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It is well established that GC content varies across the genome in many species

and that GC biased gene conversion, one form of meiotic recombination, is likely to

contribute to this heterogeneity. Bird genomes provide an extraordinary system to study

the impact of GC biased gene conversion owed to their specific genomic features. They

are characterized by a high karyotype conservation with substantial heterogeneity in

chromosome sizes, with up to a dozen large macrochromosomes and many smaller

microchromosomes common across all bird species. This heterogeneity in chromosome

morphology is also reflected by other genomic features, such as smaller chromosomes

being gene denser, more compact and more GC rich relative to their macrochromosomal

counterparts - illustrating that the intensity of GC biased gene conversion varies across

the genome. Here we study whether it is possible to infer heterogeneity in GC biased gene

conversion rates across the genome using a recently published method that accounts

for GC biased gene conversion when estimating branch lengths in a phylogenetic

context. To infer the strength of GC biased gene conversion we contrast branch length

estimates across the genome both taking and not taking non-stationary GC composition

into account. Using simulations we show that this approach works well when GC

fixation bias is strong and note that the number of substitutions along a branch is

consistently overestimated when GC biased gene conversion is not accounted for. We

use this predictable feature to infer the strength of GC dynamics across the great tit

genome by applying our new pipeline to data at 4-fold degenerate sites from three

bird species—great tit, zebra finch and chicken—three species that are among the best

annotated bird genomes to date. We show that using a simple one-dimensional binning

we fail to capture a signal of fixation bias as observed in our simulations. However, using

a multidimensional binning strategy, we find evidence for heterogeneity in the strength

of fixation bias, including AT fixation bias. This highlights the difficulties when combining

sequence data across different regions in the genome.
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1. INTRODUCTION

Estimating DNA sequence divergence between species is an
important quantity in evolutionary analyses and population
genetic approaches, such as for molecular dating, phylogeny
reconstruction and the inference of selection. Several test
statistics in population genetics that detect selection rely on
an accurate reconstruction of the number of substitutions at
putatively neutral sites, such as coding site (e.g., synonymous
or 4-fold degenerate sites) or introns (Hudson et al.,
1987; McDonald and Kreitman, 1991). For technical and
computational reasons most popular models that estimate
substitution rates assume that base composition is at equilibrium
(Jukes and Cantor, 1969; Kimura, 1980, 1981; Felsenstein, 1981).
However, as there is a substantial base composition heterogeneity
within and across genomes (Bernardi, 2000; Dreszer et al., 2007;
Romiguier et al., 2010; Lartillot, 2013; Pouyet et al., 2017,
2018) this assumption is likely to be violated, and in fact base
composition might change over time (Duret and Arndt, 2008).

Fundamental processes that contribute to heterogeneity in
base composition over space and time are mutational bias and
bias in the fixation probabilities of certain mutation types, such
as due to selection, recombination, linkage or a combination
of these factors (Eyre-Walker and Hurst, 2001). A particular
example is the biased fixation probability that is caused by gene
conversion of strong (G and C) over weak (A and T) base
variants at heterozygous sites referred to as GC-biased gene
conversion. It occurs during a repair induced gene conversion
process that tends to preferably incorporate G/C nucleotides over
A/T nucleotides during meiosis in many animal species (Duret
and Galtier, 2009). Although the pronounced role of GC biased
gene conversion as a major force is established, it is much less
clear whether there is substantial variation in the extend of GC
biased gene conversion across the genome and, if there is, how
this is distributed across the genome. Several approaches have
been developed that take heterogeneity in base composition into
account when estimating substitution rates and branch lengths
in phylogenies (Yang and Roberts, 1995; Galtier and Gouy, 1998;
Dutheil and Boussau, 2008; Jayaswal et al., 2011) or by examining
segregating variation (De Maio et al., 2013; Glémin et al., 2015;
Borges et al., 2018). However, it has been noted that accurately
estimating sequence divergence can be difficult when GC content
is not at equilibrium (Matsumoto et al., 2015).

