parisod et al., 2010). In a species
with different ploidy levels, the different cytotypes often show
intricate geographical patterns in their distribution, which may
be the result of historical, demographic, ecological, or genetic
processes (Glennon et al., 2014; Kolár et al., 2017). The analysis
of population genetic structure of autopolyploids may therefore
reveal a lot about these processes. However, polyploids also
present several challenges to the researchers studying their
population genetics (Dufresne et al., 2014). This is because
population genetic theory, the expectations derived from this
theory, and the statistical tools for data analysis were developed
mostly for haploids and diploids and require translation for
polyploids (Meirmans et al., 2018).

Several of the basic genetic processes work differently in
autopolyploids than in diploids (Meirmans et al., 2018). The
higher number of chromosomes means that for each gene a
higher total number of copies is present in a population. This
increases the number of mutation events per population, and
also increases the impact of migration as each migrant individual
carries more chromosome copies to its new population.
Conversely, the higher total number of chromosome copies
is akin to a higher effective population size and therefore
reduces the force of genetic drift, compared to a diploid
population with the same number of individuals. Mendelian
segregation also works differently in autopolyploids, since it
is not necessarily completely random, as is almost always the
case in diploids. Instead, there may be disomic inheritance,
polysomic inheritance, or a combination of the two, where the
rate of polysomy varies across the genome (Stift et al., 2008;
Meirmans and van Tienderen, 2013). In addition, autopolyploids
may show double reduction, a process where two copies of the
same chromatid segment end up in the same gamete (Bever
and Felber, 1992; Hardy, 2015). For example in a autotetraploid
with genotype ABCD this may lead to the production of
homozygous (AA, BB, CC, and DD) gametes, in addition to
the expected heterozygous gametes (e.g., AB, AD). A more
practical problem in the genetic analysis of polyploids is that it
is often difficult to estimate the dosage of the different alleles
in a genotype (Dufresne et al., 2014). For example, it may be
impossible to distinguish between the triploid genotypes AAB
andABB since they both share themarker phenotypeAB. Missing
dosage information may introduce a bias in the subsequent
analysis; though depending on the type of analysis this bias
may be corrected for quite effectively when random mating in
populations can be assumed (De Silva et al., 2005; Meirmans
et al., 2018). However, when the assumption of Hardy Weinberg
equilibrium cannot be made for a species, accounting for the
missing dosage information becomes more problematic, though
in some cases it is possible to adjust the calculations specifically
to take the missing dosage into account (Hardy, 2015; Field et al.,
2017).

Estimating the strength of the genetic population structure
is usually done using F-statistics that decompose the genetic
variance into within-individual, within-population and among-
population components (Wright, 1969). Autopolyploidy affects
the way these statistics should be estimated (Meirmans et al.,
2018), but also their expected values under a given model of
population structure, when compared to the same model for
diploids (Ronfort et al., 1998). For example, the expected value
of FST—quantifying the degree of population differentiation—
depends on the balance among migration, mutation, and drift. In
autopolyploids, the increased effects of mutation and migration,
in combination with the reduced force of drift, cause the expected
value of FST to be lower than the corresponding value for
diploids (Meirmans et al., 2018). This difference in expectation
complicates comparisons of the strength of population structure
among species or sets of populations with different ploidy levels.

To enable a better estimation of the degree of population
differentiation across ploidy levels, Ronfort et al. (1998)
developed an alternative summary statistic, which they called
ρ, for which the expected value is independent of the ploidy
level. The ρ-statistic is comparable to FST in that it estimates
the degree of population differentiation and—barring estimation
error—ranges between 0 and 1. For haploid data, the value of ρ

is exactly the same as the value of FST; for higher ploidy levels,
the value of ρ is generally slightly higher than that of FST. The
ploidy independence of ρ is achieved by disregarding the within-
individual variation (illustrated by Equation 14 below). Another
perk of the ρ-statistic that makes it suitable for the analysis of
polyploid data is that its value is both independent of the rate
of double reduction (Ronfort et al., 1998) and of the frequency of
polysomic inheritance (Meirmans and van Tienderen, 2013). The
ρ-statistic also has a major advantage that is applicable to diploid
as well as polyploid data: its value is independent of the rate of
self-fertilization or other forms of inbreeding. This means that
under a givenmodel of population structure, ρ will have the same
value for a strict inbreeder as for an obligate outcrosser, whereas
FST gives higher values for inbreeders than for outcrossers. This
is especially useful in comparative studies, where a comparison of
FST and ρ can be used to see whether differences in population
structure are due to differences in mating system or due to
differences in population connectivity. Unfortunately, ρ is not
very widely used, possibly because there are only few computer
programs that allow estimation of ρ from genetic marker data.
The only two such programs that we are aware of are SPAGEDI

(Hardy and Vekemans, 2002), and GENODIVE (Meirmans and
van Tienderen, 2004).

