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Insects have developed specialized structures on their feet for adhering to surfaces,

with stick and leaf insects or Phasmatodea exhibiting an unexpectedly high diversity

of these structures. In Phasmatodea, attachment on different substrates is achieved by

two types of pads on the legs: the euplantulae on the tarsomeres and the arolium on

the pretarsus. The euplantulae are adhesive structures capable of adaptability to the

substrate profile and generation of the required attachment strength. The diversity of

euplantular microstructures of 56 species that represent all major lineages recognized

within Phasmatodea and the whole biogeographical distribution of the group are

examined using scanning electron microscopy (SEM). Nine different types of attachment

structures can be distinguished whereby one, the nubby type, can be further divided

into three different distinct types based on the specific ratio of each conical outgrowth.

We mapped the morphological data from the SEM onto a phylogenetic tree we

reconstructed based on molecular data. Previously, the evolution of different adhesive

microstructures (AMs) on these pads has been suggested to reflect phylogenetic groups.

However, different types of AMs are found within monophyletic groups, and our ancestral

character state reconstruction suggests smooth euplantulae in the ground pattern of

Euphasmatodea and multiple independent origins of other forms. The type of AM

appears to be strongly associated with ecomorphs, e.g., smooth euplantular surfaces

are more frequently found in tree-dwellers than in ground-dwellers, whilst the attachment

pads of ground-dwelling species primarily bear conical cuticular outgrowths (nubby

euplantulae).

Keywords: euplantulae, tarsal attachment, adhesive microstructures, phylogeny, cuticle, functional morphology

INTRODUCTION

The mesodiverse Phasmatodea are widespread, inhabiting nearly all temperate and tropical
ecosystems worldwide (Günther, 1953; Bedford, 1978; Brock et al., 2017), but have only
limited dispersal capabilities (Bradler et al., 2015). These exclusively phytophagous insects are
well-camouflaged in their preferred habitats due to their masquerade imitating leafs or twigs
(Bradler, 2009). While undergoing a fast radiation since the Cretaceous (Bradler et al., 2015) the
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slowly migrating phasmids adapted to very local environmental
settings. In a wide distributional range various ecological
adaptations occurred independently in different lineages, causing
different species inhabiting similar environments to display
similar adaptations (e.g., Buckley et al., 2009; Dennis et al., 2015).

Since the wide distribution and occupancy of similar
ecological niches has led to many convergences in Phasmatodea,
many distinct morphological adaptations, such as specialized
egg deposition modes, are more likely to form ecomorphological
groups within this lineage than to reflect phylogenetic
relationships (Buckley et al., 2009; Bradler et al., 2015; Goldberg
et al., 2015). For instance, the exclusively ground dwelling
tree lobsters (e.g., Droycoccelus, Eurycantha, Canachus) are
shown to be polyphyletic, but adapted to specific environmental
conditions, leading to many parallel evolvements. These formerly
taxonomically associated species exhibit a very similar habitus,
which is robust, dorsoventrally depressed and includes sturdy,
armed legs. They dwell on the ground and all bury their eggs
therein, usually with a secondary ovipositor (Buckley et al.,
2009). Such a distinct ecological specification is attended by
dissimilar substrata, species dwell on in their preferred habitats,
and most probably includes adaptations of the attachment
devices of these insects (Gottardo et al., 2015).

In order to adhere securely in the inhabited environment,
phasmids possess specialized structures on their tarsi (Figure 1).
Especially species living in the canopy depend on secure
attachment to avoid potential damage from dropping to the
ground (Schmitt et al., 2018). In addition to the pretarsal claws
two main types of attachment pads are used in phasmids. The
pretarsus is equipped with a pan-shaped toe pad (arolium)
in every species. This particular attachment pad is suggested
to create adhesion, if the tarsus is pulled from the surface
(Labonte and Federle, 2013). On the proximal tarsomeres a small
number of heel pads (euplantulae) are situated. Most species
possess one euplantula on each of the four proximal tarsomeres
enabling adjustment to the surface profile. In some species, a fifth
euplantula is found on the distal tarsomere as well (Vallotto et al.,
2016). In contrast to the arolium, the euplantulae generate large
friction coefficients, when they are pressed onto the substrate due
to shear forces, but create negligible adhesion (Busshardt et al.,
2011, 2012; Labonte and Federle, 2013; Labonte et al., 2014).