Bird genomes are characterized by a high karyotype
conservation across bird species pronounced by heterogeneity in
chromosome sizes, with up to a dozen large macrochromosomes
and many smaller microchromosomes (Ellegren, 2013). This
heterogeneity in chromosome morphology is also in reflected in
their genome composition features, with smaller chromosomes
being gene denser, more compact and more GC rich relative
to their macrochromosomal counterparts (Gossmann et al.,
2014). As a consequence bird genomes provide an extraordinary
system to study the evolution of GC hetereogeneity in
a macrovolutionary context (Weber et al., 2014). To-date
numerous bird genomes have been published (Zhang et al., 2014)
with the genomes of chicken, zebra finch and great tit being
among the best annotated high-quality bird reference genomes

available (Hillier et al., 2004; Warren et al., 2010; Laine et al.,
2016).

Here we infer heterogeneity in GC biased gene conversion
rates across genes by estimating GC content evolution dynamics.
We use a recently published method that accounts for nucleotide
fixation bias when estimating branch length (Matsumoto et al.,
2015). Using simulations we show that this approach works well
and note that the number of substitutions along a branch are
consistently overestimated when GC biased gene conversion is
not accounted for in a stationary model. We use this predictable
over-estimation as an indicator for the strength of GC dynamics
across the genome and apply our new pipeline to data at 4-fold
degenerate sites from three bird species - great tit, zebra finch and
chicken. We use two binning strategies, current GC content of a
focal species as applied previously and more complex clustering
algorithm to estimate GC* (GC content at equilibrium). We
find that binning according to current GC content, a frequently
applied method (Boĺivar et al., 2016; Corcoran et al., 2017),
reveals little evidence for GC biased gene conversion across
genes based on branch length estimations. In contrast, binning
genes according to contemporary GC content of multiple species
leads to a signal of GC and AT fixation bias as observed in our
simulations, and suggests a substantially better model fit to the
data. In conclusion there appears variation in the extent of strong
fixation bias across genes with a signal for GC and AT fixation
bias.

2. MATERIALS AND METHODS

2.1. Sequencing Data and Phylogeny
We obtained sequencing data for coding genes from three bird
species: great tit (Laine et al., 2016), zebra finch (Warren et al.,
2010) and chicken (Hillier et al., 2004) - three of the best
annotated and most studied bird genomes (Laine et al., 2018)
currently available along with the high quality collared flycatcher
genome (Ellegren et al., 2012; Kawakami et al., 2014) that was not
considered here. An alignment pipeline was applied as described
in Corcoran et al. (2017) from which we extracted aligned 4-fold
degenerate sites only, as GC-biased gene conversion is supposed
to act in particular on these sites (Boĺivar et al., 2016). Altogether
we extracted ≈ 1.87 × 106 sites. Since this is the only type of
sites in this study and to improve readability, we refer to GC4
(GC content at 4-fold degenerate sites) as GC. We estimated
branch lengths in a star like phylogeny based in a stationary
model using baseml (Figure 1A) using the concatenated 4-fold
sites alignments. These branch length estimates were then used
to construct an approximated ultrametric tree as the underlying
tree model for the nucleotide sequence simulations (Figure 1B).

2.2. Sequence Simulation
We used INDELIBLE (Fletcher and Yang, 2009) to simulate
nucleotide based sequence divergence with an underlying
ultrametric tree topology as an estimate for branch length
(Figure 1B). We assumed an HKYmodel (Hasegawa et al., 1985)
with κ = 2.5 for the entire tree except for one of the shorter
terminal branches for which we assumed a non-stationary model
to simulate a non-stationary GC fixation bias. As the UNREST
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FIGURE 1 | Three species (Parus major, Taeniopygia guttata, Gallus gallus) tree topology and (A) branch estimates from a stationary GTR model using baseml and

(B) the ultrametric branch lengths assumed for the sequence simulations. The terminal branch in red was assumed to be evolving under non-stationary GC content.

substitution rate model is the only non-symmetric model
implemented in INDELIBLE we used a simplified UNREST
substitution rate model (option 16, see INDELIBLE manual)
assuming following general matrix Q (Fletcher and Yang, 2009)
including a free parameter for the transition/transversion rate
(κ) and a parameter r that denotes asymmetric fixation between
strong and weak bases:

Q =

To
T C A G









. κr 1 r
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From (1)

and define r = 1 + B/10 where B denotes the strength of GC
fixation bias in the non-stationary process with an initial state
frequency of πA = πC = πG = πT = 0.25. B values > 0 will
result in a GC fixation bias while −10 < B < 0 values will result
in an AT fixation bias. Please note that the commonly population
size scaled gene conversion rate B = 4Neb (Nagylaki, 1983) is
different from the B used here. We did not consider indels in the
model.

