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Anthropogenic activities have substantially modified natural forested ecosystems around
the world through species exploitation, land-use changes, soil degradation, pollution and
introduction of exotic species. The impacts of these activities are being exacerbated
today by climate change that is expected to become more severe over the coming
decades. Modern landscape genomics has made advances in identifying genes that
are associated with phenotypic expression, but they have been unable to prove that
the associations are more than correlative. The threats to biological diversity raised by
climate change, underscore the need to have an improved understanding of the genetic
basis of phenotypic traits. In sedentary, long-lived tree species this becomes of utmost
importance, as the success of populations is likely to depend, in large part, on existing
standing genetic variation. The most recent technologies of gene editing (CRISPR/Cas9)
promise to be an elegant approach that will move forest tree genomics to the next level,
by allowing the rigorous testing of gene function and its role in the adaptation of trees
to their environment. This perspectives paper looks at how genome editing technologies
can be used to advance our understanding of the role genes play in adaptation to climate
change in woody plants. We discuss the different CRISPR modes than can be used in
studies of adaptive traits in perennial species.
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INTRODUCTION

Understanding the genetic basis of adaptation is a fundamental question in ecology and evolution
that has taken on new significance with the threat of climate change. Climate change is recognized
as one of the most serious challenges to the future health of ecosystems worldwide (Pereira et al.,
2010). Increasing temperatures have already led to changes in species’ distributions (Gonzalez
et al., 2010), modified phenology of biological processes that can disrupt ecosystem functioning
(Parmesan, 2007; Cook et al., 2012) and led to increased extinction risk through decreases in
population size (Cahill et al., 2013). The recent drought-related mortality of mixed conifer forests
in the southern Sierra Nevada of California underscores the seriousness of climatic stress at a
regional level (Potter, 2016). If climate continues to change as predicted (Settele et al., 2014), many
populations will fall outside of their habitat niche and, in the absence of migration or adaptation,
these populations will be extirpated. For long-lived trees, the potential to escape unfavorable climate
through migration is limited and unlikely to lead to successful establishment of populations that
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track climatic changes (Aitken et al., 2008). Adaptation requiring
new mutations will be unlikely for species with long generation
times, so evolutionary success will depend on standing genetic
variation. Earlier common garden studies have indicated that
many tree species harbor substantial adaptive potential that is
commonly spatially organized along climatic clines (Chiune et al.,
2006). However, little is known of the underlying molecular
regulation of phenotypic adaptation to climate variables.

The study of adaptive variation in forest tree populations
has a long history, with formal provenance studies dating
to the Eighteenth century. Modern landscape genomics has
brought this rich history to the modern era of molecular
biology, with a view to understanding the evolution and
interaction of natural selection and past demographic processes
that have led to the genetic architecture among populations
today. Advances offered by next generation sequencing (NGS)
have allowed an unprecedented opportunity to gain whole
genome data that should provide new tools to overcome many
of the problems faced in understanding the genetic basis of
adaptation to environmental variation in forest trees. Recent
publications of whole genome sequences of an important
number of forest tree species (Tuskan et al., 2006; Neale
et al., 2014; Plomion et al., 2015) represent a major advance
in providing new tools for identifying the genes and/or
genomic intervals controlling adaptive traits for ecology and
evolution in forest tree species. This has led to the adoption
of two broad approaches to identifying the molecular basis
of adaptation in non-domesticated plants: (a) genome wide
association studies (GWAS) and, (b) sequence variation in
candidate genes associated with climate adaptation. By exploring
correlations betweenmolecular markers such as single nucleotide
polymorphisms (SNPs) and climatic gradients, the GWAS
approach aims to detect genomic regions affected by spatially
divergent selection (Neale and Kremer, 2011). However, massive
resequencing needed for population studies requires genome
reduction methods, with the result that some genomic regions
that harbor adaptive variation escape documentation. The
candidate gene approach offers the advantage that targeted
sequencing can permit large scale multiplexing of samples to
detect sequence variations associated with climatic gradients.
However, results from both GWAS and the candidate gene
approach are only correlative with environmental stress. Today,
the challenge for ecological geneticists is to prove the role of
allelic variants on fitness (Barret and Hoekstra, 2011) through
testing and validation of candidate genes with their hypothesized
phenotype. To address these new challenges, gene editing, such
as genetic knockouts and gene transformation, promises to
become a very attractive alternative to association studies in
demonstrating direct links between candidate gene function and
phenotypic traits for plant adaptation to natural environments
(Busov et al., 2003). Although there are significant obstacles
to working with woody plants, such as the long generation
time, we believe that gene editing will become a vital tool
for understanding and managing the genetic variants that play
a role in adaptation to climatic stress and the challenges
that trees will face by climate change (Nellemann et al.,
2009).

