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Interactions are ubiquitous and have been extensively studied in many ecological,

evolutionary, and physiological systems. A variety of measures—ANOVA, covariance,

epistatic additivity, mutual information, joint cumulants, Bliss independence—exist that

compute interactions across fields. However, these are not discussed and derived within

a single, general framework. This missing framework likely contributes to the confusion

about proper formulations and interpretations of higher-order interactions. Intriguingly,

despite higher-order interactions having received little attention, they have been recently

discovered to be highly prevalent and to likely impact the dynamics of complex

biological systems. Here, we introduce a single, explicit mathematical framework

that simultaneously encompasses all of these measures of pairwise interactions. The

generality and simplicity of this framework allows us to establish a rigorous method for

deriving higher-order interactionmeasures based on any of the pairwise interactions listed

above. These generalized higher-order interaction measures enable the exploration of

emergent phenomena across systems such as multiple predator effects, gene epistasis,

and environmental stressors. These results provide a mechanistic basis to better account

for how interactions affect biological systems. Our theoretical advance provides a

foundation for understanding multi-component interactions in complex systems such

as evolving populations within ecosystems or communities.

Keywords: complex biological systems, emergent patterns, higher-order interactions, ecological interactions,

biodiversity

INTRODUCTION

Because of their key role in understanding the dynamics of complex biological, physical, and
social systems, there is a long and rich history of studying interactions and their consequences
(Wootton, 1993; Billick and Case, 1994; Darling and Côté, 2008; Mihaila et al., 2010; Hamilton,
2011; Toprak et al., 2013; Barrios-O’neill et al., 2014; Foucquier and Guedj, 2015; Palmer et al.,
2015; Podgornaia and Laub, 2015; Nishikawa and Motter, 2016; Shi, 2016). These approaches have
often been complemented and enhanced by network theory that has led to important advances
in prediction of patterns (Segrè et al., 2005; Yeh et al., 2006; Braun and Shah, 2015). Studies of
interactions and networks have heavily and almost solely focused on two-component interactions.
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As a result, we have a thorough understanding of pairwise
interactions and the various interaction categorization measures
defined across distinct subject areas such as statistical physics,
gene networks, and prey-predator systems. Yet despite this focus
on interactions at the pairwise level, a general and comprehensive
framework for two-way interaction categorizations has not
been established. Moreover, this lack of a framework makes
it particularly challenging to address and incorporate higher-
order interactions that must be scaled up from any specific
pairwise interaction model. This also likely contributes to the
paucity of studies or higher-order interactions—defined here as
interactions among three or more components—in the literature.
Indeed, many studies have hypothesized or either implicitly or
explicitly assumed that higher-order interactions are extremely
rare and/or insignificant (May, 1972; Van Belle, 2011; Wang
et al., 2015; Wootton and Stouffer, 2016). In contrast, recent
studies have provided evidence that there is a large amount of
higher-order interactions, suggesting a critical need to include
higher-order effects to better understand complex systems and
alterations of ecosystem processes (Weinreich et al., 2013; Taylor
and Ehrenreich, 2015a,b; Beppler et al., 2016; Tekin et al., 2016;
Levine et al., 2017; Mayfield and Stouffer, 2017).

Constructing an integrated theoretical framework that
encapsulates all the pairwise interaction measures and rigorously
constructs higher-order interaction measures by building up
from a generalized formula for pairwise interactions would
be extremely valuable for gaining insights into understanding
complex systems. Here, we provide a perspicuous path to this
general theory of interaction measures at pairwise and higher-
order levels. We aim consequently to enhance the understanding
of interactions via the comparison of different interaction
measures and via the search for higher-order interactions,
potentially providing profound insights into complex systems
research.

In Table 1 we give several of the most common choices for
interaction measures that have been introduced and utilized in
diverse fields. Diverse examples of interaction measures include
(i) covariance for calculating the joint variability of multiple
random variables (Rice, 2003), (ii) mutual information (MI)
defined to quantify the information gained about one random
variable through knowledge of the other random variable (Cover
and Thomas, 2012), (iii) joint cumulants in statistical physics,
also known as an n-point correlation or Ursell functions in
quantum field theory (Kendall and Stuart, 1969), (iv) statistical
measures of analysis of variance (ANOVA) for detecting the
differences of means and variances among different groups
(Cohen, 2008), (v) additive and multiplicative models introduced
for quantifying the interactions among multiple predators in
their ability to affect the survival of a prey population (Figure 1)
(Sih et al., 1998), and (vi) a commonly used measure of Bliss
or epistatic Independence for identification of drug-drug and
gene-gene interactions (Bliss, 1939). Although these measures
are all grounded on the unifying objective of quantifying
the dependence or interaction between different components
(referred to as objects, variables, or factors), a general theory
for deriving these measures does not exist. Indeed, some of the
interaction measures mentioned above are strongly associated

with each other (see Similarities across different interaction
measures), hence introduction of a general framework of
interactions becomes much more needed.