2.3. Branch Length Estimation
Multiple processes can lead to fixation biases and their relative
contributions are somewhat unknown. Here we assume that
large scale variation in the fixation bias on 4-fold sites is largely
driven by GC fixation bias which is not unrealistic (Smith
et al., 2018). We repeated the forward simulations 100 times
for each parameter set and estimated branch lengths in our
tree by applying a method developed to reconstruct ancestral
sequences when patterns of nucleotide substitutions are non-
stationary Matsumoto et al. (2015) as implemented in PAML 4.8
(Yang, 2007) (i.e., model = 7, nhomo = 4, fix_kappa = 0). The
parameter nhomo = 4 assigns one set of frequency parameters
for the root, and one set for each branch in the tree, even for the
non-focal ones. We also applied a simpler, homogeneous model
(i.e., model = 7, nhomo = 1) using an unrooted tree topology

that does not account for GC fixation bias. Log likelihoods
were obtained from the model estimate and when obtained
from binned data, summed across bins. The Akaike information
criterion (AIC, Akaike, 1974) was used to assess model fit to
compare different binning strategies and cluster numbers.

2.4. Binning Strategy
We used two different binning strategies to combine data across
genes. As contemporary GC content is relatively easy to measure
we focused on current GC content per gene and clustered data
using the k-means algorithm implemented in the scipy python
package (kmeans2). We either used contemporary GC content of
a single focal species which is comparable to equal binning sizes
(Boĺivar et al., 2016; Corcoran et al., 2017) as well as multivariable
clustering using contemporary GC content for each species. We
note that other binning strategies may be applicable.

3. RESULTS

3.1. Sequence Simulations
We conducted nucleotide forward simulations to generate non-
stationary GC content in a terminal branch of an ultrametric
three species tree using a customized substitution rate matrix
with INDELIBLE. For simplicity reasons we assumed a
phylogeny with ultrametric distances (Figure 1) although this
is not a general restriction of the model. We simulated DNA
stretches of 100 Kb without indels and applied two model tests in
PAML to obtain branch length estimates. A simpler model that
assumes stationary base composition (GTR, and an underlying
unrooted tree) and amore complexmodel that incorporates non-
stationary base composition (GTR-NH, with a rooted tree). By
that the more complex model should be able to capture GC or
AT fixation biases in the terminal branch while the simpler model
should not. Simulations were repeated 100 times and median
estimates were obtained for varying strengths of GC fixation bias
or sequence lengths.
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FIGURE 2 | Features of GC content evolution in a terminal branch simulated under GC fixation bias. The terminal branch length under consideration is set to 0.05.

(A) Estimated branch lengths under varying strength of GC fixation bias for stationary (GTR) and non-stationary (GTR-NH) models and their 95% CIs. (B) GC content

evolution, shown is equilibrium GC (GC*) estimated from the GTR-NH model and GC content at the tip of the branch (current GC). Because of the short branch length

GC content is far from its equilibrium.

FIGURE 3 | Features of GC content evolution in the non-focal terminal branch simulated under stationary GC when the focal branch is simulated with different levels

of GC fixation bias and their 95% CIs. Terminal branch length under consideration is set to 0.05 in the simulations. (A) Estimated branch lengths under varying

strength of GC fixation bias in the focal branch for stationary and non-stationary models. (B) GC content evolution, shown is equilibrium GC (GC*) and GC content at

the tip of the branch (current GC).