Gene Editing Technologies
The new and promising genome editing (GE) systems developed
in the last few years represent a great opportunity for molecular
ecologists to achieve target-specific manipulation of genes of
interest in the genomes of non-model plants. Genome editing
technologies using ZFN (zinc finger nuclease) and TALEN
(transcription activator-like effector nuclease) can generate
genome modifications. However, these technologies are, either
labor intensive, or expensive as the targeting mechanisms are all
based on protein-nucleic acid interactions, thereby requiring a
custom-designed protein for each gene locus of interest. Recent
advances in the study of prokaryotic adaptive immune systems
provide an alternative genome editing strategy (Mussolino and
Cathomen, 2013).

In the late 1980s, a group of researchers described a
strange genomic topology consisting of 32 nucleotides of unique
sequence. This was the first known description of Clustered
Regularly Interspaced Short Palindromic Repeats (CRISPR;
Ishino et al., 1987). It was 17 years before additional work
proposed that CRISPR loci act together with Cas genes to
provide adaptive immunity (Mojica et al., 2009). In 2012, the
molecular mechanism by which Cas proteins and CRISPR arrays
worked, was elucidated by the Doudna group (Jinek et al., 2012)
and the potential of CRISPR-Cas systems was realized. The
first demonstration of RNA-guided mutation in eukaryotic cells
occurred in 2013 (Cong et al., 2013). The CRISPR/Cas9 system
is recognized now as an extremely potent editing technology
to induce targeted DBS in eukaryotes, which previously could
only be accomplished with considerable difficulty. In addition,
this approach has led numerous research groups to recognize
the robustness, affordability and ease of engineering with this
RNAi-based technique. Recently, CRISPR/Cas9 has emerged
as the most important tool for genome engineering due to
its simple structure, design flexibility, high efficiency, and its
applicability to a wide of range organisms. This technology plays
an important role in genetic engineering, which is the reason
why the CRISPR/Cas9 system has screen platforms that can be
operated in various formats, such as the knockout, knockdown
and activation screens. With this approach it is possible to
edit single to multiple genes by knocking-in or knocking-out
genes of a host genome. Thus, introgression of multiple traits or
modification of metabolic pathways can be achieved, where it is
possible to edit several genes simultaneously by the introduction
of DSBs (double stranded breaks) at several sites (Mao et al.,
2013). Since 2012, when it was recognized that CRISPR/Cas9
could be used for targeted genome editing and provide a means
to introduce precise modifications at a desired locus in the
genome of any living organism (Jinek et al., 2012), the number
of publications has risen sharply. More than 2,300 publications
pertaining to CRISPR were published within the period 2012–
2016.