FIGURE 1 | Typical phasmatodean tarsus, Clonaria conformans (Gratidiini). cl,

tarsal claw; ar, arolium; eu, euplantula; ta1-5, tarsomeres 1-5. Scale bar: 1mm.

Attachment in insects is achieved in general by adaption
to the surface profile in order to maximize the actual contact
area. This is accomplished either by flexible setose structures,
or by soft cuticle layers (Gorb, 2001, 2005; Bennemann et al.,
2014). Both principles appear in different groups of insects
(Beutel and Gorb, 2001; Grohmann et al., 2015). Hairy systems,
consisting of deformable adhesive setae, are common in spiders
(Gorb et al., 2006), beetles (Stork, 1980; Gorb and Gorb, 2002;
Bullock and Federle, 2011), earwigs (Haas and Gorb, 2004), and
flies (Bauchhenss, 1979; Gorb, 1998; Niederegger et al., 2002;
Friedemann et al., 2014). The other system consists of cuticular
pads, which bear no prominent ornamentation, such as setae,
but might bear different adhesive microstructures (Beutel and
Gorb, 2008). This type is common in Phasmatodea (Büscher and
Gorb, 2017) and also found in Orthoptera (Gorb et al., 2000;
Perez Goodwyn et al., 2006), Hymenoptera (Federle et al., 2001,
2002; Frantsevich and Gorb, 2004), and Blattodea (Clemente and
Federle, 2008).

For hexapods in general, the structural diversity of the
attachment devices has been demonstrated to reflect phylogenetic
relationships and, for the Phasmatodea and their controversely
discussed sister groups, potential evolutionary scenarios were
postulated based on these traits (Beutel and Gorb, 2001,
2006, 2008). The presence of smooth arolia and euplantulae,
without macroscopic adhesive structures, has been discussed
with respect to a phylogenetic placement of Phasmatodea as sister
group to Mantophasmatodea, emphasizing the morphological
similarity of adhesive systems in both groups (Beutel and
Gorb, 2008). Nevertheless, recent morphological and molecular
approaches support the sister group relation of Embioptera
and Phasmatodea (Ishiwata et al., 2011; Friedemann et al.,
2012; Letsch et al., 2012; Letsch and Simon, 2013; Misof et al.,
2014). Although the attachment pads of stick insects appear
to be smooth on a macroscopical level, the basal splitting
of Timema and Euphasmatoda (the remaining Phasmatodea
excluding Timema), is supported by the ultrastructure of the
arolium, which is covered with pointed acanthae in Timema
and entirely smooth in the latter. This sister group relationship
of Timema and Euphasmatodea is considered well supported
(e.g., Bradler, 2009). Beutel and Gorb (2008) distinguished the
pointed acanthae on the euplantulae of Timema and the nubby
adhesive microstructures (AM) of the euphamatodeans Aretaon
asperrimus and Neohirasea maerens. The nubs found in these
two taxa were referred to as low aspect-ratio acanthae, but
subsequent discussion regarding their structure used various
different terms, including microtrichia (Gottardo and Heller,
2012) and bumps (Zill et al., 2014) without considering the
cellular origin of these structures. Similar AM are found on
the euplantulae of stick insects in a considerable diversity,
as revealed in various taxonomic descriptions, biomechanic
studies, and phylogenetic approaches. Five types of AM have
been found so far: in addition to the pointed acanthae in
Timema, nubs with two different aspect ratios are found in taxa
from different lineages of euphasmatodeans. Carausius morosus
possesses comparatively long nubs (Busshardt et al., 2012), while
other stick insects from different lineages bear shorter nubs
(Beutel and Gorb, 2008; Gottardo and Heller, 2012; Büscher
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and Gorb, 2017). Some taxa possess entirely smooth euplantulae
without any micromorphological ornamentation (Busshardt
et al., 2012; Gottardo and Vallotto, 2014; Gottardo et al., 2015;
Vallotto et al., 2016; Büscher and Gorb, 2017), and Dallaiphasma
eximius revealed a hexagonal or plateau pattern (Gottardo, 2011).
Although the structural diversity of phasmatodeanAMs is known
(Büscher et al., 2018) and the phylogenetic clustering of similar
AMs is supposed to partly reflect the evolution of Phasmatodea
(Gottardo et al., 2015; Büscher andGorb, 2017), there is no recent
study approaching the phylogenetic relationships of the different
AMs. We therefore examine the diversity of euplantular AMs
within Phasmatodea in correlation with the phylogeny of the
species examined.