One of the most popular methods for estimating F-statistics
is via Analysis of Molecular Variance (AMOVA) (Excoffier et al.,
1992; Peakall et al., 1995; Michalakis and Excoffier, 1996). This
popularity is probably due to the remarkable flexibility of the
AMOVA framework: it can be used for the estimation of different
types of F-statistics (FST, ϕST, RST) and can easily incorporate
additional hierarchical levels of population structure (e.g., testing
for differentiation among groups of populations). In addition,
AMOVA can be used to detect population clustering in a genetic
dataset (Dupanloup et al., 2002; Meirmans, 2012). However,
AMOVA has been described only for haploid and diploid data
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and the link between the AMOVA framework and the ρ-statistic
has not been explored theoretically.

In this paper, we outline how the AMOVA framework can be
extended to include autopolyploid data. We start by discussing
how the standard AMOVA, for calculating FST, ϕST, or RST,
can be easily adapted for use with autopolyploids. We then
show how the ploidy-independent ρ-statistic can be calculated
in AMOVA by using a matrix of squared Euclidean distances
between individuals, calculated from the within-individual allele
frequencies. Finally, we show the application of the method by
calculating both FST and ρ for simulated datasets and discuss
how to deal with the polyploidy-specific complication of missing
dosage information.

THE AMOVA FRAMEWORK

General Approach
In AMOVA (Excoffier et al., 1992; Michalakis and Excoffier,
1996), F-statistics are calculated from a set of covariance
components, corresponding to the different hierarchical levels
assumed to be present in the population structure (following
Cockerham, 1973; Weir and Cockerham, 1984). So under a
simple model of population structure where individuals are
distributed over a number of populations, we can decompose the
total genetic variance (σ 2

T) into among-populations (σ 2
a ), among-

individuals within populations (σ 2
b
), and within-individuals (σ 2

c )

covariance components, such that σ 2
T = σ 2

a+σ 2
b
+σ 2

c . The F-
statistics can then be calculated as simple ratios of those
covariance components:

FST =
σ 2
a

σ 2
T

(1a)

FIS =
σ 2
b

σ 2
b
+ σ 2

c

(1b)

FIT =
σ 2
a + σ 2

b

σ 2
T

(1c)

When the populations can be clustered into multiple groups, an
extra hierarchical level is added and the total genetic variance
is decomposed into among-groups (σ 2

a ), among-populations
within-groups (σ 2

b
), among-individuals within-populations (σ 2

c ),

and within individuals (σ 2
d
) covariance components, such that

σ 2
T = σ 2

a+σ 2
b
+σ 2

c +σ 2
d
. The corresponding F-statistics are

then:

FCT =
σ 2
a

σ 2
T

(2a)

FSC =
σ 2
b

σ 2
b
+ σ 2

c + σ 2
d

(2b)

FIS =
σ 2
c

σ 2
c + σ 2

d

(2c)

FIT =
σ 2
a + σ 2

b
+ σ 2

c

σ 2
T

(2d)

This follows the Analysis of Variance framework that was
developed earlier by Cockerham (1973) and Weir and
Cockerham (1984). However, whereas Weir and Cockerham
calculated these covariance components from a linear vector
of allele frequencies, AMOVA calculates them using a matrix
D of pairwise squared Euclidean distances. This is based on
previous work by Li (1976) showing that conventional Sums
of Squares can be calculated from a matrix of pairwise squared
Euclidean distances. These Sums of Squares can then be used to
calculate the Expected Mean Squares, which in turn can be used
to calculate the covariance components (Weir and Cockerham,
1984).

The use of a distance metric is actually what gives AMOVA
its remarkable flexibility, as the distance metric can be changed,
depending on the type of data under analysis. A simple matching
distance can be used for a single locus with allelic data—
for example for SNPs (Peakall et al., 1995; Michalakis and
Excoffier, 1996). Multilocus values of the F-statistics can then be
obtained by summing the covariance components over loci. A
distance metric for haplotypic data was described in the original
paper by Excoffier et al. (1992), based on the phenetic distance
between the pair of haplotypes. This is also the most frequently
used method for sequence data, though more complex distance
metrics can be used as well—e.g., by incorporating a specific
mutational model or by tracing distances along a connecting
network or tree (Excoffier and Smouse, 1994). A distance metric
for microsatellites loci can be calculated by taking the squared
difference in repeat number between alleles (Michalakis and
Excoffier, 1996).