CRISPR/Cas9 in Perennial Species
The application of CRISPR/Cas9 genome editing in plants has
lagged behind that of other organismal groups, although it offers
great promise in the study of plant functional genomics and in
the development of novel phenotypes in economically important
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crop plants. To date, the technology has been successfully applied
to a number of model herbaceous systems including Arabidopsis
thaliana and Nicotiana benthamiana (Li et al., 2013), Oryza
sativa (Noman et al., 2016), tomato (Ueta et al., 2017), potato
(Wang et al., 2015), soybean (Jacobs et al., 2014), and Zea
mays (Svitashev et al., 2015). Its application in woody species
are few and limited to those that are well characterized by
having whole genome sequences and efficient transformation
systems, such as Populus (Fan et al., 2015), Citrus sinensis (Jia
and Wang, 2014), Duncan grapefruit (Jia et al., 2016) and Malus
domestica (Nishitani et al., 2016). See Table 1 for list of tree
species successfully transformed) Although the application of
CRISPR/Cas9 is likely to be focused initially on commercially
important crop plants, the increasing number of undomesticated
species for which whole genomes are being sequenced will allow
the technology to be used more broadly across the plant kingdom
(see Figure 1 for pipeline adapted to evolutionary and ecological
studies).

How Different CRISPR Modes Can be Used
in Studies of Adaptive Traits in Woody
Plants
Testing Candidate Gene Function: Knock-Outs
Removal of gene function provides an important tool for testing
the role of candidate genes in the expression of phenotypic
traits that, in turn, can be assessed for fitness. The knock-
out function in gene editing is achieved when double-strand
breaks (DSB) are repaired by non-homologous end-joining
(NHEJ) that commonly results in INDELS. A mutant form
lacking the targeted gene is obtained because the resulting
frameshift in the open reading frame interferes with reading
of the gene sequence. The CRISPR/Cas9 system has been used
successfully to knock-out genes in model plants and some
well-documented crop plants. One problem with the knock-
out process is that mosaicism may result if only some of
the cells developing from the tissue being transformed are
mutated. This has been successfully overcome in Arabidopsis
thaliana by targeting early developmental stages using egg-
cell promoters (Wang et al., 2015). Recently, Tsutsui and
Higashiyama (2017) obtained high-efficiency transformation
of the phytoene desaturase 3 (PDS3) gene in A. thaliana by
targeting early embryonic meristematic tissue, producing albino
phenotypes in both foliage and flowers after gene knock-
out. The precision of gene editing using the CRISPR/Cas9
system has been demonstrated in a study of flower color
in Japanese morning glory (Ipomoea nil) (Watanabe et al.,
2017). The gene dihydroflavonol-4-reductase-B (DFR-B) codes
for an anthocyanin biosynthesis enzyme that is responsible for
flower color in morning glory. DFR is a tandemly arrayed
gene family (DFR-A, DFR-B and DFR-C), so by targeting DFR-
B, the risk of off-target modifications can be tested in the
adjacent orthologous genes. Mutations in the targeted DFR-B
gene included single base insertions, or deletions of more than
two bases giving frameshifts that knocked out the DFR-B gene
and produced white flowers lacking anthocyanin. The DFR-A
and DFR-C genes were left intact, confirming the accuracy of

the CRISPR/Cas9 system and the importance of design of the
sgRNA and the PAMnGG motif that binds CRISPR/Cas9 to the
target DNA.

Early focus of gene editing technologies will focus on genes of
major effect, but these may be less important in plant adaptation
to climate stress, where many genes of small effect appear to be
the rule. One of the great advantages of the CRISPR/Cas9 system
is multiplexing single guide RNAs (sgRNA) that simultaneously
target different gene loci (Cong et al., 2013). This approach,
not only allows testing of multiple genes simultaneously, but
offers the possibility to study gene interactions in a way that
has not been possible until now. The risk of off-target mutations
becomes greater in multiplexed systems, but a recent study
targeting 14 genomic loci of theGOLVEN (GLV/RGF/CLEL) gene
family inArabidopsis thaliana found no significant off-site effects,
suggesting that in Arabidopsis, off-target effects were no more
likely in multiplexed systems than in single gene knock-outs
(Peterson et al., 2016).

Much of the focus of CRISPR/Cas9 technology has been on
transcribed genes, however, promoter sequences that regulate
gene expressionmay contribute significantly to adaptive potential
of species under continuous environmental change through their
effects on quantitative traits. Rodríguez-Leal et al. (2017) used
CRISPR/Cas9 genome editing of promoters to generate a diverse
array of cis-regulatory alleles that provided quantitative variation
in a number of crop yield traits in tomato.