Identifying higher-order interactions is essential because the
behavior of complex systems can be unpredictable due to
interactions among the pairwise subsets of system components
(Case and Bender, 1981; Billick and Case, 1994). However,
generalizing 2-way (pairwise) interaction measures to three
or more component systems is often challenging, often done
incorrectly or incompletely, and requires a heuristic process
of learning the complex calculations or directly implementing
software packages with implicit choices and computations.
Consequently, measures for higher-order interactions are often
not known or not well-defined (Tekin et al., 2017). All in
all, a simplified yet rigorous approach for studying pairwise
and higher-order interactions is vitally important for creating
a basis to explore the patterns and consequences of emergent
phenomena in a wide range of systems.

One important point to consider is that proceeding from
lower-order to higher-order interaction measures requires the
resolution of ambiguities concerning what exactly higher-order
interactions represent (Foucquier and Guedj, 2015). In this
respect, two recent studies on higher-order drug interactions
with a major focus on three-way interactions—in terms of
data representation and analysis—shed light by distinguishing
between net and emergent higher-order interactions (Beppler
et al., 2016; Tekin et al., 2016). A net interaction, which is the
more commonly considered type of higher-order interaction,
refers to the total interaction that results from effects at all
levels. In contrast, emergent interactions arise only when all
of the components (or objects) or some subset of components
are combined. Similarly, a more comprehensive and general
approach is needed to evaluate higher-order interaction effects
in a wide range of fields. From an ecological perspective, when
conservation management is the goal for a prey population,
understanding the actual interactions among all predators
can be critical. We cannot assume that more predators will
increase prey risk, and similarly, without proper emergent
interactions analysis, we do not know which predator removal
or decrease will ultimately increase a prey’s number. Therefore,
a generalized approach for quantifying higher-order interactions
must directly distinguish between net and emergent interactions
and incorporate effects resulting from different levels of
interaction [where the level corresponds to the number of
components in any given subset of component, ranging from
one component (level 1) up to the whole system (level N)].
This higher-order interaction framework would require data for
responses for each subsets of components—singles, pairs, triples,
etc.

In this paper, we first establish a general framework for
analyzing two-way interactions and show how our framework
can be used to derive the many interaction measures described
above. Indeed, we show how all the measures mentioned above
(such as mutual information, ANOVA, multiplicative models,
etc., see Table 1) fit within this framework. Next, we present
a conceptual and theoretical advance for building higher-order
interaction measures that starts from a general framework of
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TABLE 1 | Summary table of two-way interaction measures with our generalized formula TXY = F (X◦Y) − (F (X◦ I)△F (Y◦ I)).

Interaction measure (T) F (Functional) ◦ (Operation) I (Identity of ◦) △ (Operation) Applications

Covariance Expectation (E) Multiplication 1 Multiplication Neuroscience Kohn and Smith, 2005; Staude

et al., 2010, gene epistasis, economics Miller,

2013, signal processing Sahidullah and

Kinnunen, 2016, risk analysis and management

Cox L. A. Jr., 2009

Mutual information Negative entropy (−H) Addition 0 Addition Gene epistasis Margolin et al., 2006; Moore

et al., 2006, machine learning Jakulin and

Bratko, 2003; Jakulin, 2005, astronomy

Pandey and Sarkar, 2017

Additive model or ANOVA Response Addition 0 Addition Stressor interactions Chen et al., 2008, gene

epistasis Matsui and Ehrenreich, 2016, food

webs O’gorman and Emmerson, 2009, political

studies Sigal et al., 1988

Multiplicative model or Bliss

Independence

Survival or fitness Addition 0 Multiplication Multiple predator studies Sih et al., 1998, drug

interactions Bliss, 1939; Yeh et al., 2006, gene

epistasis Segrè et al., 2005

pairwise interactions and the definition of no-interaction at the
pairwise level. In doing so, we show how different interaction
measures are generated by different choices of mathematical
operations and functionals, potentially allowing exploration of
all possible interaction measures via all possible choices of
operations and associated identity elements. Importantly, our
general theory of interactions facilitates the understanding of
connections between different measures that are frequently used
in different research areas and will thus be a useful guide for
studies of interactions in many distinct fields.

Similarities Across Different Interaction
Measures
Despite the fact that there are a wide range of choices for
pairwise interaction metrics (see Table 1), interactions are
defined generically based on a prediction or expectation that
signifies no interaction and corresponds to each respective
measure having a value of 0. Given the no-interaction
expectation—equivalently referred to as additive, multiplicative,
or independence expectations—the classification of interactions
is evaluated based on deviations from this no-interaction case.
When the combined effect is sufficiently greater or weaker than
the expected effect of no-interaction, the interaction is classified
as positive (synergy or cooperation) or negative (antagonism or
interference), respectively (see Figure 1 for a toy example and an
ecological case study). Interpreting the magnitude of interaction
often requires rescaling (normalizing), using methods such as
those developed by Segrè et al. (2005) and Tekin et al. (2016),
and then testing the significance by various statistical analysis
methods such as t-tests, bootstrapping experiments, and Bayesian
statistics (Jakulin, 2005).