The interpretation of the F-statistics returned by AMOVA
depends strongly on the choice of distance metric used. This
means that from the wide array of available estimators for
FST, different estimators are obtained by different distance
metrics. For allelic data, where the simple matching distance
is used, the resulting F-statistics are mathematically equivalent
to the estimators of Weir and Cockerham (1984). In contrast,
for haplotypic/sequence data, the distances are indicative of
the evolutionary relationships between haplotypes/sequences
(Whitlock, 2011); to reflect this, the F-statistics are generally
referred to with the Greek letter ϕ. Finally, when for
microsatellites the difference in repeat number is used, the
estimator corresponds to the RST-statistic (Slatkin, 1995).

Adaptation to Autopolyploids
For autopolyploids, AMOVA can be performed using the same
methods as above for calculating the pairwise distances among
alleles, yielding estimates of FST, ϕST, or RST. However, the higher
ploidy means that the overall size of the complete distance matrix
increases. So what is needed to adapt a standard diploid AMOVA
to autopolyploid data is to account for this larger overall sample
size in all the calculations, which is very straightforward when
the data contain only a single ploidy level. For a total sample size
of N diploids, the distance matrix is of size 2N∗2N, whereas for
autopolyploids with ploidy level x, the matrix is of size xN∗xN
(for computational efficiency it is also possible to only use the
lower or upper half of the matrix). The Sums of Squares are
therefore calculated by summing over a larger number of pairwise
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distances, though this follows the same approach as outlined by
Excoffier et al. (1992; Their equations 8a−8c) by summing over
groups, populations, and individuals as necessary.

The higher ploidy level results in a larger number of allele
copies within individuals, populations, and groups. This larger
number of allele copies needs to be reflected in the degrees
of freedom used for calculating the Expected Mean Squares;
however, this is only the case for the within-individual and
total degrees of freedom, as the others are only determined
by the higher-level sample sizes. In Table 1 we give generic
formulas for the degrees of freedom for any ploidy x > 1 for
a model with a single group of populations, and compare this
to the diploid case described in the original papers (Excoffier
et al., 1992; Peakall et al., 1995; Michalakis and Excoffier, 1996);
the notation follows the notation used in the documentation
of the software Arlequin (Excoffier and Lischer, 2010, 2015).
Table 2 shows the same, but then for multiple groups of
populations. The Expected Mean Squares can then be obtained
by dividing the corresponding Sum of Squares by the degrees of
freedom.

For calculating the covariance components from the expected
mean squares it is necessary to incorporate the sample sizes
at the different hierarchical levels included in the analysis. The
simplest case is a single group of populations all of the same
ploidy level x and all with the same sample size Np. In this
case (Table 1), the multiplication factor n is defined as xNp, the
number of allele copies sampled per population. However, when
there is unbalanced sampling (Table 1), this multiplication factor
has to take the sample sizes for all populations separately into
account:

n =
xN −

∑

p∈P

xN2
p

N

P − 1
(3)

Here, Np is the number of individuals sampled in
population p.

When there are multiple groups of populations (Table 2)
there are three coefficients: n, n′, and n′′. When sampling is
balanced, so with the same number of individuals sampled
for every population and the same number of populations
sampled in each of the G groups, n and n′ are defined as xNp.
As above, this is simply the number of allele copies sampled
per population. The value of n′′ is then defined as xNg , the
number of allele copies sampled per group of populations.
However when sample sizes within populations and/or groups
are unbalanced (Table 2), the sample sizes have to be taken
into account for the calculation, and the three coefficients are
defined as:

n =
xN −

∑

g∈G

∑

p∈g

xN2
p

Ng

P − G
(4a)

n′ =

∑

g∈G
(N−Ng )

Ng

∑

p∈g xN
2
p

N(G− 1)
(4b)

n′′ =
xN −

∑

g∈G xN2
g

N

G− 1
(4c)

TABLE 1 | Outline of the AMOVA framework for a single group of populations with

the degrees of freedom (d.f.) both given for diploids and generalized for any ploidy

level x (except haploid).

Source d.f.

diploid

d.f.

x-ploid

Sum of

squares

Expected mean

squares

Among populations P-1 P-1 SSD(AP) nσ2
a+xσ

2
b
+ σ2

c

Among individuals

within populations

N-P N-P SSD(AI/WP) xσ2
b
+ σ2

c

Within individuals N (x-1)·N SSD(WI) σ2
c

Total 2N-1 x·N-1 SSD(T ) σ2
T

P is the number of populations and N the number of individuals; the value of the

multiplication coefficient n is calculated using Equation (3). This method can be used to

obtain estimates of FST , ϕST , or RST .