Testing the Role of Allelic Variants: Knock-ins
In landscape genomics, candidate gene loci are identified by
allelic variants correlated with environmental variables and by
outlier measures of population divergence (e.g., FST). However,
these approaches identify potential loci and alleles important
in adaptation, but are not a proof of function. Ideally, allelic
variants should be tested under controlled conditions to quantify
their effect. The knock-in mode of CRISPR/Cas9 could provide
a tool that would allow reciprocal transfer of alleles, while
leaving the rest of the genome unaltered. Gene knock-outs
are technically easier to perform than knock-ins that are
best achieved with the alternative homology-directed repair
(HDR) system. HDR requires a repair template that has the
desired sequence that could be a single nucleotide, or a longer
sequence.

Compared to NHEJ, HDR has received much less attention, as
it remains challenging to obtain very high efficiency. Providing
sufficient donor DNA is one constraint. Wang et al. (2016) report
achieving 19.4% efficiency by using geminiviral vectors to deliver
the donor DNA in rice.

Genetic Transformation Technologies in
Undomesticated Species
Genetic transformation is an indispensable tool in plant
molecular breeding and functional genomics research and is
a critical step in genome editing. Genes of economical and
agronomical importance that might be difficult to integrate into
elite genotypes via natural processes because of mating barriers
or, low heritability, have been successfully incorporated through
genetic transformation.
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TABLE 1 | List of tree species successfully transformed genetically and potential candidates to be genome edited with CRISPR/Cas9.

Tree species Model* Gene Putative gene function References

Populus alba XP. grandidentata AT AroA Herbicide resistance Fillatti et al., 1987

Populus tremula XP. alba AT CBF1 Freeze tolerance Benedict et al., 2006

Populus alba XP. berolinensis AT JERF Salt tolerance Li et al., 2009

Populus tremula XP. alba AT GA 2-oxidase GA catabolic enzyme Busov et al., 2003

Eucalyptus AT AP2/ERF Freeze tolerance Mizoi et al., 2012

Eucalyptus globulus AT codA Salt tolerance Kikuchi et al., 2006

Pinus virginiana AT CaPF1 Drought, freezing, and salt tolerance Tang et al., 2005

Pinus strobus AT CaPF1 Drought, freezing and salt tolerance Tang et al., 2007

Pinus lambertiana AT nptII Disease resistance Loopstra et al., 1990

Quercus suber AT nptII and uidA Disease resistance Álvarez and Ordás, 2007

Quercus ruber AT nptII and uidA Disease resistance Vidal et al., 2010

Picea abies BT ccr Lignin biosynthesis Wadenbäck et al., 2008

Pawlonia elongata BT nptII Disease resistance Castellanos-Hernández et al., 2009

Castanea dentata AT nptII Disease resistance Andrade et al., 2009

Citrus sinensis AT nptII Disease resistance Dutt and Grosser, 2010

Vitis vinifera AT GFLV Disease resistance Mauro et al., 2000

Prunus domestica AT nptII Disease resistance Petri et al., 2012

Malus domestica AT ALS Herbicide resistance Yao et al., 2013

*AT, Agrobacterium tumefaciens; *BT, Biolistic transformation.

