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Many pathogens rely on the mobility of their hosts for dispersal. In order to understand

and predict how a disease can rapidly sweep across entire continents, illuminating the

contributions of host movements to disease spread is pivotal. While elegant proposals

have been made to elucidate the spread of human infectious diseases, the direct

observation of long-distance dispersal events of animal pathogens is challenging.

Pathogens like avian influenza A viruses, causing only short disease in their animal hosts,

have proven exceptionally hard to study. Here, we integrate comprehensive data on

population and disease dynamics for low-pathogenic avian influenza viruses in one of

their main hosts, the mallard, with a novel movement model trained from empirical,

high-resolution tracks of mallard migrations. This allowed us to simulate individual mallard

migrations from a key stopover site in the Baltic Sea for the entire population and link

these movements to infection simulations. Using this novel approach, we were able to

estimate the dispersal of low-pathogenic avian influenza viruses by migrating mallards

throughout several autumn migratory seasons and predicted areas that are at risk of

importing these viruses. We found that mallards are competent vectors and on average

dispersed viruses over distances of 160 km in just 3 h. Surprisingly, our simulations

suggest that such dispersal events are rare even throughout the entire autumn migratory

season. Our approach directly combines simulated population-level movements with

local infection dynamics and offers a potential converging point for movement and

disease ecology.

Keywords: avian influenza virus, low pathogenic, migration, Ottenby, population-level, simulation, virus dispersal,

wild bird

1. INTRODUCTION

The ability of a disease to spread and persist in a population of susceptible hosts depends to a
large extent on the interactions of infectious hosts with its conspecifics (e.g., Anderson and May,
1979; May and Anderson, 1979). In wild animals, the social system can predict the probability of
a pathogen’s success in establishing an outbreak, and the course that it takes (Sah et al., 2017).
With increasing host immunity, however, the continued fate of the pathogen depends on its ability
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to gain access to new, susceptible populations, especially for “hit-
and-run” pathogens (Hilleman, 2004). As most pathogens have
only restricted mobility, they have to rely on their hosts for
dispersal opportunities. Most free-living animal populations are
highly mobile and, consequently, the host’s movement patterns
can be causative to the spread of a disease and shape the
population structure of the pathogen (Altizer et al., 2011; Bauer
and Hoye, 2014). Understanding and quantifying the movements
undertaken by individuals of a host species is thus key to
elucidating how a disease can permeate a group of susceptible
individuals and overcome extinction risk through dispersal to
new host populations (Daversa et al., 2017). Especially for
pathogens that endanger wild populations (e.g., Blehert et al.,
2009; Kilpatrick et al., 2010) or readily infect livestock or humans,
illuminating pathogen dispersal is pivotal to understanding the
dynamics of a disease and could ultimately lead to tools allowing
to manage further spread.

Throughout the repeated infection of hosts, the replication,
and transmission to the next susceptible individual, pathogens
undergo genetic change and so the dispersal history leaves a trace
in a pathogen’s genome. Phylogenetic inference techniques can
utilize this information to re-trace pathogen movement through
space (Biek et al., 2007) or transmission and establishment
across species borders (Streicker et al., 2010). In reverse, it is
possible to infer the spread of a disease from host movements
and put forward quantitative predictions for pathogen migration
that can be evaluated using sequence data. This was elegantly
demonstrated by Brockmann and Helbing (2013), who used a
human migration network from air passenger traffic to predict
the spread of human infectious diseases across the globe. Not
only could they accurately predict the spatio-temporal patterns
of a pandemic, but also demonstrated the possibility to identify
its geographic source. Phylogeographic inference verified that the
predictions of Brockmann and Helbing (2013) also reflect the
actual dispersal history of the human influenza H3N2 (Lemey
et al., 2014).

Thus, it is not surprising that the development of similar
predictors from animal movement data have become a focus
of interest (Allen and Singh, 2016; Jacoby and Freeman, 2016;
Dougherty et al., 2018). Comprehensive data for the movements
of wild animal hosts, however, are not as easily attainable
as transport data for humans or livestock (see Knight et al.,
2018). The best method is to use remote animal tracking
(e.g., Hussey et al., 2015; Kays et al., 2015), which allows
linking of animal movements with phylogeographic inference
of pathogens. This method has been used to investigate the
potential of migrating waterfowl to spread highly pathogenic
avian influenza viruses in Asia (Tian et al., 2015). However,
individual variation in movement strategies can be substantial,
and it is unclear how many individuals are needed to represent
an entire population. Similarly, immune parameters can differ
substantially between species and individuals, and not every
individual will be equally likely to transport an infectious
agent over long distances. Considering that the dispersal of
a pathogen and the establishment of an outbreak at a new
location might be a rare event, being able to estimate population-
level variation might be crucial to explain pathogen dispersal.

Nevertheless, despite recent advances, large-scale tracking efforts
are still costly, and the collection of animal movement data
on a population level remains challenging. Thus, an important
question in animal movement ecology is whether it is possible
to infer the movements of unobserved individuals using data
from few, well-known individuals. Using waterfowl migration
data, van Toor et al. (2018) showed that a conditional movement
model trained from empirical tracking data in combination
with environmental information can be used to establish such
quantitative null models for directed movements (Gotelli and
Graves, 1996). Such a conditional movement model (e.g.,
empirical RandomTrack Generator, Technitis et al., 2016) allows
for the simulation movements of unobserved individuals from
empirical distributions, and can be adapted to accommodate
several modes of movement. Through linking disease dynamics
data to such simulations, it should thus be possible to establish
a quantitative prediction for pathogen dispersal via animal
movement. These predictions could be tested against actual
pathogen movement as inferred from phylogeographic analyses
in a similar way as demonstrated by Brockmann and Helbing
(2013) and Lemey et al. (2014).