TABLE 2 | Outline of the AMOVA framework for multiple group of populations with

the degrees of freedom (d.f.) both given for diploids and generalized for any ploidy

level x (except haploid).

Source d.f.

diploid

d.f.

x-ploid

Sum of

squares

Expected mean

squares

Among groups G-1 G-1 SSD(AG) n′′σ2
a+n

′

σ2
b
+xσ2

c + σ2
d

Among populations

within groups

P-G P-G SSD(AP/WP) nσ2
b
+ xσ2

c + σ2
d

Among individuals

within populations

N-P N-P SSD(AI/WP) xσ2
c + σ2

d

Within individuals N (x-1)·N SSD(WI) σ2
d

Total 2N-1 x·N-1 SSD(T ) σ2
T

G is the number of groups, P the number of populations, and N the number of individuals;

the value of the multiplication coefficients n, n′ and n′′ are calculated using Equations

(4a–c). This method can be used to obtain estimates of FST , ϕST , or RST .

where Ng is the number of individuals sampled in group g. For
haploid and diploid data (x = 1 and x = 2), these equations are
the same as for the standard AMOVA (Michalakis and Excoffier,
1996; Excoffier and Lischer, 2015).

Mixed Ploidy Datasets
Slightly more complicated evolutionary scenarios involve
multiple ploidy levels, either occurring in separate populations,
or co-occurring in populations. In such a case, there is no single
ploidy level x that can be used to calculate the degrees of freedom
and the multiplication coefficients. However, when the ploidy
level of every genotyped individual is known (e.g., through flow
cytometry), this problem can be solved by using the number of
allele copies sampled per population (C), rather than the number
of individuals (N). Table 3 shows the formulas for the degrees of
freedom for any mixture of ploidy levels (though all should be
at least diploids) for a model with a single group of populations.
The corresponding coefficients n, n′, and n′′ are defined as (again
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TABLE 3 | Outline of the AMOVA framework for a single group of populations with

the degrees of freedom (d.f.) for a mixture of individuals with different ploidy levels,

based on the total number of allele copies sampled (C).

Source d.f. x-ploid Sum of squares Expected mean

squares

Among populations P-1 SSD(AP) n′′σ2
a+n

′σ2
b
+ σ2

c

Among individuals

within populations

N-P SSD(AI/WP) nσ2
b
+ σ2

c

Within individuals C-N SSD(WI) σ2
c

Total C-1 SSD(T ) σ2
T

P is the number of populations and N the number of individuals; the value of the

multiplication coefficients n, n′, and n′′ are calculated using Equations (5a–d). This method

can be used to obtain estimates of FST , ϕST , or RST .

following the notation from Excoffier and Lischer, 2015):

SP =
∑

p∈P

∑

i∈p

C2
i

Cp
(5a)

n =
C − SP

N − P
(5b)

n′ =
SP −

∑

i∈N
C2
i
C

P − 1
(5c)

n′′ =
C −

∑

p∈P

C2
p

C

P − 1
(5d)

The F-statistics can then be calculated in the normal way,
using Equations (1a–c). Note that when the significance of the
population differentiation is tested by permuting individuals
over populations, the number of allele copies in the permuted
populations may differ from the original values. Therefore, the
coefficients n, n′, and n′′ will have to be recalculated for every
permutation.

Ploidy-Independent ρ-Statistic
In addition to the above-developed method that yields estimates
of FST, ϕST, or RST, AMOVA can also be used to obtain
estimates of the ploidy-independent ρ-statistic (Ronfort et al.,
1998). Here we show that this can be done by performing
AMOVA on a matrix of squared Euclidean distances calculated
from the within-individual allele frequencies. Other than the
above methods of calculating distances—where each distance
is calculated between a pair of alleles or haplotypes—here
each squared Euclidean distance (denoted as d2ij) is calculated

between a pair of individual genotypes at a locus. The metric is
calculated as

d2ij =
∑A

a=1

(

pia − pja
)2

(6)

where pia is the frequency of the ath allele (a ∈ {1, 2, . . . ,A})
within individual i. In diploids, these frequencies can take the
values 0, 0.5, and 1; in triploids the values 0, 0.33, 0.67, and 1;
in tetraploids the values 0, 0.25, 0.5, 0.75, and 1; etc. For haploids,
the only two possible values are 0 and 1 and therefore for haploids
this metric is the same as the simple-matching distance; by

extension this means that for haploid data the value of ρ equals
that of FST.