Importantly, some interaction measures (as briefly
overviewed in the Introduction and presented in Table 1)
are strongly associated with each other in terms of their
construction and baseline expectation of no-interaction. For
instance, the underlying additive model of ANOVA is strongly
linked with the additive model of Multiple Predator Effects

(MPE) studies (Sih et al., 1998), where the expected effect of
combination is sum of their individual effects. On the other
hand, there is a correspondence between the multiplicative
model of MPEs—the expected effect of combination is product
of their individual effects—and the Bliss Independence model
of drug interactions and epistasis (Beppler et al., 2016). These
correspondences suggest that further exploration and potential
applications of interactionmeasures to different systems could be
fruitful. Our general framework uncovers these similarities and
hence proves to be very useful in understanding the interaction
measures and their similarities as well as their applications to
different systems.

When proceeding from simpler forms of interactions (i.e.,
pairwise interactions) to higher-order interactions (i.e., three-
way, four-way, N-way interactions), two different types of
interaction classifications arise, namely net and emergent
interactions (Beppler et al., 2016). Net interactions measure
whether any effective interaction exists at all, whereas emergent
interactions measure whether there are interactions beyond what
is expected from the “sum” of the lower-order parts. Inherently,
characterizing higher-order interactions necessitates data for all
the system outcomes (i.e., responses) in the presence of all the
subsets of components. For example, for the characterization
of three-way interaction, one would need responses in the
presence of each single component alone, responses under all
pairwise component combinations, and responses under all three
components. Overall, better understanding of how higher-order
interaction measures translate into these two different types of
higher-order interactions is vital to better predict dynamics of
complex system cooperations.

METHODS

Generalized Form of Interaction Measures
General Theory of Two-Way Interactions
Here, we introduce a mathematical framework that generalizes
and unifies interaction measure formulations for two
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FIGURE 1 | Example representation and ecological case study of 2-way and 3-way interactions for consumer-resource systems. A toy example of an interaction

study design for multiple predator effects (MPE) is given to represent 2-way and 3-way interactions, where mortality rates of prey population (small fish) are dependent

on the consuming ability of certain predator or combination of predators. Schematic of no predator, single predator, pairwise combination, and triple combination of

fish predator populations are illustrated in 8 different panels, where the pairwise panels of XY, XZ, YZ are chosen to represent the three distinct types of interactions:

synergy, antagonism, and no-interaction by the multiplicative model with the rescaling introduced in Segrè et al. (2005) and Tekin et al. (2016). In particular, synergistic

interaction corresponds to the case when the mortality rate with two predators is sufficiently larger than the expected mortality rate of predators based on

single-predator effects. Conversely, predators can act antagonistically, meaning that the mortality rate in the presence of combined predators is sufficiently less than

the expected mortality rate based on single-predator effects. In the latter scenario, predators do not interact, hence expected prey mortality is the same as actual prey

mortality with both predators in the environment. Classification of interactions is typically done by evaluating the effects of the combined components relative to the

effects of independent single components or lower-order combination effects. Given the raw data (see table), we employ the analysis of variance (ANOVA) as well as

multiplicative model of interactions and present p-values and interaction measure calculations (T, see section Methods for the definition), respectively. For 3-way

combinations, two distinct types of interactions are characterized by the multiplicative model, where net interaction represents the overall effect and emergent

interaction represents the three-way combination effect that is beyond any pairwise interactions. The same interaction study design has been performed for an

ecological case study by Coors and De Meester (2008), where stressors are a predator (X ), parasite infection (Y ), and pesticide exposure by carbanyl (Z) on a water

flea Daphnia magna survival. A MATLAB code package that has the toy data with the implementation of the interaction measure calculations are included as part of

our paper (see Data Sheet 1).

components (equivalently referred to as factors or objects).
In a broad context, interactions are determined based on the
evaluation of the combined effect relative to a null expectation

of no-interaction based on the single-component effects.
Hence, for defining a generalized formula for interactions, it
is essential to introduce notation, properties of operations for
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combining components, and formulations for assessing the
effects of combined or single components. Here, we define
an algebraic operation ◦ (associative and commutative) that
combines two components X and Y and that has identity
element I, and a real-valued functional, F , (a function of
functions) and a second algebraic operation △ (associative
and commutative) that combines this functional with different
arguments (Figure 2). Then, we express the definition of no-
interaction as F (X◦Y) = (F (X◦I)△F (Y◦I)), and define the
generalized measure for quantifying interactions between two
components as

TXY = F
(

X◦Y
)

−
(

F
(

X◦I
)

△ F
(

Y◦I
))

(1)

The identity element in the functional form of the interaction
measure is provided in the generalized formula to explicitly make
the point that the absence of another component should yield
no interaction. In other words, combining any component (X)
with the identity element (Y = I) should be equivalent to no
interaction, corresponding to I = 0 for addition and to I =