MATERIALS AND METHODS

Morphology
The euplantulae of 56 adult female specimens were examined
using SEM. These species represent the major lineages currently
recognized in Phasmatodea (see Supplementary Data 1:
Supplementary Table S1 for detailed information). Living
specimens were bred in captivity until they reached adulthood.
The insects were then anesthetized with CO2 and then
decapitated. The tarsi were cut off and fixated in a 2.5% solution
of glutaraldehyde in PBS buffer and stored on ice on a shaker
for 24 h. In the case, when no living specimens were available,
dried specimens from collections were used. In order to restore
the original condition of attachment pads, the cuticle has been
softened. Therefore, the tarsi were removed and stored in a
relaxing chamber for 24 h. Afterwards the tarsi were put into
a 10% solution of lactic acid for 24–48 h until the attachment
pads were restored into an adequate condition and then fixed
in a 2.5% solution of glutaraldehyde in PBS buffer (Gladun and
Gumovsky, 2006). Then specimens were stored in 70% ethanol,
dehydrated in an ascending alcohol series and critical-point
dried. Dried samples were mounted on aluminum stubs and
sputter-coated with a 15 nm thick layer of gold-palladium.
Samples were observed in the scanning electron microscope
(SEM) Hitachi S4800 (Hitachi High-Technologies Corp., Tokio,
Japan) at 7 kV of acceleration voltage.

Phylogenetic Analysis
DNA has been extracted and sequenced for 14 stick insect
specimens. We combined these data with previously sequenced
taxa (Buckley et al., 2009; Goldberg et al., 2015). Sampled taxa
were chosen with a focus on the different ecomorphs, covering
the entire geographic distribution of Phasmatodea and all extant
stick insect lineages. We amplified regions of the mitochondrial
cytochrome c-oxidase subunit I (COI) and II (COII) genes,
and the nuclear histone subunit 3 (H3) and ribosomal large
subunit RNA gene (28S) using methods described previously
(Buckley et al., 2009). DNA sequences were edited in Geneious
R10 (Kearse et al., 2012). Alignments were made using Muscle
(Edgar, 2004) as implemented in Geneious R10. The alignments
were partitioned into four sets of characters; mitochondrial 1st
and 2nd codon positions, mitochondrial 3rd codon positions,
H3 gene, and 28S gene. Use of a partitioned model allows