3.1.1. Inferring Non-stationary GC Composition
First we simulated DNA sequences under varying level of GC
fixation bias (Figure 2). We confirm, as expected, that not
accounting for stationarity in a phylogenetic model will lead
to the parameters being estimated inaccurately. We observe an
overestimation of the branch length with increasing GC fixation
bias (Figure 2A) when the simple GTR model was used. If we
estimate branch length in a model that accounts for fixation
bias (GTR-NH) we can, however, accurately capture the correct

branch length, even when GC fixation bias is extreme. We also
note that there is an apparent discrepancy between the branch
lengths estimated from the two models that is linear to the extent
of fixation bias simulated (Figure 2A). Hence, the scope of this
study is to investigate whether the deviation in branch length
estimates between the two models may be used as a proxy for
the strength of fixation bias. To understand the base composition
dynamics it is noteworthy that even with an enormous fixation
bias (B = 59, the largest B value simulated here) GC content
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FIGURE 4 | Features of GC content evolution in a terminal branch simulated under GC fixation bias when both terminal branches (e.g., great tit and zebra finch

lineage) undergo the same level of GC fixation bias and their 95% CIs. The terminal branch length under consideration is set to 0.05. (A) Estimated branch lengths

under varying strength of GC fixation bias for stationary and non-stationary models. (B) GC content evolution, shown is equilibrium GC (GC*) and GC content at the

tip of the branch (current GC). Because of the short branch length GC content is far from its equilibrium.

increases only moderately and GC content evolution is far from
its equilibrium (Figure 2B). This is because of the relatively short
branch length (however biological meaningful) considered here.
This illustrates that the strength of fixation bias may be not
correlated to the current GC content.

3.1.2. Parameter Estimation and Non-stationary GC

Composition in a Non-focal Branch
It was recently suggested that the effect of GC on branch length
depends on the composition of the non-focal branches, as the
stationary model estimates GC* from all branches (Guéguen and
Duret, 2018). To study our model regarding the behavior of non-
focal branches we focused on the terminal sister branch (e.g.,
zebra finch lineage). We observe a slight overestimation of the
branch length estimates in the GTR model with increasing GC
fixation bias of the focal branch (Figure 3), although this effect
appears to be non-significant. We also conducted additional
simulation where we assumed the same extent of GC fixation
bias for the focal branch and its sister branch (Figure 4) and
find that parameter estimates are very similar to the case when
GC composition is assumed to be stationary in the sister branch.
Although we show only a modest effect of the non-focal branch
in our simulation setup, this does not exclude the possibility of
a more complex interplay between focal and non-focal branches
when the underlying phylogeny is more complex as reported by
Guéguen and Duret (2018).

3.1.3. Inferring Non-stationary GC Composition From

Limited Data
We have shown that GC dynamics can be accurately captured
when GC fixation bias is spatially homogeneous. To determine
how much sequence information is necessary to accurately

predict fixation bias, we conducted simulations of different
sequence lengths with no, moderate and strong GC fixation bias
(Figure 5). Under the assumption that the difference in branch
length estimates between the GTR and GTR-NH model are a
good proxy for determining the extend of GC sequencing bias,
we find that fixation bias can be predicted very well. However,
when sequence length is very short, the GTR-NH tends to mis-
estimate the branch length and suggest that branch length can be
accurately estimated when sequence are >20kB.

3.2. Application of Non-stationary Model to
Real Data
As GC fixation bias is potentially correlated to GC content
(Weber et al., 2014), sequence binning according to current GC
content is a commonmethod when gene sets of different strength
of recombination are considered (Boĺivar et al., 2016; Corcoran
et al., 2017). Indicative of large scale GC composition dynamics
at 4-fold degenerate sites stems from the per gene GC content
distribution, which appears remarkably different between the
chicken and passerine genomes (Figure 6). However, as the GC
content distributions for the two passerine species appear very
similar, the GC dynamics are potentially more subtle and difficult
to infer. Here, to infer the GC content dynamics since the split
of great tit lineage from the zebra finch lineage, we applied
two kmeans clustering approaches to bin genes based on their
contemporary GC content. First, we adopted the approach of
Boĺivar et al. (2016) of equal sized bins and applied a kmeans
clustering on the GC content at the terminal branch (i.e., GC
content of the great tit genes) per gene with varying cluster size.
Second, we used a multidimensional kmeans algorithm (kmeans
multidim) that takes the GC content per gene of all three species
into account. The differences between these two approaches are
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FIGURE 5 | Comparison of a stationary (GTR) vs. nonstationary model (GTR-NH) estimated from simulated data with varying sequence length and their 95% CIs. (A)

When the transition matrix is symmetric (B = 0). (B) When GC fixation bias is moderate (B = 20) and (C) When fixation bias is strong (B=59).