Here, we combine a movement model with host population
dynamics and the infection dynamics of a common pathogen
to predict virus dispersal via the migratory movements of a
free-living host. The basis for this study is provided by a long-
term monitoring and sampling scheme of waterfowl at the
Ottenby Bird Observatory in South-East Sweden. The study
area is an important stopover location for migratory mallards
(Anas platyrhynchos, L. 1758), one of the main hosts for low-
pathogenic avian influenza viruses (AIV, Webster et al., 1992;
Olsen et al., 2006). Through repeated capture and sampling of
birds, the scheme has provided a very detailed dataset of viral
infections in birds (e.g., see Wallensten et al., 2007; Latorre-
Margalef et al., 2009; Gunnarsson et al., 2012) and has been
used to investigate the dynamics of different LPAIV subtypes
in consecutive years (Latorre-Margalef et al., 2013; Wille et al.,
2017), the epidemiological properties of infection (Avril et al.,
2016), and the costs of hosts of being infected with LPAIV
(Latorre-Margalef et al., 2009; Bengtsson et al., 2016). In addition,
the capture-mark-recapture data collected for mallards have been
used to estimate population size and emigration probabilities
over entire autumn migration seasons (Avril et al., 2016; Wu
et al., 2018) to establish patterns of migratory movements (e.g.,
Gunnarsson et al., 2012). Avril et al. (2016) could also show that
the probability of mallards to become infected differs throughout
autumn and between adult and juvenile birds, whereas recovery
rate did not differ between age classes. Similarly, Avril et al. (2016)
showed that infection status did not affect individual decisions
about whether to migrate, and consequently birds infected with
LPAIV are just as likely tomigrate as healthy birds, making this an
ideal system for studying virus dispersal by migrating mallards.

These previous results have established a comprehensive study
system where much of the ecology of the host and the dynamics
of LPAIV infections are relatively well known. Here, we add
the migratory trajectories of mallards caught at Ottenby and
train an empirical movement model from the tracking data
that enables us to simulate migratory movements of unobserved
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individuals. Using this model and the previously established
estimates for day-to-day population size, emigration rates, and
the general migratory patterns established from ring recoveries
(Gunnarsson et al., 2012), we simulate the migrations of the
entire population of staging mallards throughout the autumn
migratory seasons 2004–2008. Combining the spatio-temporal
predictions of migratory movements with individual-based
infection parameters (Avril et al., 2016), we use a susceptible-
infected-recovered (SIR) model on the entire population to
quantitatively estimate the dispersal of LPAIV through migrating
mallards (Figure 1).

2. MATERIAL AND METHODS

2.1. Study System and Long-Term Trapping
of Mallards at Ottenby
Our study site was the Ottenby Bird Observatory (56.197◦ N,
16.399◦ E) at the southern tip of Öland, a southern Swedish island
located in the Baltic Sea. The area is used by mallards mostly
as a staging area during migration, especially during autumn
migration after leaving their proposed breeding grounds in
Finland, the Baltic States, and northwestern Russia (Gunnarsson
et al., 2012). Individuals usually start arriving during September,
with numbers peaking between mid-October and November.
Mallards ringed at Ottenby mostly leave the site after a staging
period and mostly spend their winter along the South-West
shoreline of the Baltic Sea, but can continue their migration all
the way to the Netherlands and France (as evidenced from ring
recoveries, see also Gunnarsson et al., 2012).

At the Ottenby Bird Observatory, wild staging mallards
have been captured and marked with rings from 1961 until
1980, and continuously since 2002. Birds are trapped in a
large, baited swim-in trap containing a separate compartment
housing domestic ducks to lure in wild mallards staging in
the bay. Most of the ringing activity occurs during autumn
migration when population sizes are highest (August through
mid-December). During this period, the trap is visited daily
and mallards are captured, measured, individually marked,
and sampled for infections with influenza A viruses (Latorre-
Margalef et al., 2009). Estimates of population size, emigration
probability, infection as well as recovery probability have all been
estimated from this population during autumn migration (Avril
et al., 2016; Wu et al., 2018). This was also where ducks were
captured for equipping with GPS/GSM-transmitters to collect the
data required for the migration simulation model.

2.2. Mallard Flight Simulator
2.2.1. Characterizing Mallard Migrations From

Tracking Data
Frommid-October to the end of November in 2017, we equipped
34 mallards (25 males, 9 females) with solar-powered GPS/GSM-
transmitters (OrniTrack-E25, Ornitela UAB, Vilnius, Lithuania)
using teflon-tape harnesses (see Table S1). These tags weigh 25
grams and have an elevated solar panel to prevent shading by
the scapular feathers. On average, females weighed 1004.4± 98.8
grams (mean ± s.d.) and males weighed 1271.2 ± 87.8 grams.
Consequently, the weight of the tag corresponded to 2.5 ± 0.2%

(mean ± s.d.) and 2.0 ± 0.1% of the body weight of females and
males, respectively. The tags were programmed to record bursts
of 15 GPS-locations with 1Hz frequency every hour, and every 2
h when battery level dropped below 75%. Below a battery level of
50%, the tags switched to record single GPS-locations instead of
bursts. The permission to capture mallards and equip them with
transmitters was granted by the Swedish Animal Research Ethics
board (permit number ID 834). The tracking data collected for
this study are available on the Movebank Data Repository under
DOI 10.5441/001/1.3fv21n7m (van Toor et al., 2018). During
the period from October 18, 2018 to December 04, 2018, the
tags recorded a total of 100,343 locations, including 6,434 bursts
of high-frequency GPS-locations providing detailed information
about mallard movements. Displacement of individuals ranged
from 12.92 km to 321.1 km excluding any movements beyond
the first stopover (mean± s.d.: 99.59± 106.48 km).

All subsequent calculations and analyses were performed
using the R environment (R Core Team, 2018). More detail and
pseudocode are provided in the Supplementary Material.