us to account for the typically different substitution patterns
between different genes and codon positions, especially the
increased rate at the third codon positions. Model selection
using the AIC in JModelTest v.2.1.3 (Darriba et al., 2012) was
then performed independently on each partition. Phylogenetic
reconstruction was then performed using MrBayes v3.2.6
(Ronquist et al., 2012). For prior distributions we used a flat
Dirichlet distribution (1,1,1,1) on “ratepr,” informative Dirichlet
distribution (1,2,1,1,2,1) on “revmatpr,” beta distribution (1,1)
on “tratiopr,” exponential distribution (1) on “shapepr,” and
an unconstrained exponential distribution (1) on “brlens,”
State frequencies were fixed at empirical values. We ran five
independent analyses of 10 million generations, four chains, a
sample frequency of 1000, and an MCMCMC temperature of
0.2. Output files were inspected in Tracer v1.6.0 (http://tree.
bio.ed.ac.uk/software/tracer/) to ensure all effective sample sizes
were >200 and MCMC chains were mixing appropriately. We
also reconstructed phylogenetic relationships using maximum
likelihood as implemented in Garli (Zwickl, 2006). We used
the same partitioned substitution model as in the Bayesian
analysis. The data were bootstrapped with 100 replicates and
1 search replicate per bootstrap. Ancestral character states
were reconstructed using the Mkv model (Lewis, 2001) as
implemented in Mesquite v3.4 (Maddison and Maddison, 2018).
Ancestral states were estimated on the topology and branch
lengths from the Bayesian analysis. The alignment used for the
phylogenetic reconstruction is provided as a Nexus input file as
Supplementary Data Sheet 1.

RESULTS

Morphology
The tarsus of stick insects generally consists of five tarsomeres
(Figure 1). The pretarsus is equipped with two claws and
an arolium. Tarsomeres 1–4 bear distal euplantulae in all
species studied. In some species, an accessory euplantula is
found on the fifth tarsomere. The whole tarsal morphology
reveals no intraspecific difference, neither between different
specimens, nor in the micromorphological features within
the arolium and euplantulae, nor between different legs of
the same individual, nor between different euplantulae on
the same tarsus. We found nine types of AM among the
examined species. Adult females of exemplary species for
the corresponding AMs are shown in Figure 2. Smooth
euplantular surfaces are the most frequently observed forms
(Figure 3A), followed by conical outgrows of different aspect
ratios (nubby, Figures 3F–H). Rare forms include flat pads
(found in Necroscia annulipes, Figure 3B), plateaus (present in
Epidares nolimetangere and Dajaca monilicornis, Figures 3C,L),
coarse (found in Kalokorinnis and Oreophoetes, Figure 3D),
maze (found in Leiophasma, Figure 3E), ridges (found in
the Lanceocercata taxa Argosarchus horridus and Megacrania
phelaus, Figure 3I), acanthae (only found in Timema, Figure 3J,
Beutel and Gorb, 2008), and hairs (setae, present only in
Dinophasma saginatum, Figure 3K). The AMs of every of these
species is illustrated and described in detail in Büscher et al.
(2018).

Frontiers in Ecology and Evolution | www.frontiersin.org 3 May 2018 | Volume 6 | Article 69

http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/tracer/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Büscher et al. Tarsal Adhesive Microstructures in Phasmatodea

FIGURE 2 | Exemplary members of Phasmatodea. (A) Cigarrophasma tessulatum, couple, image provided by Daniel Dittmar. (B) Necroscia annulipes, female, image

provided by Holger Dräger. (C) Epidares nolimetangere, female. (D) Oreophoetes peruana, female. (E) Leiophasma sp., couple, image provided by Paul Bertner. (F)

Pseudophasma velutinum, female, image provided by Holger Dräger. (G) Xylica oedematosa, female, image provided by Daniel Dittmar. (H) Orestes mouhotii, female.

(I) Megacrania phelaus, couple, image provided by Bruno Kneubühler. (J) Timema sp., female, image provided by Royce Cumming. (K) Dinophasma saginatum,

female, image provided by Bruno Kneubühler. (L) Dajaca monilicornis, male, image provided by Luis Mata. Scale bars: 20mm.