1 for multiplication. Moreover, the arithmetic operations are
restricted to either addition or multiplication to preserve the
associativity and commutativity properties of combining more
than two components. This preservation property is because
there is no time component in our framework that corresponds to
introducing different components to the system. In other words,
the ordering of different components in the interaction definition
does not matter, hence TXY = TYX for two components and
TXYZ = TYXZ = TZXY for three components (see next section).
By definition, TXY = 0 generally means there is no interaction or
dependence between two components, whereas deviation of TXY

from zero suggests an interaction. Different choices of operations
and functional F correspond to different choices of interaction
measures as derived below. Furthermore, the sign andmagnitude
of TXY indicates the type and strength of interaction after proper
rescaling (Segrè et al., 2005; Tekin et al., 2016). Rescaling has a
firm conceptual foundation that has been proven useful in many
areas and is defined relative to important baselines, such as a
maximally synergistic scenario or special cases of antagonism, to
appropriately reflect the strength of any interaction (Segrè et al.,
2005; Sanjuán and Elena, 2006; Tekin et al., 2016). Similarly,
two-way and higher-order interaction measures need a rescaling
method (a normalization procedure) to distinguish different
interaction categorizations.

General Theory of Higher-Order Interactions
As we proceed from two-way to higher-order interactions, there
are two distinct types of interactions: (1) net interactions and
(2) emergent interactions (Figure 2). The first form measures
whether an effective or net interaction exists at all, hence defined
as an effect of a combination that is different than predicted
from solely the effects of non-interacting single components.
On the other hand, the second form measures whether there
are emergent interactions beyond what is expected from the
lower-order parts of the whole combination. Below, by following
a similar notation as for two-way interactions, we introduce

the functional forms of generalized higher-order interaction
measures. For that, we first note that the ordering of the
components (or objects) does not matter as we assume the
absence of a time component in our framework. Therefore,
the interaction measures are symmetric with respect to each
component—hence X (Y◦Z) is equivalent to X◦Y◦Z or X◦Z◦Y
and vice versa—because algebraic operations of ◦ and △ hold
commutativity and associativity properties.

Net interactions
Net interactions are measured by a direct extension of the
generalized formula for two components (Figure 2) (Sanjuán and
Elena, 2006; Staude et al., 2010; Beppler et al., 2016). For example,
when three components are completely independent or do not
interact at any level, then the functional with the combined
components as the argument is equal to the combination
of functionals of single components under the operation △.
Therefore, adding a third component (Z) into the generalized
version of the two-way interaction measure (Equation 1), the
generalized version of the three-way net interaction measure
becomes

TXYZ, NET = F
(

X◦Y◦Z
)

−
(

F
(

X◦I
)

△F
(

Y◦I
)

△F
(

Z◦I
))

(2)

Next, we derive the net interaction formulation for a combination
of an arbitrary number, N, of components. Representing the
set of components by X1, X2, · · · , XN , and assuming there
is no interaction between component X1 and the rest of the
components, we have

F
(

X◦
1X

◦
2 · · ·

◦XN

)

= F
(

X◦
1 I

)

△F(X◦
2 · · ·

◦ X◦
NI)

By induction or equivalently applying the same realization
repeatedly to the right side of the above equation yields theN-way
version of the generalized formula as given by

F
(

X◦
1X

◦
2 · · ·

◦XN

)

= F
(

X◦
1 I

)

△F
(

X◦
2 I

)

△ . . .△F
(

X◦
NI

)

(3)

Using a big△ notation to denote the application of the operation
△ to a sequence of numbers—similar to sigma (or pi) notation
for summation (or multiplication)—our generalized formula for
quantifying net N-way interaction is given by

TX1 X2 ··· XN , NET = F
(

X◦
1X

◦
2 . . .◦ XN

)

−
△

i
F

(

X◦
i I

)

Emergent interactions
Emergent interactions are defined as interactions that exist even
after the exclusion of all interaction effects that are due to
lower-order parts and may contribute to a combined overall
(net) interaction (Figure 2). In the drug interaction and epistasis
terminology, emergent interactions are concretely defined in our
recent work and clearly contrasted with the definition of net
interaction (Beppler et al., 2016; Tekin et al., 2016). Specifically,
an emergent interaction is an interaction that exists beyond
the effects that are due to all lower-order parts, whereas a net
interaction is any effect beyond only the individual component
effects. In an article by Staude et al. (2010) on covariance,
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FIGURE 2 | Generalized form of interaction diagrams and measures. Two-way and three-way interaction diagrams and measures (T) over distinct interaction types,

general functionals (F ), and operations (, △) are given. Empirically, classification of pairwise interaction requires measurements from each single component alone as

well as measurements from each pairwise combination of components. On the other hand, classification of three-way interactions requires measurements from all

possible subsets: measurement under each single-component alone, measurement from all pairwise subsets, and measurement from triple-component combination.