We identified migratory events from the tracking data using
hidden Markov models (R-package moveHMM v1.5, Michelot
et al., 2016). As these models expect regularly sampled data, we
only kept the first location of each GPS-burst, and included the
missed fixes resulting from a reduction in sampling rate to once
every 2 h. We explored multiple combinations for the numbers
of states (2, 3, and 4 states), the distributions for step lengths
(Gamma, Weibull, and Log-normal distribution) and turning
angles (von Mises, wrapped Cauchy, or no distribution). We
found that a three-state model with a Weibull distribution for
step lengths and ignoring turning angles performed best. Note
that final selection is ultimately based on agreement between
the hypothesized and empirical distributions and a sensitivity
analysis. The first state was characterized by very small step
lengths (scale: β = 0.025 km) representing very short distance
movements, whereas the second represented slightly longer
movements (scale: β = 0.517 km). The third state showed the long
step lengths on a scale of β = 46.794 km that we considered to be
migratory movements.

We used the classification from the hidden Markov model
(HMM) to inform the full trajectories (including the GPS-
bursts) about the corresponding state identity.We then identified
consecutive GPS-bursts classified as the third state as single
migratory events (n = 84 GPS-bursts, and n = 1,102 locations
in total). In total, we identified 23 migratory legs that were
performed by 14 individuals (12 male individuals, and 2 females).
The average displacement between the start and destination of
these migratory movements was 125.4± 106.3 km (mean± s.d.).

2.2.2. Establishing the Movement Model
We used the empirical Random Trajectory Generator (eRTG,
Technitis et al., 2016) to simulate mallard migrations between
fixed start- and end-locations. This movement model is
conditional, i.e., it simulates the movement between two
locations with a fixed number of steps based on a dynamic
drift derived from a step-wise joint probability surface. The
process is attracted to the destination location and the strength
of attraction is modulated by the time left to reach the target.
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FIGURE 1 | Conceptual flowchart showing how we combined tracking data, stopover model, ring recovery data and infection dynamics to predict the dispersal of

LPAIV by migrating mallards. Tracking data were used to derive both migration characteristics like migration duration and distance, as well as the Mallard Flight

Simulator (MFS). The implementation of the susceptible-infection-recovery model (SIR) is detailed in Figure 2.

Thus, the eRTG is similar to a biased correlated random
walk and can be best described as a mean-reverting Ornstein-
Uhlenbeck process (Smouse et al., 2010, but also see Hooten
et al., 2017 for a thorough overview of animal movement
models). One main advantage of the eRTG is that it exclusively
utilizes empirical distributions from the tracking data and so the
trajectories it simulates retain the geometric characteristics of the
empirical tracking data (Technitis et al., 2016). Consequently,
if a destination cannot be reached within the realms of the
empirical distributions derived from the movement data, the
simulation fails rather than forcing the last step toward the
destination. To inform our the eRTG, subsequently termed
Mallard Flight Simulator or MFS, we calculated the required
estimates using the 15-s GPS bursts of all migratory events
identified from the tracking data. We computed step lengths

and turning angles between the subsequent locations in each of
the bursts. Additionally, we calculated the covariance between
step lengths and turning angles, as well as the autocorrelation
of both step lengths and turning angles at a lag of one location
(the difference in step length and turning angles at a lag of one
location). We decided to use the high-frequency GPS data for
three reasons, namely (i) mallard migrations from Ottenby tend
to be very short (2–3 h) and the underlying sampling frequency
of GPS bursts (1 h for high battery levels, and 2 h for battery levels
< 75%) would provide only a very limited sample size, (ii) GPS-
bursts tend to provide related GPS-locations with high accuracy
(Mills et al., 2006) and thus would produce better estimates of
step lengths and turning angles. Simulating trajectories of flying
or migrating mallards with a sampling rate of 1 s is, however,
computationally demanding and thus we decided to thin theMFS
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for a 300 s (or 5 min) interval. To maintain realistic distributions
of step length and turning angle, as well as their autocorrelation
and covariance, we simulated a long unconditional trajectory
with 1,000,000 steps using the sampling interval of 1 s. We
subsequently thinned this long simulated trajectory to a sampling
rate of 300 s and re-calculated the required estimates like step
lengths and turning angles (see above) at the new, reduced
sampling rate (see Supplementary Material for a sensitivity
analysis). We used these 3,332 new estimates to inform ourMFS.

2.3. Simulation of Mallard Migrations and
Virus Dispersal
2.3.1. Ring Recovery Data for Mallards
We used recoveries from mallards ringed at the study site to
identify areas where individuals spend the wintering period.
The data contained information about the date of ringing, date
and location of recovery, age and sex of 5,122 individuals in
total, some of which have been recaptured more than once. We
filtered the recoveries according to three rules, retaining only
recoveries that were: (a) further than 50 km away from the
original ringing site at Ottenby (to only retain migratory events),
(b) from individuals that were originally ringed in the regular
trapping period between mid-August and mid-December (to
only retain fall migration events), and (c) from individuals that
were marked and recovered during the autumnmigration season
(to retain recoveries after autumnmigration). From these filtered
mallard ring recoveries, containing 1,665 recovery locations,
we computed a sampling layer of realistic wintering locations
for mallard migration simulations. For each of the remaining
entries in the data, we calculated the geographic distance and
azimuth from the site of ringing (Ottenby) to the site of recovery.
Subsequently, we calculated a 2D kernel density estimate for all
distances and azimuths, using bin widths of 50 km for distance
from Ottenby and 1◦ for azimuth (see Supplementary Material

for additional details and a sensitivity analysis). We mapped
the estimated densities for ring recoveries into geographical
space using an azimuthal equidistant projection centered on
Ottenby (see Figure S1). The resulting gridded map is a
purposefully coarse representation of ring recoveries to be used
for determining migration destinations.

2.3.2. Simulating the Autumn Migration of Mallards

Departing From Ottenby
We simulated mallard migrations using the MFS with the
following procedure: First, we randomly sampled a cell from
the gridded ring recovery map weighted by the density values
associated with each cell, and subsequently selected a random
spatial location from the cell which would become the destination
location for the simulated migration. We then sampled an
average migration speed for the individual from a 2D kernel
density of step lengths and turning angles, again weighted by
the respective density. We used this average migration speed
to determine the number of available steps for the simulation
by dividing the geographic distance between Ottenby and the
destination by the average migration speed (rounding up to
the next higher number of steps). Finally, we initiated the MFS
between Ottenby and the destination locations. In total, we

repeated this process 250,000 times, which resulted in 108,379
trajectories that successfully reached their destination locations.
These trajectories formed the basis for the subsequent simulation
of virus dispersal from Ottenby.