Phylogenetic Relationships
The DNA sequence alignment consisted of 762 base pairs (bp),
695, 328, and 615 from the COI, COII, H3, and 28S genes
respectively. The maximum likelihood relative substitutions
rates of mitochondrial 1st+ 2nd codon positions, mitochondrial
3rd codon positions, H3 and 28S genes were 0.035, 4.732, 0.065,
and 0.077 respectively. We observed strong support [Bayesian
posterior probability (BPP) = 1] for several monophyletic
groups that were also recovered in previous studies (Figure 4),
including Necrosciinae, Phylliinae, Aschiphasmatinae,
Pseudophasmatidae, Lanceocercata, and Anisacanthidae

(Leiophasma + Parectatosoma). However, bootstrap (BS) values
were somewhat lower with only Phylliinae, Aschiphasmatinae,
and Anisacanthidae (Leiophasma + Parectatosoma) receiving
100% BS support. Clades not supported, but also monophyletic
in accordance with previous studies (Bradler et al., 2014,
2015; Goldberg et al., 2015) are Clitumninae (BPP = 0.54,
BS < 50%), Diapheromerinae (BPP = 0.53, BS = 72%), and
Heteropteryginae (BPP = 0.74, BS < 50%). The three subgroups
of the latter, Dataminae (Epidares + Pylaemenes + Orestes),
Heteropteryginae (Haaniella + Heteropteryx), and Obriminae
(Aretaon + Sungaya) are each highly supported with BPP
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FIGURE 3 | Types of attachment microstructures in Phasmatodea. (A) Smooth, Cranidium gibbosum. (B) Flat pads, Necroscia annulipes. (C) Plateaus, Epidares

nolimetangere. (D) Coarse, Kalocorinnis wegneri. (E) Maze, Leiophasma sp. (F) Nubby (small), Pseudophasma velutinum. (G) Nubby (median), Xylica oedematosa.

(H) Nubby (long), Orestes mouhotii. (I) Ridges, Megacrania phelaus. (J) Acanthae, Timema sp. (K) Hairs, Dinophasma saginatum. (L) Plateaus, Dajaca monilicornis.

Scale bars: (A–J). 2µm; (K). 50µm.

values of 1 and BS values of 98%, 100% and 100% respectively.
Dataminae and Heteropteryginae are placed as sister taxa (BPP
= 0.71, BS < 50%), which is in contrast to previous studies
that suggest alternative topologies for these groups (Bradler
et al., 2015; Goldberg et al., 2015). Further noteworthy results
include a rather robust topology for Lanceocercata that largely
corroborates earlier analyses, including a clade of taxa from
New Caledonia (Canachus) + New Zealand (Argosarchus +

Clitarchus) (BPP = 1, BS = 93%) and a sister group relationship
between Dimorphodes and all remaining Lanceocercata, and
with Cladomorphinae being sister clade to Stephanacridini
(Macrophasma) + Lanceocercata (Buckley et al., 2009, 2010;
Bradler et al., 2014, 2015). Necrosciinae also comprises
Korinninae (Kalokorinnis) as suggested before (Goldberg et al.,
2015) and Conlephasma, which has been discussed as being
either related to Necrosciinae or Pseudophasmatidae (Gottardo
and Heller, 2012) and is here unambiguously placed as sister
group to Neohirasea + Phaenopharos (BPP = 1, BS = 92%)
within Necrosciinae. A Malagasy clade consisting of Achrioptera
+ Anisacanthiade is well supported (BPP = 1, BS = 68%) as
recovered before by Bradler et al. (2015). A further noteworthy
result is the placement of the enigmatic African Bacillinae

taxon Xylica as sister group to Aschiphasmatinae (BPP = 1,
BS = 59%), which corroborates the finding of Buckley et al.
(2009). One surprising result is our recovery of Phylliinae nested
within Lonchodinae, albeit weakly supported. This is at odds
with all previous phylogenetic analyses observing monophyletic
Lonchodinae (Buckley et al., 2009; Bradler et al., 2014, 2015;
Goldberg et al., 2015), and we attribute this result to a shortage of
taxon sampling within these two subfamilies. The deeper nodes,
e.g., the radiation of major phasmatodean lineages and enigmatic
longstanding taxa like Agathemera, Bacillus, and Bactrododema,
are poorly resolved and largely unsupported, which is a common
observation for phylogenetic studies of Phasmatodea (Buckley
et al., 2009; Bradler et al., 2014, 2015; Goldberg et al., 2015).