Theoretically, for two-way interactions, the definitions of net and emergent interactions are identical. On the other hand, net and emergent interactions are not the

same at the three-way level because the net three-way combination subsumes the pairwise combination effects of each pair (XY, XZ, YZ). Therefore, the emergent

3-way interaction (the diagram on the bottom far left) is expressed by subtracting all lower-order contributions from the net 3-way interaction. The interaction

classification is obtained from the sign of the interaction measure, T, where T = 0 represents no-interaction, T < 0 represents synergy (positive interaction), and

T > 0 represents antagonism (negative interaction). See Figure 1 for a toy example of consumer-resource systems that depicts different interaction classes: synergy,

no-interaction, and antagonism.

this concept is referred to as the dependence in the higher-
order combination that is not embedded through the lower-
order correlations. In information theory, Jakulin et al. (Jakulin,
2005) referred to this idea similarly and stated that interaction
information among different attributes can be gained by the
information that is not present in any subset. By definition, at
the two-way level, an emergent interaction is identical to the
net interaction because there is nothing from which to emerge
except the single-component effects. On the other hand, at the
next level, the emergent three-way interaction measure captures
the interaction that does not originate from the pairwise parts,
and hence emerges only in the presence of all three components.
For more than three components, it matters what level of lower-
order interactions needs to be excluded. There can be different
choices based on the specific system or the main purpose of the
interaction identification, as revealed in more detail below and in
the Appendix A in Supplementary Material.

As a start, to measure the emergent three-way interaction, we
calculate how much of the three-way net interaction originates
from each of the isolated pairs and subtract that from the net
(or total) three-way interaction. In this case, the contribution that
comes solely from the pair X, Y represents the situation that only
X,Y interacts within the three-way combination ofX,Y, and Z. In
other words, the remaining component Z within the combination
does not interact with the pairwise part of X and Y or either X

or Y individually. Employing the two-way interaction formula of
generalized interaction measure (Equation 1) and the associative
properties of operations, this is equivalent to saying that
F (X◦Y◦Z) = F ((X◦Y◦) ◦Z) = F ((X◦Y) ◦I)△F (Z◦I). Hence,
the two-way combination of components X, Y contributes to the
entire (net) three-way interaction (Equation 2) by an amount
of F ((X◦Y) ◦I)△F (Z◦I)−F (X◦I)△F (Y◦I)△F (Z◦I), which
is equal to F (Z◦I) △ TXY when △ is multiplication and
is equal to TXY when △ is addition. Similarly deriving the
contribution coming solely from the interaction of components
Y and Z and also from X and Z, the generalized formula of the
emergent three-way interaction is given by disentangling the sum
of the pairwise parts from the three-way interaction. Therefore,
given the multiplication operation of △, the emergent 3-way
interaction among components X, Y, and Z is

TXYZ, EMERGENT = TXYZ, NET−F
(

X◦I
)

△ TYZ − F
(

Y◦I
)

△ TXZ − F
(

Z◦I
)

△ TXY (4)

On the other hand, the weighting parameters (e.g., F (X◦I))
disappear when △ is the addition operation, so an emergent
interaction is given by

TXYZ, EMERGENT = TXYZ, NET − TYZ − TXZ − TXY (5)
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These expressions mean that when some interaction exists but all
the pairs are independent (or not interacting), then the emergent
interaction is equal to the net interaction because any interaction
can only be coming from the combined effects of all three
drugs for this special case. When pairwise interactions exist and
do not cancel, the net and emergent interaction measures will
virtually always differ. Notice also that all interaction measures
are symmetric with respect to each component. Moreover, when
a single component is independent (or not interacting) with the
others, the emergent three-way measure vanishes, as desired.

For N components (X1,X2 . . . XN), the emergent N-way
interaction formula can be derived similarly by starting from
the definition of the generalized formula for net N-way
interactions and subtracting the appropriate lower-order effects.
The derivation for generalized formula of emergent interactions
with four components is described in detail in Appendix A in
Supplementary Material.

RESULTS

Construction of Specific Two-Way
Interaction Measures From General Theory
We will now derive how our generalized framework of two-way
interactions leads to numerous interaction measures introduced
in studying generic multi-component systems (Table 1). For this,
we start by defining X and Y as random variables and will
show that the generalized formula reduces to the covariance
formulation and mutual information by the choice of different
algebraic operations of and △. Given that F is the expectation
operator, and both and△ are the operation ofmultiplication,TXY

(Equation 2) becomes covariance and hence measures the joint
variability between X and Y, as

TXY = E (X∗Y) − E (X∗1) ∗E (Y∗1) = E (XY) − E (X)E (Y)

Here, we note that when X and Y are independent, their
covariance is zero, i.e.,TXY = 0. Notably, the two-way covariance
measure is analogous to concepts in theoretical physics such as
joint cumulants or Ursell functions (Kendall and Stuart, 1969)
and the Isserlis formula in statistics (Isserlis, 1918). However,
the higher-order interaction formulations of these concepts differ
from the higher-order covariance when there are more than
three components, as derived in Appendix A in Supplementary
Material.

Following the covariance derivation using our general
theory of two-way interactions, we now show that choosing
appropriate functional and algebraic operations leads to the
mutual information measure of interactions. Hence, we define F
to be negative entropy,△ to be addition, and ◦ to be addition (i.e.,
I = 0). Here, the ◦ operation represents the combination of two
components and hence defines joint entropy under the functional
F . For these choices, the generalized formula yields the mutual
information

TXY = −H (X,Y) +H (X) +H (Y)

Here, associating the random variables X and Y with attributes,
the interaction formulation TXY measures the correlation

between the attributes based on concepts of information theory.
By definition, when X and Y have no interaction, their mutual
information vanishes because no information is gained about one
attribute through the other attribute (Jakulin, 2005).