2.3.3. Identification of Stopover Locations for the

Simulated Migrations
The migratory behavior of mallards consists of (several) fast,
directed, long-distance movements interspersed with extended
staging periods at suitable stopover locations. For this study,
we were exclusively interested in the migratory movements of
mallards between Ottenby and the subsequent stopover location,
representing a single migratory leg. Thus, we designed the MFS
as a single-state movement model covering the migratory state
that we identified in the HMM.However, due to extended staging
periods characteristic of waterbird migrations, it is expected that
LPAIV will only be dispersed to the first staging location post
infection. Consequently, we included a post-hoc simulation of
the first stopover decision of individuals after leaving Ottenby.
We determined the first stopover locations using three different
criteria: the along-track distance of migratory events (γ ), the
duration of migratory events (τ ), and the distance to land.
We calculated both the along-track distance and duration of
migratory events from the classified tracking data, revealing that
the average mallard covered a total distance of 134 ± 106 km
(mean ± s.d.) in 3 ± 2 h (though our estimates of migratory
duration are likely overestimating actual migratory duration due
to the sampling rates of the tags). Subsequently, we tried to
estimate and fit distribution functions to both γempirical and
τempirical. For γempirical, we fit Weibull, Cauchy, and Log-normal
distribution functions to γempirical (in kilometers) using the R-
packageMASS (version 7.3-47), and calculated the 1AIC to help
heuristically determine the distribution that best represented the
observed migrations. We used the same approach for estimating
the distribution of τempirical (in hours), and considered a Gamma,
exponential, Log-normal, and Weibull distribution. We found
that γempirical was best described by a Gamma distribution with a
shape of k = 0.8 and scale of θ = 166.9 km, whereas τempirical was
best described by a Weibull distribution with a shape of k = 1.4
and scale of θ = 3.3 h, with the final determination based on the
agreement between the empirical and hypothesized distributions
and a sensitivity analysis. We computed cumulative distribution
functions for both γempirical and τempirical using the respective
parameters.

Subsequently, we calculated the cumulative migratory
distance (in kilometers) and duration (in hours) for every
location of each simulated trajectory. Then, for every subsequent
location j, we determined the probability that cumulative
migratory distance and migratory duration at location j were
part of the cumulative distribution functions of γempirical and
τempirical. We used these probabilities to perform two binomial
experiments with two potential outcomes: the continuation of
migration, or the suspending of migration in favor of a staging
period. Additionally, we used an administrative boundaries
database (Global Administrative Areas v2.8) re-projected to the
Ottenby-centered azimuthal equidistant projection to include
the ducks’ positions in relation to the coastline as part of the
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decisions about staging. To avoid artifacts and to account for
ducks staging just off the coast, we expanded the coastline with a
buffer of 1,000 meters. We then used a spatial overlay approach
(R-package sp, version 1.2.7) to test for each location whether
it was within 1,000 m of a coastline. For the first location of a
simulated trajectory for which all three conditions were true, i.e.,
suspending migration under both the migratory distance and
migratory duration criterion, as well as being within 1,000m
of the coast, the remaining trajectory was discarded prior
to subsequent analyses. All retained locations of a simulated
trajectory were considered to represent the potential migratory
movement of a mallard between Ottenby and its next stopover
location, between which the dispersal of low-pathogenic
Influenza A viruses from Ottenby could occur.

2.3.4. Simulation of Infections With Low-Pathogenic

Influenza A Viruses
Estimates of population size and the probability of individuals
to emigrate from the population at any given day were available
to us from a stopover model (Wu et al., 2018). Using the daily
trapping data fromOttenby during the trapping seasons of 2004–
2011, the stopover-model estimated the size of the population
staging at Ottenby, N, on a daily basis, and the probability of
each individual leaving the population, ζ , from 1 day to the
next. Both the population size N and emigration probability
ζ were estimated for three different age classes: juvenile birds,
adult birds, and birds which could not be aged (unaged birds).
Specifically, the estimates available to us were derived from a
Bayesian semiparametric Jolly-Seber Model with time-varying
capture, emigration, and entrance probabilities. For details about
a similar model ignoring age classes for the trapping season 2011,
please see Wu et al. (2018). Similarly, results from a different
capture-mark-recapture model including the infection status of
individuals with LPAIV were available from a previous study
(Avril et al., 2016). This study provided us with estimates of
the probability for each individual to become infected, λ, and
to clear its infection, ϕ, for consecutive 2-day intervals for the
trapping seasons from 2002-2008. We assumed that both the
infection probability λ and the recovery probability ϕ remained
constant during any given 2-day interval. Again, the probability
for individuals to be become infected was estimated separately
for juvenile, adult, and unaged birds. The probability to clear
infections did not differ between age classes (Avril et al., 2016).