DISCUSSION

Evolution of Attachment Structures
The recovered phylogeny was largely consistent with current
phylogenetic hypotheses on stick and leaf insects with the
exception of the placement of Phylliinae within Lonchodinae,
which is not well supported and probably an artifact due to the
limited taxon sampling of the present study. The poorly resolved
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FIGURE 4 | Majority-rule consensus tree of investigated Phasmatodea resulting from Bayesian analysis of the combined molecular data. Posterior probabilities

followed by bootstrap percentages are given at nodes. Symbols mapped on taxa and color code of tarsal structures/euplantulae type according to figure legend on

the left.

radiation among the major phasmatodean lineages impedes a
reliable ancestral character state reconstruction of euplantular
adhesive structures for stick and leaf insects at the moment.

Furthermore, the condition for this character complex in Timema
(acanthae) is unlike in any of the investigated members of its
sister group Euphasmatodea, which consequently does not allow
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for an outgroup comparison. We are confident that one of
the most frequent forms, smooth and nubby, which are also
present in closely related groups like Orthoptera, Blattodea, and
Embioptera (Gorb et al., 2000; Perez Goodwyn et al., 2006;
Clemente and Federle, 2008; Büscher et al., 2018), represents
the ground pattern of AM in Euphasmatodea, and indeed the
ancestral state reconstructions favor smooth (Figure 5). We
also conclude that the rare AM types are derived for the
respective taxa, e.g., coarse for Kalokorinnis and Oreophoetes,
plateaus for Epidares, maze for Leiophasma, and hairs (adhesive
setae) for Dinophasma, and this is supported by the ancestral
state reconstructions. Moreover, the euplantular structure
ridges evolved twice within Lanceocercata, in Argosarchus and
Megacrania. Our reconstructions support independent origins
of the nubby types (Figure 5). In general, unambiguously
monophyletic groups exhibit a diversity of structures, e.g., in
Aschiphasmatinae the smooth (Abrosoma), hairy (Dinophasma),
and plateaus (Dajaca) forms are found. While some closely
related taxa possess the same euplantular types, such as
nubby AMs in Neohirasea, Phaenopharos, and Conlephasma
in Necrosciinae, or smooth AMs in Anchiale, Eurycnema, and
Tropidoderus in Lanceocercata, the occurrence of specific AMs
do not generally reflect phylogenetic relationships. Besides
Clitumninae and Phylliinae, none of the well-supported major
clades bears a uniform AM type. The type of AM appears to
be associated with ecomorphs, e.g., smooth euplantular surfaces
are more frequently found in slender tree-dwellers than in stout
ground-dwellers, whilst the attachment pads of ground-dwelling
species more often bear conical cuticular outgrowths with
different aspect ratios. However, this does not entirely explain
the distribution of AMs across phasmid taxa. For instance,
Heteropterygidae are uniformly ground-dwelling phasmids,
including egg-deposition into the soil, yet they exhibit varying
types of adhesive structures: In Obriminae (Aretaon, Sungaya),
the euplantular surface is nubby, whereas smooth euplantulae
are found in Heteropteryginae (Heteropteryx, Haaniella). Yet,
characterization of distinct ecomorphs still needs to be addressed
based on substantiated criteria such as morphometrics and niche
specialization. One further potential explanation of the presence
of certain AMs is body size. Bigger species might exhibit smooth
euplantulae more frequently, e.g., the large Bactrododema,
Eurycnema, Achrioptera, and Eurycantha. Assumption of this
potential trend gains further support by the fact that the smaller
juvenile Eurycantha individuals still have nubby euplantulae
while those of adults are smooth (Gottardo et al., 2015).
Heteropteryginae bearing smooth euplantulae are generally
bigger than Obriminae with nubby euplantulae. Then again, the
ground-dwelling Orestes and Epidares are of the same small size
and still possess different AMs.