FIGURE 6 | Distribution of GC4 content per gene for the three bird species under consideration. Shown are the kernel density estimations of the histograms as

implemented in the python package seaborn.kdeplot.

illustrated in Figure 7 for an arbitrary cluster size of 20. In
particular the cluster assignment for the chicken sequences differs
between these two approaches.

We then applied the GTR-NH model to clustering outcomes
and identified the best clustering outcome by comparing the
AIC of the combined GTR-NH results. We find that the
multidimensional clustering gives a much better fit to the
data than clustering according to terminal GC content only
(Figure 8A). We determine an optimal cluster size of 36 for the
one-dimensional clustering and 187 for the multidimensional
binning, but note that these numbers may vary because kmeans
is implemented as a heuristic clustering approach. Results are
qualitatively very similar across different cluster runs.

To investigate how the two clustering strategies translate into
capturing GC fixation bias we estimated branch lengths with the
GTR and GTR-NH models to each cluster of the two optimal
clusterings (kmeans and kmeans multidim). We then compared
mean branch length differences between the GTR-NH and GTR
models relative to the GC content at equilibrium obtained from

the GTR-NH model for the focal branch (Figure 8B). For the
one dimensional binning we observed very little discrepancy
between branch length estimates (Figure 8B) at various levels
of GC fixation bias. According to our simulations this may be
observed when the extent of fixation bias is weak or when there
is strong spatial heterogeneity in the extent of fixation bias. In
contrary, for the multidimensional binning we see a discrepancy
between branch length estimates for extreme GC and AT fixation
biases, suggesting that both types of fixation biases occur in the
genome, althoughmore genes are prone to a GC fixation bias.We
do not observe any functional enrichments of genes with either
extreme GC fixation bias (GC*<0.2 and GC*>0.8, respectively)
using a gene ontology enrichment analysis.

4. DISCUSSION

Here we have shown using simulations that taking non-stationary
GC content into account when estimating branch lengths it
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FIGURE 7 | Boxplots of GC content per cluster for each species after applying a kmeans clustering approach using a pre-defined cluster number of 20 for

(A) multidimensional kmeans clustering and (B) one-dimensional clustering.

is necessary and possible to capture the impact of nucleotide
fixation bias. We also note that in our simulations fixation bias
leads to a discrepancy in the branch length estimates between
a stationary and non-stationary model, as previously reported
(Matsumoto et al., 2015), and that this effect appears to be
linear to the amount of fixation bias. We illustrate two major
limitations of the non-stationary model applied here. First, it
tends to be dependent on the GC dynamics at non-focal branches
and secondly, it needs more data in comparison to a stationary
model. Bearing these limitations in mind, we have applied the
non-stationary model to 4-fold degenerate sites derived from

gene alignments from great tit, zebra finch and chicken. Based
on a Maximum-Likelihood approach we find that fixation bias
can be potentially accounted for when subdividing the dataset
into smaller bins. This yields better model fits according to
AIC and a few bins are already sufficient to improve the fits
substantially. This rough binningmight suggest that there is large
scale variation in the extent of GC fixation bias, but here we
argue that it could also be simply driven by variation in the base
composition at the ancestral or terminal node across loci.