Estimates for both population size and emigration probability
as well as infection and recovery probabilities were available
for the autumn migratory seasons 2004–2008, so we simulated
the dispersal of LPAIV for these five seasons. To estimate virus
dispersal, we used a stochastic SIR model that we extended by
an additional step that allowed individuals to emigrate from
the staging population N (see Figure 2). All parameters [N(t),
ζ (t), λ(t), and ϕ(t)] were directly sampled from the distributions
returned from the model to propagate the uncertainty in the
parameter estimates into the simulations of virus dispersal.
During every trapping day t, an individual n ∈ N(t) could
decide to leave the population with the emigration probability
ζ (t). For every emigrating individual nemi, we randomly sampled
a migratory trajectory from the set of simulated trajectories. We

then performed a binomial experiment with two outcomes: the
individual could become infected before emigrating with the
probability λ(t), or not. For every infected migrant, we then
calculated the duration of its migration to the next stopover
location, and performed a second binomial experiment to test
whether the individual would clear its infection before arrival
at the stopover location. The probability of clearing infections
was estimated for 2-day intervals, i.e., resembling the probability
of an infected individual to clear its infection over a duration
of 2 days. As the duration of migrations was well below 48 h,
we assumed that during each migratory event, the probability of
clearing an infection would be linearly proportional to the time
since infection. Consequently, we calculated the time-adjusted
probability of clearing an infection ϕ′(t), ranging from 0 for
migrations with a duration of 0 h and ϕ(t) for a migration of 2
days, as

ϕ′(t) =
ϕ(t)

τmig
, (1)

where ϕ(t) represents the recovery probability for the respective
day of the trapping season, and τmig the duration of themigration
in days. Every individual arriving at its stopover location while
still being infected was considered a virus dispersal event. We
replicated the process described above for each study year and
day for a total of 10,000 times, which allowed us to calculate the
uncertainty of our predictions of virus dispersal.

2.4. Analysis
2.4.1. Dispersal Distances and Classification of

High-Risk Areas
We determined migratory distances for the migration of
uninfected, recovered, and infected individuals (actual virus
dispersal events) by calculating the geographic distance between
Ottenby and the respective stopover locations. We repeated
this for all days during the trapping seasons of 2004–2008 for
each of the 10,000 replicates of the process described above.
We then determined areas of high risk of importing LPAIV
via migrating mallards from Ottenby by combining the virus
dispersal locations of all years, age classes, and day.We computed
a hexagonal grid map around Ottenby with a maximum distance
of 600 km away from Ottenby (diameter of hexagons: 20km),
and used a spatial overlay approach (R-package sp, version
1.2.7) to determine the density of virus dispersal locations for
each hexagon, excluding hexagons containing no virus dispersal
locations. We classified each hexagon according to the density of
dispersal events using four categories: low risk (density below the
50%-quantile), medium risk (density between the 50- and 75%-
quantile), high risk (density between the 75- and 90%-quantile),
and finally highest risk (density above the 90%-quantile of all
observed densities).

We used the tracking data to perform a simple verification
of the risk map classification. To do so, we calculated how
often the tracked mallards staged in areas with low, medium,
high, and highest risked, and compared these observations with
expectations derived from a randomization approach. We first
annotated the stopover locations of empirical trajectories of the
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FIGURE 2 | Flowchart of the integrated SIR and emigration simulation. We repeated this process for each individual mallard considered to be a part of the staging

population N at day t of the respective trapping seasons.

tracked migratory mallards with the risk classification of the
corresponding hexagon (the hexagon containing the respective
stopover location), and calculated the proportion of individuals
staging in low, medium, high, and highest risk areas. We
had a total of 30 individuals for this analysis, and considered
both individuals with their last location at least 10 km from
Ottenby (n10 = 30) as well as individuals being at least 30
km from Ottenby (n30 = 16). As hexagon diameter was 20
km, we thereby excluded the hexagon containing the study
site (for 10 km) and also the hexagons directly surrounding
the study site (for 30 km). We then used a simple resampling
approach to derive distributions of expected proportions, i.e.,
the proportion of ducks staging in the different risk categories
if individuals distributed randomly in space. To do so, we
randomly selected n10 = 30 and n30 = 16 hexagons and
calculated the proportion for the different categories. We
repeated this process 10,000 times in order to assess how
well the risk map represented actual mallard movements and
migrations.

2.4.2. Estimating the Number of Virus Dispersal

Events Throughout Autumn Migration Seasons
We estimated the number of virus dispersal events throughout
the season using the results from the 10,000 replicates of infection
simulations. For each year, day of the migratory season, age class,
and replicate, we counted the number of uninfected, infected,
and recovered migrants. We then calculated the 25, 50, and 75%
quantiles for these numbers across all 10,000 replicates.

3. RESULTS

3.1. Dispersal of Mallards and LPAIV From
Ottenby
Our simulations resulted in a total of 108,379 trajectories
of potential mallard migrations. These simulations assumed
continuous flight between the starting location (Ottenby) and the
final destination sampled from the ring recovery density map.
Out of these 108,379 trajectories, only 0.37% ended up at this final
location without additional staging periods at stopover locations.
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Here, we only analyzed the initial leg of migration covering the
distance between Ottenby and the subsequent stopover location
which we identified using the process described above. After
restricting the trajectories to the initial migratory leg, we found
that mallards on average are expected to migrate to locations
167 km away from Ottenby (median geographic distance for all
simulated trajectories, 25- and 75%-quantiles: [130, 300] km).
The median duration of these migratory legs was 3.08 h (25-
and 75%-quantiles: [2.58, 5.5] h), suggesting an average speed
of about 15 m/s, or 54.5 km/h (compared to a median ground
speed of 55 km/h for the tracked individuals observed during
flight). Both the distance and duration of these initial migratory
legs were well within the range of the distributions derived from
the empirical tracking data (see Figures S2, S3), though long

migratory distances of the simulated trajectories occurred slightly
more often than in the Gamma distribution derived formigratory
distances (Figure S2).

We simulated individual infections during migrations with
simple SIR-models (Figure 2), and calculated dispersal distances
for individuals arriving at the stopover location while being
infected as an indicator for virus dispersal distances. We found
that virus dispersal distances were slightly lower than mallard
dispersal distances, with an overall median for all years of 160.3
km (25- and 75%-quantiles: [129.5, 296.8]). Despite different
values of recovery probability for the years 2004–2008, we
found that virus dispersal distances were similar across years,
with a median of 159.3 km [129.4, 296.5] for 2004, 161.9
km [129.7, 297.2] for 2005, 157.4 km [129.3, 296.0] for 2006,

FIGURE 3 | Migration distances of mallards migrating from Ottenby, and the dispersal distances of LPAIV. The density curves show the distribution of migratory

distances of 10,000 randomly sampled migratory trajectories on a squareroot scale. The point ranges display the median and the 25- and 75%-quantiles, respectively.