Proceeding to cases for which the arguments X and Y
represent experimental data rather than standard random
variables, we discuss how interactions are measured by the
formula TXY by evaluating the effects of combined components
inferred from system responses (F) such as growth, survival,
or mortality rates (Figure 1). These experimental data types
and response functions are used in many important and
frequently-used measures of interactions, such as ANOVA,
epistatic additivity, Bliss Independence, and multiple predator
effects measures.

We begin by reviewing how ANOVA (Analysis of Variance)
translates into a measure for the prediction of interactions
and then deriving its correspondence with our general
interaction formula. In the case of two-component systems,
ANOVA interactions are quantified by a 2 by 2 factorial
design with four different observations—corresponding to no
components (0), component X alone, component Y alone,
and components X and Y together. In this case, two-way
ANOVA tests whether the presence of Y affects the impact
of X according to a measure based on linear deviations.
When the effects of observations are denoted by S, no
interaction is described as S (X)−S (0) = S (X + Y)−S (Y).
Note that this equation can be re-expressed in the form
S (X + Y)−S (0) = S (X)−S (0) + S (Y)−S (0).
Therefore, redefining the response measurement to be
F (X) :=S (X)−S (0), the interaction is quantified by the
significance of deviation from the additive effects of two
components, i.e., F (X + Y)−F (X)−F (Y). This corresponds
to a general formula of interactions, TXY , with ◦ and △ being
addition operations

TXY = F (X + Y)−F (X)−F (Y)

Regarding the use of ANOVA for interaction classifications, work
by Billick and Case (1994) andWootton (1994) demonstrate that
the results of ANOVA can be misleading if the transformation of
data is not carefully done or when the empirical system does not
align with the assumptions of ANOVA.

Following the similar component types and response
measurements, our general interaction measure produces
another widely-used model of interactions, namely the
multiplicative-risk model. This measure has been introduced
by Soluk and Collins (1988) for quantifying multiple predator
effects (MPE), and it overcomes the ambiguities of the additive
prediction by ANOVA when the single components have
large impacts on the response function (F). In such cases, the
additive expectation can never be achieved because the predicted
combined effect is stronger than is feasible or possible for the
two together (for example you cannot have a stronger effect than
complete killing, see Appendix B in Supplementary Material for
details). The multiplicative model formulates no-interaction as
F (X + Y) = F (X)F (Y), based on the idea of proportional
decreases in population size. It is thus much more akin to Bliss
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Independence discussed below. Importantly, the multiplicative
model of interaction can be written as a general interaction
formula, where ◦ and △ are addition and multiplication
operations, respectively. Hence,

TXY = F (X + Y) − (F (X + 0) ∗F (Y + 0))

= F (X + Y)−F (X)F (Y)

associates the null model of no-interaction based on the product
of response measurements (F), which is prey survival rates for
the MPE system (Sih et al., 1998; Barrios-O’neill et al., 2014).
The subscript notation (such as FXY ) is still typically used to
express response measurements under different combinations
of predators, or similar component types in different settings,
even though X and Y are actually being summed together in
this case. Hence, the equation above takes a form TXY =

FXY − FXFY . As explained in Appendix B in Supplementary
Material, this multiplicative model is preferred over additive
models that do not always yield plausible expectations of
combination effects. As a further note, this multiplicative model
of two-way interaction can be tested by merely applying two-
way ANOVA on log-transformed data because testing for
logF (X + Y) = logF (X) + logF (Y) is equivalent to testing
for F (X + Y) = F (X)F (Y) by properties of logarithms.
However, the multiplicative model at higher-order levels is not
simply equivalent to the log-transformed ANOVA as detailed
below. Note that following the same logic of additive and
multiplicative models, where the interaction effect signifies the
deviation from the null model of additivity or multiplicativity,
alternative measures to two-way ANOVA [namely Hedge’s d and
log response ratio (LnRR)] have been proposed to determine
interactions based on the deviation from the corresponding
model expectation standardized to the effect size (Gurevitch et al.,
2000; Crain et al., 2008; Côté et al., 2016). Similar correction
terms for the effect sizes can be added to net and emergent
higher-order interaction measures for meta-analysis studies.

Intriguingly, there is a strong correspondence between the
multiplicative model introduced for MPEs and the frequently
used drug-interaction model of Bliss Independence. This
indicates that the Bliss measure can also be expressed by
utilizing the general interaction formulation we propose here,
i.e., TXY = FXY − FXFY . In drug interaction studies, response
measurements, F , are given as growth rates of pathogens in
the presence of single or multiple drug environments relative to
the no-drug environment. Relative growth is commonly referred
to as relative fitness and is indeed analogous to the survival
rates of prey species in predator environments (Beppler et al.,
2016). Bliss Independence categorizes interactions based on
deviations from a null expectation (no-interaction case) that the
percent decrease of the pathogen growth rate in the presence
of drug X is not affected by the presence of the other drug
Y. Analytically, the deviation from no-interaction instance is
measured byF (X + Y)−F (X)F (Y) orFXY−FXFY , following
a subscript notation as in the multiplicative model.