This distance metric yields, for any ploidy level, only a single
distance value per pair of individuals. As a result, the distance
matrix is only of size N∗N, whereas the approach above resulted
in a matrix of xN∗xN, for data of ploidy level x. The N∗N
matrix can then be used to perform AMOVA using the equations
(not shown here) originally developed for haploid data in the
paper by Excoffier et al. (1992). This approach also allows ρ

to be calculated at different hierarchical levels, e.g., to compare
differentiation among clusters of populations. For such use, we
will adopt the convention of adding subscripts to indicate which
levels are compared, though Ronfort et al. (1998) did not use any
such subscripts in their original description of ρ. Note that since
the within-individual component is disregarded, there are no ρ

equivalents of FIS and FIT in such a hierarchical analysis.
When the two individuals have the same ploidy level, the

squared Euclidean distance metric proposed here is a simple
linear transformation of the squared Euclidean distance metric
of Smouse and Peakall (1999). Since a linear transformation
of the distance matrix does not affect the relative sizes of the
variance components, this means that the Smouse and Peakall
distance can also be used for AMOVA. However, the metric from
Smouse and Peakall has only been defined for cases where the
two individuals have the same ploidy level, whereas the metric
proposed above is also suited to mixtures of different ploidy
levels.

Themathematical relationship between the squared Euclidean
distance metric and ρ can be deduced as follows. Again, pia refers
to the frequency of the ath allele (a ∈ {1, 2, . . . ,A}) in the ith
individual (i ∈ {1, 2, . . . ,N}). The sum of the D matrix can then
be transformed as:

∑N

i = 1

∑N

j = 1
d2ij =

∑N

i = 1

∑N

j = 1

∑A

a = 1

(

pia − pja
)2

= 2N2
∑A

a = 1

(

1

N

∑N

i = 1
p2ia

−

(

1

N

∑N

i = 1
pia

)2
)

(7)

If we define

ȞO ≡
1

N

∑N

i=1

(

1−
∑A

a=1
p2ia

)

(8)

and

ȞE ≡ 1−
∑A

a=1

(

1

N

∑N

i=1
pia

)2

(9)

then the sum of squared distances in Equation (7) can be
simplified to:

∑N

i=1

∑N

j=1
d2ij =2N2

(

ȞE − ȞO

)

(10)

ȞE and ȞO as defined here are analogous—but not
equivalent—to the standard HE and HO as defined by Nei
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(1987) for diploids and by Moody et al. (1993) for polyploids (see
also Meirmans et al., 2018):

HO =
1

N

∑N

i=1

(

(

1−
∑A

a=1
p2ia

)

·
xi

xi − 1

)

(11)

HE = 1−
∑A

a=1

(

∑N
i=1

(

xi · pia
)

∑N
i xi

)2

(12)

While HE and HO attempt to correct the calculation of allele
frequency or heterozygosity using individual ploidy information,
ȞE and ȞO ignore such information, hence endowing ρ a ploidy-
independent nature.

In the Island model where the number of populations is r
(each population has a size of N), ρST can be calculated as

ρST = 1−
(r · N)2 · x2

∑r
k=1

∑N
i=1

∑N
j=1 d

2
kij

r · N2 · x2
∑r·N

i=1

∑r·N
j=1 d

2
ij

(13)

Using the link between the sum of squared distances and the
Ȟ-statistics that was established in Equation (10), Equation (13)
can be transformed into:

ρST =
ȞT − ȞS

ȞT − ȞO

(14)

The statistic ȞT is defined in the same vein as ȞE but then for
all populations together; ȞS is the average of ȞE calculated over
populations. If the populations contain only a single ploidy level,
Equation (14) can be transformed into

ρST =
HT −HS

HT −HO · x−1
x

(15)

which is the same as Equation (6) in Meirmans et al. (2018).

APPLICATION TO DATA

Simulations Under a Hierarchical Island
Model
To test how well the above-developed AMOVA framework
performs for data with different ploidy levels, we simulated data
under a standard hierarchical island model (Slatkin and Voelm,
1991; Vigouroux and Couvet, 2000). A set of 20 populations
was simulated, divided into two archipelagoes, both having 10
populations. All populations had the same size of N = 100;
mating within populations was completely random, including
a probability of self-fertilization of 1/N. Genetic markers were
simulated at 1,000 independently segregating loci; mutation
followed a K-alleles model with 100 possible allelic states and a
mutation rate of µ = 0.0001. Migration took place at different
rates among populations from the same archipelago (m1) and
among populations from different archipelagoes (m2).