Notice the presence of multiple peaks in the distributions, which are a result of the shape of the lower Baltic and its coastlines. Density curves were produced using

ggplot2 (Wickham, 2016) with default settings.
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159.8 km [129.5, 296.7] for 2007, and 163.8 km [129.8, 297.7]
for 2008.

We have summarized these results in Figure 3, which also
shows that there is a distinct non-normal distribution for
dispersal distances of both mallards and LPAIV. This pattern
is a consequence of stopover locations of mallards frequently
occurring at the shorelines of the Baltic Sea, and thus a
consequence of the geographical features of the study site.

3.2. High-Risk Areas for LPAIV From
Ottenby
In total, 295 hexagons with a 20 km diameter were the destination
for at least one infected simulated mallard migration resembling
a virus dispersal event. The area covered by these hexagons
stretches across most of the shoreline of the Baltic Sea, reaching
from the German coast in the Southwest up to the islands of
Åland in the Northeast (see Figure 4). Out of this total of 295
hexagons, 147 were classified as low risk areas for importing
LPAIV by migrating mallards, 74 were classified as medium risk,
and 44 and 30 hexagons were classified as high risk and highest

risk, respectively. The areas of highest risk were concentrated
around the island of Öland close to the study site, Blekinge
County and the Eastern coast of Skåne County as well as the
island of Gotland (all Sweden). Further areas of highest risk are
expected to be the island of Bornholm, Denmark, parts of the
Northwestern shoreline of Poland, large parts of the Lithuanian
shore, and the area around the island of Rügen, Germany.

We then assessed the risk classification of stopover locations
of the tracked ducks that were at least 10 and 30 km away from
Ottenby using the randomization approach described in section
2.4.1 to generate empirical distributions of randomly chosen
hexagons. Ducks were found in hexagons classified as highest
risk more often than expected by chance, and were found in
hexagons classified as low risk less often than expected by chance
(see Figure 5 and Figure S4).

3.3. Virus Dispersal Throughout Autumn
Migration
The total numbers of virus dispersal events fromOttenby differed
by age and year (see Table 1). Our simulations suggest that

FIGURE 4 | This map shows the risk of importing LPAIV by mallards from Ottenby during autumn migration based on simulated virus dispersal events. Risk was

classified as low (density of virus dispersal events below the 50% quantile), medium (between 50 and 75%), high (between 75 and 90%), and highest risk (above 90%

quantile). Overlaid are the migratory trajectories of tracked mallards up until their first leg of migration. Hexagon diameter is 20 km.
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FIGURE 5 | Risk classification of empirical mallard stopover locations that are

at least 10 km away from the study site. Here we show the proportion of

ducks ending in low, medium, high, and highest risk hexagons as red vertical

lines, and the expected distribution from the randomization described in

section 2.4.1 in blue. The blue horizontal bars represent the 25–75% quantiles

of the distributions.

throughout the autumn migratory season of 2004, there were
about 10 independent dispersal events (25 & 75%-quantiles: [1,
91]) of LPAIV by mallards emigrating from Ottenby. In the
subsequent years of 2005–2008, these estimates were similar,
with 15 estimated dispersal events in 2005 [0, 62], one estimated
dispersal event in both 2006 [0, 16] and 2007 [0, 6], and
9 estimated dispersal events in 2008 [3, 42]. Recovery from
infection during migration was predicted to be very rare, and did
not occur at all for the years 2006–2008 (Table 1). During 2004
and 2005, the 75% quantile indicated that recovery might happen
in rare cases for juveniles, with a median of 0 [0, 1] recovery
events for both 2004 and 2005. In general, virus dispersal events
most frequently occurred through the migration of juvenile
individuals, and least by adults. Throughout all years combined,
a median of 27 virus dispersal events supposedly were carried out
by juveniles (25- & 75%-quantiles: [4, 152]), whereas dispersal
events by adult (median: 1, 25- & 75%-quantiles: [0, 13]) and
unaged individuals (median: 8, 25- & 75%-quantiles: [0, 52]) were

TABLE 1 | Summary of the expected number of dispersal events for the autumn

migratory seasons 2004–2008 broken down by age class.

Year Age class Uninfected Infected Infected and recovered

2004 Adult 214 [53, 368] 0 [0, 1] 0 [0, 0]

Juvenile 724 [297, 1331] 10 [1, 88] 0 [0,1]

Unaged 232 [64, 462] 0 [0, 2] 0 [0, 0]

2005 Adult 128 [15, 154] 0 [0, 1] 0 [0, 0]

Juvenile 339 [130, 628] 7 [0, 20] 0 [0, 1]

Unaged 912 [395, 1674] 8 [0, 41] 0 [0, 0]

2006 Adult 313 [109, 554] 0 [0, 0] 0 [0, 0]

Juvenile 513 [253, 875] 1 [0, 12] 0 [0, 0]

Unaged 349 [133, 627] 0 [0, 4] 0 [0, 0]

2007 Adult 464 [176, 863] 1 [0, 5] 0 [0, 0]

Juvenile 78 [12, 186] 0 [0, 1] 0 [0, 0]

Unaged 148 [25, 294] 0 [0, 0] 0 [0, 0]

2008 Adult 199 [52, 282] 0 [0, 6] 0 [0, 0]

Juvenile 466 [205, 793] 9 [3, 31] 0 [0, 0]

Unaged 266 [84, 423] 0 [0, 5] 0 [0, 0]

Shown are the median, and the 25 and 75% quantiles in brackets.

considerably lower (see also Table 1). Virus dispersal events did
not occur randomly throughout the season, but were clustered
in time; i.e., they were most likely to occur when a period of a
large population size at Ottenby was followed by a pronounced
emigration event (see Figure 6 and Figures S5–S8).