Building Higher-Order Specific Interaction
Measures From General Theory
In this section, we discuss the widely-used pairwise interaction
measures described above and summarized in Table 1, and
we derive the three-way interaction measures based on the
corresponding no-interaction criterions and our general theory.
For clarity, we follow the same order of measures as in the
section on the construction of two-way interactions. Therefore,
we start by reviewing the standard interaction measures when
the components are random variables. In probability theory,
the extensions of probabilistic measures of moments to multi-
variable systems are generally referred as higher-order cross
moments. For example, adapting the generalized formula of
covariance (seeTable 1) to three variables yields a 3rd-order cross
moment known as co-skewness that is used as a risk management
measure in finance or in social problems (Cox L. A. Jr., 2009;
Miller, 2013). To be more explicit, the net interaction measure
(Equation 3) is given byTXYZ, NET = E (XYZ)−E (X)E (Y)E(Z)
(Stratonovich, 1967; Staude et al., 2010), which vanishes when
X, Y, and Z are mutually independent with each other and each
pairwise product. Next, substituting the generalized formula of
two-way interactions (i.e., covariance) and the net three-way
interaction, the emergent interaction (Equation 4) becomes

TXYZ, EMERGENT = E (XYZ) − E (X)E (YZ) − E (Y)E (XZ)

−E (Z)E (XY) + 2E (X)E (Y)E(Z)

which is equivalent to the three-way covariance [i.e.,
E ( (X − E (X)) (Y − E (Y)) (Z − E (Z)))] or the non-normalized
formula of co-skewness as discussed above. Notably, this three-
way measure is equivalent to the Isserlis formula (Isserlis,
1918), 3-point connected correlation, or equivalently the Ursell
function with three random variables (Kendall and Stuart,
1969; Staude et al., 2010). However, this does not hold true for
more than three components (Appendix A in Supplementary
Material).

Continuing with the component types as random variables, we
now show that the general formula of higher-order interactions
reduces to two interaction measures of paramount importance
in information theory. Defining the functional F as the negative
of entropy and following the algebraic operations that yield
mutual information (seeTable 1), the net interaction formulation
coincides with the total correlation measure as given by

TXYZ, NET = −H (X,Y ,Z) +H (X) +H (Y) +H(Z)

This measures the total dependence among three attributes X,
Y , and Z (Watanabe, 1960; Jakulin, 2005). By incorporating
the pairwise mutual information into the emergent interaction
formulation when △ is the addition operation (Equation 5),
we attain the multiple mutual information measure defined by
McGill (McGill, 1954; Sun Han, 1980; Jakulin, 2005).

TXYZ, EMERGENT = −H (X,Y ,Z) +H (X,Y) +H (X,Z)

+H (Y ,Z) −H (X) −H (Y) −H (Z)

Thus far, we have introduced the commonly used interaction and
dependence measures from probability theory. Next, we move
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onto the standard measure of ANOVA, which analyzes the effects
of multiple components via the factorial experiment design. As in
the two-way interactions, we simply use the underlying additive
model of three-way ANOVA and refer to it as just an additive
model (Table 1). When the response function F is defined
relative to the control (no component is present), the three-
way net interaction formula of the additive model is given by
F (X + Y + Z)−F (X)−F (Y)−F (Z). Now, substituting each
pairwise contribution in the generalized formula of emergent
interactions (Figure 2), the emergent interaction measure is
identical to the underlying model of three-way ANOVA.

TXYZ, EMERGENT = F (X + Y + Z)−F (X + Y)−F (X + Z)

−F (Y + Z) + F (X) + F (Y) + F(Z)

This correspondence is proven explicitly in the Appendix C

in Supplementary Material by recognizing that three-way
ANOVA determines how the two-way interaction between the
components X and Y is affected by an addition of a third factor
Z. This in-depth derivation of the underlying model of three-way
ANOVAhelps to compare the statistical measure of ANOVAwith
other interaction classification methods.

Due to the additive model’s implausible predictions
under certain cases, many MPE studies have pursued the
implementation of the multiplicative model (Appendix A in
Supplementary Material). Subsequently, we now derive the
definition of three-way interactions under the multiplicative
model of MPE studies or equivalently the Bliss Independence
formula. This derivation is very similar to the foundation of the
covariance for three random variables as △ is the multiplication
operation in both concepts (Table 1). Defining the functional
F as survival rate relative to the control, the net interaction
measure becomes

TXYZ, NET = F (X + Y + Z)−F (X)F (Y)F (Z)

or TXYZ, NET = FXYZ − FXFYFZ using subscripts for denoting
the combination of components. In this case, substituting
the terms corresponding to each pairwise contribution, such
as FXYFZ − FXFYFZ = FZFXY for XY combination, the
emergent interaction becomes

TXYZ, EMERGENT = FXYZ − FXFYZ − FYFXZ − FZFXY

+2FXFYFZ

Using a fitness definition for F , TXYZ, NET and TXYZ, EMERGENT

correspond to the net and emergent interaction formulas with
three components in the fields of drug interactions and gene
epistasis (Sanjuán and Elena, 2006; Beppler et al., 2016).