The model was population-based, so individuals were not
explicitly modeled but instead the populations were represented
by a set of vectors containing the allele frequencies of all possible
allelic states at all loci. Under the assumption of random mating,
one generation of genetic drift can then easily be simulated by

drawing random numbers from a multinomial distribution. For
the expected values in the multinomial, we used the current
population allele frequencies—after incorporating the expected
effects of migration andmutation. For the number of draws in the
multinomial, we used the number of chromosome copies in the
population, so the population size multiplied by the ploidy level.
The model was written in R, using the rmultinom() function for
drawing random numbers; the used R-script is available in online
Supplement 1 (Data Sheet 1).

The model was run for diploids, tetraploids, and hexaploids,
for values of m2 of 0.001, 0.0001, and 0.00001; per value of
m2 a range of values of m1 was used with a maximum of
0.1 and a minimum equal to the value of m2 (so m1 ≥ m2).
Per scenario, the model was run once for 20,000 generations;
replication was provided by the use of the 1,000 independent
loci. After the last generation, genotypes were constructed by
randomly distributing the alleles over individuals and written
to a file. The software GENODIVE v. 2b27 (Meirmans and van
Tienderen, 2004) was used to perform a hierarchical AMOVA
on the resulting genotypes. The results were compared to the
theoretical expectations for FSC and FCT derived by Vigouroux
and Couvet (2000). Though these expectations were only derived
for diploids, general results for any ploidy level x can be
obtained by substituting all occurrences of the term “4N” in
the equations by the term “2xN” (see Meirmans et al., 2018).
The expectations for ρ for any ploidy level are equivalent to
the expectation for FST under haploidy (Ronfort et al., 1998;
Meirmans et al., 2018), so can also be derived from the equations
of Vigouroux and Couvet (2000) by substituting every “4N” by
“2N.”

Simulation Results
When applying the AMOVA framework to the simulated
data for several ploidy levels, the results closely matched the
theoretical expectations (Figure 1), indicating that AMOVA
correctly estimates the variance components and the F-statistics.
For all three values of m2, FSC showed a monotonic decrease
with increasing values of m1 (Figure 1, top row), whereas
FCT showed a monotonic increase (Figure 1, bottom row). As
random mating within populations was assumed, the values of
FIS were close to zero for all simulated scenarios (not shown). The
only slight deviation between the results of the simulation and
the theoretical expectations was observed for the FCT-statistic
when the migration rate within archipelagoes (m1) was close to
or equal to the migration rate between archipelagoes (m2). This
deviation can easily be explained since the theoretical derivations
of Vigouroux and Couvet (2000) assume that m1 > m2. For the
cases where m1 = m2, the simulations consistently show a FCT
value that is close to zero, whereas the expected values are slightly
higher.

As expected, there is a strong difference between the F-
statistics (Figure 1) and the ρ-statistics (Figure 2) in how they
behave under different ploidy levels. For the F-statistics, at a
given set of migration rates, the values decrease with increasing
ploidy level. This is due to the increased impact of migration
at higher ploidy levels combined with a decrease in the force of
genetic drift (Meirmans et al., 2018). On the other hand, the ρ-
statistics generally have similar values for all ploidy levels when
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FIGURE 1 | F-statistics calculated using an AMOVA on data of three different ploidy levels simulated using a hierarchical island model of migration. The solid lines

represent the results of the simulations, the dashed lines represent the expected values based on the derivations of Vigouroux and Couvet (2000).

calculating the differentiation among subpopulations within
clusters (ρSC) or the differentiation among clusters (ρCT). This
ploidy-independence of the ρ-statistic is immediately evident
from the almost completely overlapping lines in Figure 2. As
we saw above for FCT, the estimates of ρCT from the simulated
data show a slight deviation from the expected values when the
assumption ofm1 > m2 is violated.

DISCUSSION

Expanding the AMOVA Framework
In this paper, we showed how the AMOVA framework (Excoffier
et al., 1992; Peakall et al., 1995; Michalakis and Excoffier, 1996)
can be used for autopolyploids of any ploidy level by adapting
the way the Sums of Squares and resulting variance components
are calculated. This method can be used with any distance metric
that is normally used with haploid or diploid data, which means
that the method can be used to obtain estimates of FST, ϕST, or
RST. In addition, we showed that the use of a simple squared
Euclidean distance metric defined here will yield an estimate
of the ploidy-independent ρ-statistic. For both approaches (FST
and ρ), AMOVA can be used for datasets from a single cytotype
or a mixture of cytotypes. Since the covariance components are
calculated separately for each locus, the method can even be used
with species where there is ploidy variation within the genome,
such as the salmonid fishes (Allendorf et al., 2015).