The first successful attempt to genetically transform a
woody plant was the introduction of the AroA gene coding
5-enol-puryvate 3-phosphate via Agrobacterium tumefaciens
mediated gene transfer in the Populus hybrid (Populus alba
x grandidentata) (Fillatti et al., 1987). Genetic transformation
systems have now been successfully applied to a number of
forest tree species to improve traits such as tree architecture
(Busov et al., 2003), salt tolerance (Li et al., 2009), lignin
content (Stout et al., 2014) and biotic and abiotic stress
response (Tang et al., 2005, 2007). However, despite the major
benefits that transgenic approaches can bring to the improved
understanding of adaptive traits, the incorporation and adoption
of transformation methods for ecological research has been
slow. There are several reasons why this has been particularly
slow for woody plants. First, the time needed to genetically
transform tissue in woody plants is greater than in many
other organismal groups and protocols need to be established
for the regeneration of whole plants. Commonly, cells that
are readily transformed cannot be regenerated, and vice versa.
Second, the high cost of transformation protocols, requires
substantial investment in infrastructure that must be adapted
to the regulatory legislation of each country. Third, the social
obstacles facing genetically modified organisms (GMO) have
discouraged many researchers from pursuing this avenue for
fundamental and applied research, in favor of other directions
with fewer impediments.

However, despite all the promising results offered by
CRISPR/Cas9, the scientific community should not forget that
these experiments have been carried out and tested at a small
scale. It will be very important to plan and set up long-
term field trials under natural conditions to avoid unintended
results, such as happened in the past, when some annual plants

manipulated, for a targeted intended change in a given gene
had unexpected effects. However, the historic accumulation of
phenotypic data on woody trees by many research groups and
the results of almost 25 years existence of transgenic forest
trees, have proved that, after initial greenhouse phenotypic
characterization, the inserted gene/s showed stable expression
under natural conditions causing no/minor unexpected effects
to the environment (Häggman et al., 2013). Thus, we assume
that the new genome editing approach will have the potential of
success, in particular in regard to the accelerated climate change,
and to identify important economically and ecological novel
traits more rapidly than ever.

Finally, there is a hope that genome edited events will not
be classified as GMO (Hartung and Schiemann, 2014) and can
have a different regulatory policy as the GMO. A legal guidance
on how to define plants produced by exploring novel genome
editing techniques is urgently needed. In the meantime, the
debate concerning ethical issues and the consideration if the
new genome editing techniques should come, or not, under
the GMO legislation is still underway. In Europe, the case is
in the hands of the EU Court of Justice (ECJ), which will
decide whether plants that are gene-edited should be regulated
as if they were genetically modified. Although this decision
is not expected before 2018, some EU countries, such as
Sweden, allowed its researchers to go ahead and move forward
with their research, others, like Germany, are still waiting
for the ECJ decision. On the other hand, Canada and US
did not code genome-edited plants as GMO. In fact, several
products such as non-browning mushroom or waxy corn entered
the market in the USA with no resistance from anti-GMO
protestor (Waltz, 2016) and have given the green light by the
US regulatory system for commercialization since no genetic
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FIGURE 1 | Pipeline for gene editing using CRISPR/Cas9, showing the essential steps in the gene editing approach to landscape genomics and evolutionary studies.

material from a different organism was inserted in their genomes
(Ossola, 2016). We expect that, as plants generated by GE
technologies do not leave signs of transgenesis, they should not
be considered as GMO, and as a consequence, do not provoke an
irresolvable social and political debate as it happened with GMO
plants.

CONCLUSION AND FUTURE
PERSPECTIVES

In the future, the application of CRISPR-Cas9 in genome editing
may prove to be very important in ecological and evolutionary
genetics to confirm candidate gene function and to test gene
effects in nature. Ecologists and plant scientists can benefit
from using this technique as it has the advantage that it can
instantaneously generate alteration to genes without creating t-
DNA insertion. With the recent availability of whole genome
sequences and efficient transformation protocols for many
woody plants, we anticipate remarkable advances will be feasible
in terms of genome engineering and landscape genomics in plant

ecology. Furthermore, the advance of bioinformatics tools aiding
the design of trait specific guided RNA would undoubtedly lead
the GE system to broaden its application to more plant species.
However, GE technologies will need to be integrated with other
disciplines in order to understand the molecular regulation of
phenotypic adaptation to climate variables. It is becoming clear
that the benefit of CRISPR-Cas depends on a range of ecological
variables, but much more work needs to be done if we are
to understand and manipulate the evolution of CRISPR-Cas
immunity in the lab, let alone in nature.
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