4. DISCUSSION

The mallard is an important reservoir host for the maintenance
and dispersal of LPAIV in nature. The observed prevalence is
usually high, especially during autumn when immunologically
naive juveniles and migratory individuals enter the pool of
potential hosts (Stallknecht et al., 1990; Wilcox et al., 2011;
van Dijk et al., 2014; Verhagen et al., 2015), yet this species
shows only few signs of disease when infected with LPAIV (e.g.,
Latorre-Margalef et al., 2009; Daoust et al., 2011; van Dijk et al.,
2015; Bengtsson et al., 2016). While active surveillance using
a sampling scheme like or similar to the long-term sampling
scheme deployed at the Ottenby Bird Observatory is possible,
the observation of actual dispersal events is hard to achieve.
Consequently, estimating the capacity for infected hosts to carry
the pathogen especially over long-distance movements, and
understanding how pathogens like LPAIV can repeatedly and
rapidly spread across entire continents, is challenging.

Our study overcomes this challenge by combining local
population and infection dynamics with predictions of animal
movement derived from an empirically informed conditional
movement model. By integrating data from one of the best
studied systems for infectious disease in a wild animal host, we
were able to infer dispersal of LPAIV by migrating mallards, and
estimate the occurrence of dispersal events throughout autumn
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FIGURE 6 | Summary for the entire trapping season of 2004. The top four figures show the estimates for the size of staging population (N) as well as the

corresponding emigration, infection, and recovery probabilities (ζ , λ, and ϕ, respectively) thoughout the trapping season. The different colors correspond to the

different age classes (but notice that recovery probability ϕ did not differ between age classes). The line represents the median (mean for ζ and ϕ) estimate and

pointwise 95% confidence intervals. The bottom figure shows the estimate for the number of dispersal events throughout the trapping seasons. The line shows the

median, the line range delineates the 25- and 75% quantiles.

migration. The key to being able to estimate virus dispersal for
an entire staging population of mallards was the development
of a MFS trained from empirical tracking data that allowed us
to predict the migratory movements of unobserved individuals.
Consequently, the accuracy of our results is dependent on
how well the migrations simulated with the MFS reflect the
actual migratory movements of mallards leaving from Ottenby.

We combined the known wintering locations of mallards from
an extensive ring recovery database with detailed information
on migratory strategies from high-resolution tracking data to
determine for how long, how far, and where simulated mallards
should migrate. Similarly, the conditional movement model we
used to build theMFSwas trained from high-resolution empirical
trajectories of mallards migrating from Ottenby. As a result,
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the simulated migrations resembled the empirical trajectories in
overall distance and traveling speed (see Figures S2, S3), though
potential sex differences were not considered in this study.
As seen in Figure S2, the along-track distances of simulated
migrations were slightly higher than that of empirical migrations.
This was caused by the higher temporal resolution of the
simulated trajectories (5-min intervals vs. 1-h intervals with
15-s GPS-bursts), but also reflects that we only observed one
migration toward the North-East (in the first half of January)
whereas such movements frequently occurred for the simulated
trajectories. Our results might, however, be biased for several
reasons. First, the number of recorded migratory movements
was relatively small, and represented movements during a single
autumn migration season. We were thus not able to assess year-
to-year variability in migratory movements that could be caused
by e.g., differing wind or climatic conditions. Furthermore, the
empirical distributions derived from the migratory durations
and distances were derived from a relatively small sample, and
might not be representative of overall mallardmigration patterns.
However, we are confident that our tracking data sample is
quite representative of autumn migrations from Ottenby, as
the patterns derived from both the observed and simulated
migrations corroborate previous tracking studies (van Toor
et al., 2013) and ring recovery data (Gunnarsson et al., 2012).
The ring recovery data might have also introduced a bias into
our results. Most recoveries are the result of mallards being
hunted, and might thus not reflect the entirety of wintering
grounds visited by mallards staging at Ottenby. Furthermore,
migrations in north-easterly directions are only expected for
spring migrations, yet according to the ring recoveries, these
movements can occur throughout autumn (see also Gunnarsson
et al., 2012). Mild winters might also allow mallards to return to
their breeding grounds early. However, these recoveries might
also be a result of temporal inaccuracy, when rings are found
without indication of time of death. Yet, assessing the risk
classification of stopover locations observed from the tracking
data revealed that mallards chose locations classified as highest
risk more often than expected, whereas they traveled to areas
classified as low risk less often than expected at random (see
Figure 5 and Figure S4). This indicates that our approach was
able to replicate the migratory strategies of mallards leaving
Ottenby, and we are confident that the simulated migrations
reflect the movements of the entire population during autumn.

By superimposing a SIR-model on simulated mallard
migrations for the entire population, we found that mallards,
after leaving the stopover site on Southern Öland, are expected
to disperse LPAIV over an average distance of 160 km within
just 3 h, and up to about 600 km (see Figure 3). Mallards are
fast flyers, and thus dispersal distances for the virus are on
average only slightly shorter than the migratory distances of
uninfected individuals despite the ability of mallards to clear
infections with LPAIV rapidly (Latorre-Margalef et al., 2009;
Avril et al., 2016). It should be clear, however, that the virus
dispersal simulations presented in this study were made under
several assumptions: First, we assumed that the probability for an
individual to recover from infection is proportional to time. This
is a simplification of the course of an individual’s infection with

LPAIV. Yet, individual variation in time to clearing infections
is substantial (e.g., Latorre-Margalef et al., 2009; Tolf et al.,
2013), and dependent on previous exposure to the same or other
strains or subtypes of LPAIV (e.g., Costa et al., 2010; Verhagen
et al., 2015; Latorre-Margalef et al., 2017). We thus think that
using a simplified process was justified, and does not overestimate
time to recovery. The second assumption was that recovery
from an infection with LPAIV happens just as quickly during
migration as during staging, as it is currently unknown how
migration affects the function of the immune system of dabbling
ducks. Latorre-Margalef et al. (2009) showed that infection
status did not affect migrating mallards apart from a slight
loss in body weight, and Avril et al. (2016) could demonstrate
that infection status did not affect the decision of mallards to
migrate. Similarly, Bengtsson et al. (2016) found no differences
in local movement between infected and uninfected mallards,
and van Dijk et al. (2015) reported shorter daily movements of
infected birds. It is hypothesized that the physiological burden
of migration might lead to immunosuppression in birds (e.g.,
Weber and Stilianakis, 2007), and thus time to clearing an
infection should become longer rather than shorter. However,
a wind tunnel study with red knots (Calidris canutus, L. 1758)
showed that long flights do not seem to influence the immune
function in these birds (Hasselquist et al., 2007). Consequently,
our assumption results in an under- rather than overestimation
of virus dispersal distances, which indicates that virus dispersal
distances might be entirely congruent with mid- to long-distance
migratory movements of mallards. Overall, our results suggest
that the mallard has the capacity to carry LPAIV over mid to long
distances within just a few hours.