We tested the developed method with datasets simulated
under a hierarchical island model of migration, for multiple
ploidy levels. The results of the simulations closely matched those
from the theoretical derivation of Vigouroux and Couvet (2000;

see also Slatkin and Voelm, 1991), showing that the method
correctly estimates the variance components. A slight deviation
was only observed when the assumption of m1 > m2 that was
made by Vigouroux and Couvet was violated. The violation of
this assumption was done on purpose as the simulations where
m1 = m2 allowed us to test the AMOVA in scenarios without
any hierarchical population structure. In these cases, the AMOVA
correctly showed the absence of any differentiation between
clusters (FCT = 0); the theoretical expectation in these cases was
slightly higher. Interestingly, this is the first study—as far as we
are aware—that has compared the theoretical expectations for
the hierarchical island model with simulated data; even though
hierarchical F-statistics are widely used in analyses of genetic
marker data, the theoretical derivations have received very little
attention, for autopolyploids as well as for diploids.

The Ploidy-Independent ρ-Statistic
Though the ρ-statistic that was developed by Ronfort et al.
(1998) is ideally suited to analyze autopolyploid data, it has seen
relatively little use for this purpose. We hope that the possibility
of calculating ρ using AMOVA will help to make it more
widely adapted. For calculating ρ we described a simple squared
Euclidean distance metric based on within-individual allele
frequencies. This is closely related to the metric of Smouse and
Peakall (1999), which uses allele counts rather than frequencies.
As we describe above, for any single ploidy level our metric
is a simple linear transformation of the metric of Smouse and
Peakall, and so for a single-ploidy dataset the two metrics give
identical results in AMOVA. However, one problem with the
Smouse and Peakall metric—and AMOVA based on it—is that it
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FIGURE 2 | Ploidy-independent ρ-statistics calculated using an AMOVA on data of three different ploidy levels simulated using a hierarchical island model of

migration. The solid lines represent the results of the simulations, the dashed lines represent the expected values based on the derivations of Vigouroux and Couvet

(2000). Note that the expectations are the same for all three ploidy levels.

cannot be used for analyses with mixed ploidy levels, as that will
lead to a bias. The metric from Smouse and Peakall (1999) has
received some criticism because it is founded on geometric rather
than biological principles (Kosman and Leonard, 2005; Dufresne
et al., 2014). However, these criticisms are unjustified since
our deductions above (Equations 7–15) recovered the biological
meaning of this method by linking themetric with the calculation
of ρ.

In our derivations above we have only focused on
autopolyploids. However, in many polyploid species it is
not known whether it is an allopolyploid or an autopolyploid.
In addition, species may show inheritance patterns that are
intermediate between these two extremes, with partly disomic
and partly polysomic inheritance (segmental allopolyploids;
Stebbins, 1947). Furthermore, the frequency of polysomic
inheritance may even vary among loci within a genome
(Stift et al., 2008). Meirmans and van Tienderen (2013) used
simulations of tetraploids where the rate of tetrasomy varied
between full disomic and full tetrasomic inheritance to test
the presence of bias in several genetic summary statistics.
They found that an assumption of autopolyploidy for a species
that is in fact an allopolyploid can give a strong downward
bias in the value of FST. On the other hand, the ρ-statistic
was almost completely free of such a bias and is therefore
the statistic of choice when the exact mode of segregation of
a polyploid is unknown. Of course, this does not mean that
the mode of segregation becomes irrelevant for the analysis of
polyploid data; for a true understanding of the genetic processes
within a polyploid species, studying the segregation mode is
indispensible.

The greatest strength of ρ lies in comparisons across species
or sets of populations with different ploidy levels. For a given
migration rate, population size, and mutation rate, the value of
ρ will be the same in diploids as in polyploids. Comparisons
of ρ across species with different ploidy levels therefore permits
assessing whether the impact of these processes are different in
the different species. The ρ-statistic can also be easily calculated
for mixed-ploidy data. However, in such cases there is an
important caveat. Whereas the same set of allele frequencies
always yields the same value of FST, regardless of the ploidy
level, this is not the case for ρ. So in a case where there are
multiple ploidy levels, calculating ρ separately for each ploidy
level will give different values, even when within populations
there is complete admixture among the cytotypes (see Meirmans
et al., 2018). Another limitation of ρ is that is currently only
defined under the Infinite Allele and K-allele models of mutation.
This means that it is not applicable to markers that follow a
Stepwise Mutation Model (as is the case for RST) or for sequence
data (as is the case for ϕST). This is because there are no
Euclidean distances among individual genotypes that can take
these mutational processes into account.