Functional Relevance of Attachment
Microstructures
The functional properties of the different AMs in Phasmatodea
are only partially known so far. Experimental data are available
for Phasmatodea only for the nubby and the smooth type
(Busshardt et al., 2012; Labonte and Federle, 2013; Labonte et al.,

2014), hence, the other remain hypothetical or are inferred from
other taxa. The nubby AM is shown to be load sensitive and
less susceptible to different surface roughnesses (Busshardt et al.,
2012; Labonte and Federle, 2013; Labonte et al., 2014). Nubby
attachment microstructures, if they are not the ground type
of AMs, possibly evolved convergently in the different lineages
as a response to a broad range of surfaces in the preferred
habitats. In contrast, smooth AMs perform better on smooth
surfaces (Busshardt et al., 2012).Many species possessing this AM
live in trees and often are food plant specialists. These species
possibly face rather smooth surfaces, whilst species with nubby
structures possibly find a broader range of surface roughnesses
on the ground. Other types of AMs might have evolved due to
insect-plant interactions (e.g., Friedemann et al., 2015) or specific
environmental conditions, e.g., specialized structured surfaces or
wet surfaces (Grohmann et al., 2015). On wet surfaces, splitting
the contact surface like in the flat pads, plateaus, and maze
AMs possibly reduces hydroplaning and stick-slip motions. This
effect has been shown for mushroom shaped and hexagonal
bioinspired artificial surfaces (Varenberg and Gorb, 2007, 2009).
Irregularly shaped microstructures, such as ridges, might have
evolved due to food plant specialization. The anisotropy of
the AM causes dissimilar adhesive forces with and against the
structures (Filippov and Gorb, 2013) and might be used for
generating propulsion on structured surfaces (Clemente et al.,
2009). Megacrania phelaus feeds exclusively on plants with a
parallel leaf venation (Hsiung, 2007). This food plant association
possibly initiated the development of the structured AM in
this species. The hairy system of attachment pads, herein only
represented by D. saginatum, is reported to possess similar
adhesion and friction forces to the smooth system (Bullock et al.,
2008). The comparison of the adhesive pads ofC.morosus and the
dock beetle Gastrophysa viridula (Coleoptera: Chrysomelidae)
suggested that fibrillary adhesive systems may be more efficient
in terms of self-cleaning than smooth ones (Clemente et al.,
2010).

CONCLUSION

Stick and leaf insects have more diverse euplantular
microstructures than previously reported (Beutel and Gorb,
2008). Nine different types can be distinguished whereby the
nubby type can be further divided into three different distinct
types based on the specific ratio of each conical outgrowth.
Hereby the different types of AMs do not follow a phylogenetic
pattern, but rather depend on the ecological niche a species
inhabits or its body size. Large canopy-dwellers more frequently
appear to exhibit smooth euplantulae while smaller ground-
dwellers apparently show nubby AMs. The morphological
diversity found in each clade of phasmids suggests the convergent
evolution or reversal of certain euplantular types. A high number
of species is already illustrated and described in a comprehensive
comparative analysis of the tarsal morphology in Phasmatodea
(Büscher et al., 2018). To reliably reconstruct the evolution
of these adhesive types, a denser taxon sampling and a better
resolved phylogeny of these taxa are necessary.
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FIGURE 5 | Phasmatodea phylogeny and ancestral character state reconstruction of euplantular microstructures with pie charts representing relative ML support at

ancestral nodes according to color code in figure legend.
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