However, such dispersal events seem to be rare even when
viewed from the perspective of an entire autumn migratory
season, even though the size of the population of stagingmallards
at Ottenby can exceed several hundred individuals, and mostly
consists of juvenile individuals (Figure 6; see also Avril et al.,
2016). Especially these juveniles, who have not built up partial
or total immunity against different subtypes of LPAIV yet (van
Dijk et al., 2014), are highly likely to become infected with LPAIV
during their stay at Ottenby (Figure 6; see also Avril et al., 2016).
Yet, our simulations suggest that as little as a single dispersal
event would be expected on average from mid-August through
mid-December 2006 as well as 2007 (see Table 1). Our results
indicated that during the period of 2004–2008, no more than
15 individual virus dispersal events occurred per season. Despite
propagating the entire variation in the estimates of emigration,
infection, and recovery probabilities into our simulations, the
inter-quartile range for the number of estimated dispersal
was relatively narrow, except for juveniles in 2004 (Table 1).
Consequently, virus dispersal events occurred during times when
many individuals emigrated from the population and infection
probabilities were high, as the probability of virus dispersal can
be approximated by the product of infection and emigration
probability (see Figure 6 and Figures S5–S8). At Ottenby, the
predominant wind direction is from the South-West to the
North-East, opposing the main migratory direction of Ottenby
mallards during autumnmigration. Bengtsson (2016) could show
that such mass emigration events mostly occurred when the
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wind deviated from its predominant pattern, blowing from the
North and East to the South and West and thus providing
mallards with tail winds. During this study, we observed
that many of the tracked mallards initiated their migratory
movements on days when the wind provided them with tail
winds (personal observation, see also Figure S9), corroborating
previous studies on the migrations of waterfowl (e.g., Bergman,
1978; Hedenström et al., 2002; Day et al., 2004). Similarly,
as dabbling ducks require open water surfaces for feeding,
and so cold spells resulting in the freezing of water bodies
might induce movements during winter (Reperant et al., 2010;
Sauter et al., 2010, 2012). Clearly, the question whether an
environmental trigger like the switch from general wind direction
in combination with an estimate of population size could serve
as a predictor for mass emigration events for Ottenby could be
pursued in future studies.

During this study, we could predict which areas are at risk
of being the destination for infected mallards from Ottenby. We
classified the destinations of virus dispersal events into different
four risk categories, and highlighted areas that are predominantly
expected to import LPAIV from Ottenby. Interestingly, some
of the highest-risk areas were located along the coastline of
the Baltic states. We think that again, this might be a result
of potential movements during mild winters, or temporal
inaccuracies in the ring recovery data. Some individuals also
migrate north-east early, like the individual heading to the island
of Gotland during early January (see Figure 4). However, as the
trapping season at Ottenby ends in mid-December, usually due
to the formation of ice in the bay, little is known about the
prevalence of LPAIV in the residing mallard population for the
period after mid-December. Should the virus be maintained in
the population throughout winter, which has been shown for
other wintering populations (e.g., Hill et al., 2012; Spivey et al.,
2017), the dispersal of viruses along the spring migratory route
toward the North-East is possible. However, for the period that
the population and infection dynamics in this study system are
known, these areas are unlikely to be the destination for infected
mallards. Consequently, the focus should reside on the highest
risk areas that were identified in the migratory corridor of true
autumn migrations toward the South-West, which are located
along the coast of Southern Sweden, South-East Denmark, and
the coast of North-East Germany and North-West Poland.

In conclusion, our study integrated comprehensive data about
population fluctuations, infection dynamics, and high-resolution
tracking data to predict the dispersal of a highly infectious virus
through a wild migratory host. This novel approach allowed
for establishing quantitative estimates of pathogen dispersal at
the level of an entire population, and throughout the entire
autumn migration. While similarly comprehensive data for
other areas and study systems might not be available, we think
that predictions from our mallard migration simulator are
transferable across space, especially given the lack of population
structure in mallards (Kraus et al., 2013). We think that our
approach may also be suitable for other species and questions as
well. That is, using tracks from few well-studied individuals and

generally more readily available ring recovery data, it could be
possible to predict potentially important staging areas for species
whose migration strategies might not be well known.

In the future, a better understanding of how mallards
use wind conditions for migration and the correction of the
mallard flight simulator for local wind conditions will make
this tool applicable to a wider range of scenarios. We think
that migration simulators like the MFS are extremely powerful
in predicting past and future spread of infectious agents. This
approach is not limited to low-pathogenic influenza viruses
as shown here, but could also be used to infer potential
dispersal of other pathogens, like highly pathogenic variants
of avian influenza viruses. In future work, the MFS could be
extended by including short-distance movements in addition
to the migratory movements studied here. We think that our
approach could facilitate the establishment of general migratory
connectivity networks of mallards on a larger spatial scale,
and thereby provide the possibility to derive predictors for
disease dispersal like those shown by Brockmann and Helbing
(2013). These predictions could then be tested against the
virus dispersal history as reconstructed from sequence data
and phylogeographic inference. Overall, we think that an
approach that directly combines (simulated) movements on
a population level with local infection dynamics might be a
potential answer to the call for converging movement and disease
ecology.
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