To investigate whether there is truly variation in the fixation
bias, we apply two different binning strategies to estimate fixation
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FIGURE 8 | K-means clustering on GC content per gene. Clustering was conducted using a k-means implementation according to great tit GC content (kmeans) and

according to terminal GC contents of the three species (kmeans multidim). (A) AIC of the GTR-NH model under varying cluster numbers. The optimal cluster numbers

derived from the GTR-NH model fit are indicated with a dotted line. (B) Branch length estimate difference and equilibrium GC for the optimal clusterings (kmeans and

kmeans multidim).

bias separately for smaller sets of genes which allows to include
information on very short genes. We show that to accurately
capture the role of fixation bias the method of clustering is
crucial. A simpler one-dimensional binning according to current
GC content for the terminal branch under consideration leads
to a relatively low cluster number (i.e., 36 clusters). Moreover,
for the estimated bins we fail to capture a signal of fixation
bias based on branch length estimates that we observe in our
simulations. This is also observed for larger cluster numbers
using this clustering strategy (results not shown). Under such a
simple clustering method, we find an almost perfect correlation
between current GC content and estimated equilibrium GC
content (Kendall τ = 0.99, P<<0.05) as observed by others
(Weber et al., 2014). In the light of our simulations this suggests
that it is difficult to capture true GC fixation bias across the
genome when taking contemporary GC content of a single
species as the only clustering variable into account.

We observe variation in the equilibrium GC content and
branch length estimates when we use a multidimensional
binning. In concordance with our simulations we observe an
increased difference in the branch length estimates between GTR
and GTR-NH model. Secondly, also with moderate equilibrium
GC content (0.2<GC*<0.8) we observe differences in the branch
length estimates between the two models. Our simulations
suggests that little sequence data may lead to GTR-NH model
to underestimate the true branch length. To check whether
bins with little sequence data are driving the observed pattern,
we correlated total sequence length per bin with current and
equilibrium GC content as well as differences in branch lengths
estimates. We do not find any significant correlation of sequence
length and GC content and equilibrium GC content (Kendall

τ = -0.0311, P = 0.53 and τ = -0.025, P = 0.6, respectively),
but do find a significant correlation between sequence length
and branch length estimate differences between the two models
(Kendall τ = -0.26, P = 1.3×10−7). If we remove the top 20%
of bins with extreme branch length difference, this relationship
remains significant (Kendall τ = -0.22, P=4.1×10−5) - suggesting
that the pattern is not driven by extreme outliers.We also observe
a significant correlation between contemporary GC content and
equilibrium GC (Kendall τ = 0.48, P<<0.05), which is less
pronounced than in the one-dimensional binning. It is however
possible that our method misses fine scale variation in GC
fixation bias, which we are unable to address in the model used
due to lack of data. We also do not consider within gene variation
in GC fixation bias as shown for plants (Glémin et al., 2014),
although this aspect could be captured by modification to the
binning strategy.

We have considered a model of spatial heterogeneity in GC
dynamics, however, we have not taken into account temporal
variation in the GC dynamics across the genome. Temporal
GC dynamics are probably less likely to occur in comparison
to mammalian genomes as birds lack the recombination
hotspot protein PRDM9 (Singhal et al., 2015). However,
unlike interchromosomal rearrangements intrachromosomal
rearrangements are not uncommon in bird genomes (Romanov
et al., 2014), suggesting that sudden changes in the recombination
environment and hence the rate of fixation biases are possible.
Evidence supporting this notion stems from the observation
in our analysis that contemporary GC content is much
less correlated with fixation bias when binning data with a
multidimensional kmeans approach. It is also unclear whether
we underestimate the amount of extreme GC bias, as we
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might miss genes of extreme GC composition in our dataset–
a relatively large number of genes are not annotated in many
bird genomes (Lovell et al., 2014; Hron et al., 2015; Botero-
Castro et al., 2017), and this is likely to be an artifact of technical
difficulties to sequence genomic reads with extreme nucleotide
composition.

In conclusion, we have shown using simulations and real data
analysis that care has to be taken when estimating branch length
under the impact of fixation bias. As noted previously tends
GC fixation bias lead to an overestimation of the true rate of
fixation. We note that under moderate fixation bias this effect
is relatively small. The suggested binning strategy may be useful
when applying tests of non-neutral evolution across the genome,
in particular in cases of variation in the GC dynamics across
exons (Scornavacca and Galtier, 2016).
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