DISCUSSION

Multi-level interactions play an important role in explaining
the characteristics of systems that arise as collective behaviors
or responses among different components. As an example
in conservation biology, mammalian herbivory, invertebrate
herbivory, and nutrient levels all interact to affect the survival,

growth rates, and fecundity of rare plant species in a forest
ecosystem (McGill et al., 2006; Savage et al., 2007; Webb et al.,
2010; Dávalos et al., 2014; Enquist et al., 2015). Given this
importance across diverse fields, many different interaction
classification methodologies have been introduced. However, a
unified theory behind these choices has been lacking, and as a
result, higher-order interaction measures are often incorrectly
derived and interpreted and thus higher-order interactions are
not well understood. Moreover, the lack of a general theory
behind the pairwise interaction measures makes it difficult to
establish a common understanding of higher-order interactions
and to design well-defined measures that go beyond pairwise
interactions. In our study, we introduce a pioneering approach
to resolve these uncertainties and for studying interactions
in complex systems. We further propose a general theory of
interaction measures to uncover interactions at pairwise and
higher-order levels. Our framework provides an advance in such
a way that specific cases and measures can be derived from the
definition of what an interaction means—the deviation from
an expectation that there is no interaction—and what response
measurements are needed to evaluate for the interactions—the
functional with different arguments. From that we establish
a rigorous framework for extending and generalizing these
concepts and measures to higher-order levels.

In doing so, we show the utility of our general framework by
deriving pairwise interaction measures across different fields—
covariance, mutual information, cumulants, ANOVA, Bliss
independence, and epistatic additivity (Table 1). Furthermore,
we demonstrate that all pairwise interaction measures can
be easily extended to characterize the net interaction—an
overall effect resulting from all levels—and the emergent
interaction—a measurement of an overall interaction effect
relative to interactions at lower-order levels. We also discuss their
specific representations, correspondences, and interpretations in
a diverse set of study areas. Overall, our advance is of importance
for studies of diverse complex systems that rely on a large number
of interactions and emerge across multiple levels.

Despite a rich focus on pairwise interactions in the literature,
recent studies have shown that higher-order interactions are
pervasive in drug and gene systems (Taylor and Ehrenreich,
2015a,b; Tekin et al., 2016), and that the typical approach
of focusing solely on pairwise interactions is most likely
inadequate for successfully attaining important insights into
research on complex systems (Weinreich et al., 2013; Beppler
et al., 2016; Levine et al., 2017; Mayfield and Stouffer,
2017). Therefore, higher-order interactions (i.e., among any
number of components) must be incorporated to fully grasp
system dynamics. In this respect, our study provides a
promising framework to uncover emergent phenomena in
multi-component systems such as protein and gene interaction
networks, multiple predator effects, food webs, interacting agents
in economics, voting behaviors in political science and the
cohesion dynamics of social groups.

As shown by our previous studies (Yeh et al., 2006; Tekin
et al., 2016), empirical data of drug interactions separate
into a trimodal distribution—clearly separating synergy, no-
interaction, and antagonism—and clearly different than would
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arise from a random model of interactions because stochastic
effects would have smoothed out this distribution and led to a
more uniform distribution. Furthermore, in our previous study
(Tekin et al., 2016), we assessed the statistical significance of
interactions by testing against the null hypothesis of random
interactions that would on average lead to a uniform distribution
that ranges from −1 to 1 across the entire interaction scale. To
quantify these comparisons, we used a Silverman test (Silverman,
1981) and found the higher-order emergent interactions are
significantly different from random effects. These results reveal
higher-order interactions are not simply due to random effects.
Also worth noting is that uncertainty and error estimation due
to measurements can be dealt with using bootstrapping strategies
(Cruz-Loya et al., 2018).

Throughout the text, we also point out a well-founded concept
of “rescaling” in physics that has been proven to enhance the
categorization of pairwise and higher-order emergent effects
(Segrè et al., 2005; Tekin et al., 2016). Without employing an
appropriate rescaling approach, the magnitude of interactions
is often not apparent and hence can lead to misleading results
and erroneous insights. Therefore, appropriately understanding
and rescaling the interaction formulations is an essential part
of studying and understanding multi-component interactions in
any system.

We further note that many systems have additional
complexities besides just many interacting components or
higher-order interactions. For example, in predator-prey
systems, both predators and prey can evolve, and there are
direct feedbacks in the interactions. Both of these effects can
lead to drastic changes in multiple predator effects (MPEs)
(Barrios-O’neill et al., 2014). In addition, pathogens can evolve
in response to drug combinations in ways that are almost
impossible to predict due to rugose fitness landscapes. To
predict and understand the dynamics of pathogen populations
thus requires further theory (Palmer et al., 2015). Our general

framework of interactions, with additional modifications,
will help address some of the important questions about
complexities in biological, physical, and social systems. Overall,
understanding emergent features can help us to predict the
dynamical consequences of complex interactions, including in
questions of crucial significance to human and global health,
such as combatting the evolution of resistance to antibiotics and
mitigating detrimental impacts of climate change on the diversity
and stability of food webs.
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