Polyploid AMOVA in Practice: Software
AMOVA for autopolyploids has been implemented in the
software GENODIVE (Meirmans and van Tienderen, 2004),
which is freely available for Mac computers from http://
www.patrickmeirmans.com/software. In addition to FST and
ρ, GENODIVE can also use AMOVA to calculate the F′ST
statistic for autopolyploids, which is FST standardized relative
to the level of within-population variation (Meirmans, 2006;

Frontiers in Ecology and Evolution | www.frontiersin.org 8 May 2018 | Volume 6 | Article 66

http://www.patrickmeirmans.com/software
http://www.patrickmeirmans.com/software
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Meirmans and Liu AMOVA for Autopolyploids

Meirmans and Hedrick, 2011). Besides the standard AMOVA,
where the degree of differentiation is calculated based on an
a priori defined hierarchical population structure, GENODIVE

also offers AMOVA-based K-means clustering (Meirmans, 2012)
for autopolyploid data based on the ρ-statistic. This analysis
allows clustering of individuals or populations into k groups,
where the algorithm finds the clustering with the highest value
of the ρ-statistic. The autopolyploid AMOVA has also been
implemented in the R-package POPPR V. 2.7.0 (Kamvar et al.,
2014).

The ρ-statistic is also applicable to haploid and diploid data,
and for such datasets it can be estimated using AMOVA with
the software GENALEX (Peakall and Smouse, 2012). For haploid
data, the ρ-statistic is simply equal to FST obtained from running
an AMOVA. For diploid data, the option to calculate genetic
distances among individuals should first be run, which calculates
the metric of Smouse and Peakall (1999). When an AMOVA is
subsequently performed using this distance matrix, the resulting
differentiation statistics—labeled ϕ in the output—are equivalent
to ρ.

Dealing With Missing Dosage Information
One of the major practical challenges of working with
autopolyploids is the problem of missing dosage information for
alleles (Dufresne et al., 2014). Depending on the type of marker—
and the sequencing depth for genotyping-by-sequencing data—
often only marker phenotypes are available and not the
complete genotypes. This missing dosage information may
cause a bias in the estimation of allele frequencies in samples
from autopolyploid populations; in AMOVA, this will cause
a bias in the estimation of the covariance components. This
is because individuals with different genotypes can have the
same phenotype: AAAB, AABB, and ABBB all have phenotype
AB. This will lead to an underestimation of the distance
between individuals and the corresponding Sums of Squares,
and hence to an underestimation of FST and ρ. It is, as yet,
not possible to correct for this bias directly in the calculation of
AMOVA.

It is possible to correct for this bias in an indirect way by
completing the genotypes via random imputation of the missing
alleles, when Hardy-Weinberg equilibrium can be assumed
within populations. For this, bias-corrected allele frequencies
should first be estimated based on the set of phenotypes,
e.g., using the maximum likelihood method of De Silva et al.
(2005). Then for every individual, the phenotype should be
filled in by randomly drawing alleles based on the expected
frequency (under HWE) of the different genotypes that can be
constructed from this phenotype, given the estimated frequencies
of the alleles present in the phenotype. So for example when
a tetraploid has phenotype AB and allele A is very common
in the population and allele B is very rare, it is much more
likely that the genotype will be randomly filled to AAAB

than to AABB or ABBB. If this imputation is done for all

individuals in the dataset and the sample sizes per population
are sufficient, the allele frequencies in the imputed dataset will

closely match the estimated allele frequencies and the imputed
dataset can be used to perform AMOVA. Simulations have
shown that this type of imputation can successfully remove
bias caused by missing dosage for both FST and ρ (Meirmans
et al., 2018). The procedure has been implemented in the
AMOVA and AMOVA-based K-means clustering functions of
the software GENODIVE (Meirmans and van Tienderen, 2004).
Since it involves randomly drawing alleles, it may be prudent
to repeat the procedure a number of times and calculate the
average values of the F-statistics across replicates. Nevertheless,
it’s important to realize that the assumption of random mating,
necessary for such imputation, is likely to be violated for
many polyploids. Therefore, a next major step in the field
would be the development of a method that can take the
missing dosage into account directly without an assumption of
HWE.

CONCLUSIONS

The statistical tools available for polyploids still lag behind
those available for diploids (Dufresne et al., 2014; Meirmans
et al., 2018). Hopefully, the Analysis of Molecular Variance for
autopolyploids that we described here will help to narrow this
gap when developers of statistical software that allows polyploid
data (e.g., Jombart, 2008; Clark and Jasieniuk, 2011; Kamvar
et al., 2014) will implement this method more widely. We
also hope that our description of the link between the squared
Euclidean distances, calculated from the within-individual allele-
frequencies, and the ρ-statistic will help advocate the use of
this statistic. Its independence of the ploidy level, the rate
of double reduction, the frequency of polysomic inheritance,
and the mating system makes ρ better suited for comparisons
among species than the standard FST, both for diploids and for
polyploids.
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