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There is considerable interest in why the process of aging varies between individuals,

both in humans and other animals. However, in animals, aging in terms of survival

(demographic senescence) is understood in considerably more detail than in terms of

declines in the body’s functional capacity (functional senescence). Oxidative damage is

probably an important component of the aging process in many species. Physical activity

typically increases levels of oxidative stress, and many animals exhibit long and intense

periods of active behavior. These observations raise a question that has not yet been

addressed: while in humans, at least, activity is considered beneficial to health, could high

intensity activity play a part in the rate that wild animals age? Studies to date suggest that

increased “effort” can lead to reduced survival in free-living animals, but “effort” refers to

different processes in different studies, and is rarely clarified or quantified. To understand

the role of activity in functional senescence, studies must measure the detailed activity of

free-ranging animals, possibly describing it in terms of intensity, frequency and duration,

coupled with records of resultant physiological and DNA damage.

Keywords: activity, aging, exercise, metabolic rate, oxidative stress, senescence

“Comparative biology teaches us that reproduction is life’s solution to the inevitability of death in the hostile

environments of Earth” (Carnes, 2007).

INTRODUCTION: AGING IN THE WILD

Time waits for no animal. Once mature, long-lived individuals of all species experience aging—a
progressive decline in the functional capacity of their bodies, a loss of integration of homeostatic
systems and an increased vulnerability to death (López-Otín et al., 2013; Li et al., 2015). For many
years, wild animals were thought not to grow old, dying before senescence took hold (Medawar,
1952). More recently, however, focussed-studies on multiple taxa have shown otherwise (Nussey
et al., 2013; Jones et al., 2014). In many species, individuals continue living well beyond their
functional peaks (Froy et al., 2018), and often carry on reproducing albeit at a declining rate (Nussey
et al., 2013; Jones et al., 2014). Aging in animals can be considered in terms of the decline in the
body’s performance (functional senescence) or the decline in fertility rate coupled with an increased
risk of mortality (demographic senescence). Most work focusses on demographic senescence and
we now know that there is a great diversity in trajectories of demographic senescence, not only
between different species but also between individuals of a given species (Jones et al., 2008, 2014).
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In contrast, functional senescence, at least in wild animals,
is less well studied. Research to date has shown age-specific
changes in the immunity of wild animals (Cichon et al., 2003)
and in certain other components of their physiology such as
haematocrit (blood oxygen stores), hormones and metabolism
(Massot et al., 2011; Elliott et al., 2014). In humans we know
that physiological aging starts at different times in different
individuals, and that it can occur at different rates even within
the same person, depending on the tissue or physiological system
examined (Sehl and Yates, 2001; Belsky et al., 2015). For example,
the autonomic nervous and reproductive-endocrine systems
senesce nearly four times faster than the CNS or musculoskeletal
systems (Sehl and Yates, 2001). Similar detail at the physiological
level is missing in wild animals (Reichard, 2016), but we know
that some phenotypic, physiological, and behavioral traits can
age asynchronously (Elliott et al., 2014; Hayward et al., 2015;
Kervinen et al., 2015), in a way similar to in ourselves. At
the same time, we have a comparatively detailed picture of
the interconnected nature of aging between humans and the
environment (Dato et al., 2017), and while similar evidence is
accruing in wild animals (Nussey et al., 2008; Marshall et al.,
2015), our understanding is far from complete (Hammers et al.,
2015).

There is a clear gap in our knowledge stemming from how
the behavioral choices of animals influence their aging. Why
should this be important? In this Review, we discuss whether
the activities that animals carry out as part of their everyday
lives could be a key component shaping their aging process. We
discuss how activity could influence aging, what we are yet to
understand about this process, and the key future directions that
studies should take in order to drive forward the field of wild
animal gerontology.

OXIDATIVE STRESS AS A COMPONENT OF
AGING

Oxidative stress is one of the most important physiological costs
of living and thus a key modulator of life-history trade-offs
(Monaghan et al., 2009; Speakman and Garratt, 2013; Blount
et al., 2015; Speakman et al., 2015). All aerobically respiring
organisms produce reactive oxygen and nitrogen species (RS),
which are highly reactive and can damage biomolecules including
lipids, proteins, and DNA. The production of RS can be counter-
balanced by various antioxidants (AO). Normally, cells are in
a dynamic redox state whereby RS and AO are in so-called
oxidative balance. When RS increases, there is a concomitant
increase in the AO system to return the cells to oxidative
equilibrium. An increase in RS production not matched by
the AO response leads to an increase in oxidative damage and
resulting oxidative stress (Costantini and Verhulst, 2009). There
is considerable controversy as to the role of oxidative stress
in aging, and research is needed to examine key mechanistic
links between oxidative stress and senescence (Freitas and de
Magalhães, 2011; Speakman et al., 2015). However, although we
do not yet fully understand the functional links from production
through to outcome for the whole organism (Speakman et al.,

2015), oxidative stress is clearly a key underlying component of
the aging process for many organisms.

BASAL METABOLIC RATE (BMR) AND
OXIDATIVE STRESS

The primary biological process that results in the production
of RS is an animal’s basal metabolism. Two of the strongest
covariates with between-species differences in lifespan are the
amount of oxidative DNA damage (Adelman et al., 1988) and
BMR (Hulbert et al., 2007; though see Munshi-South and
Wilkinson, 2010). The pace of life theory postulates that species
with a lower BMRmature at a later age and larger size, reproduce
at slower rates, and have longer lifespans. In support of the pace
of life theory, evolved changes in the BMR of a species occur
in tandem with the evolution of different pace of life strategies
(Auer et al., 2018), but lifespan is not simply a function of
BMR, if it is a function of BMR at all (Speakman et al., 2002;
Magalhães et al., 2007), and instead may be co-regulated or
correlated with other components of an organism’s life history
(Glazier, 2014). Moreover, BMR is not an important driver of
aging and lifespan at the within-species level (Rønning et al.,
2014; Norin and Gamperl, 2017), and may even be beneficial
(Speakman et al., 2002). For example, field volesMicrotus agrestis
kept at cooler temperatures and thus exhibiting a higher BMR
did not have shorter lifespans (Selman et al., 2008), whilst
between-individual natural variation in BMR had either no effect
or a positive effect on longevity in zebra finches (Taeniopygia
guttata; Rønning et al., 2014), labmice (Musmusculus; Speakman
et al., 2004) and Glanville fritillary butterflies (Melitaea cinxia;
Niitepold and Hanski, 2012). BMR therefore is not the primary
driver of individual variation in aging, probably because the body
can largely remain in oxidative balance. Instead, variation in
individual aging could be explained by sources of oxidative stress
that overwhelm mechanisms of oxidative balance.

PHYSICAL ACTIVITY, AGING, AND
“EFFORT”

Many organisms live active lives. During activity, metabolic rate
increases to multiple times BMR (Piersma, 2010). A concomitant
increase in oxidative stress and DNA damage under these
conditions has been reported in a range of laboratory species
(summarized by: Yap et al., 2017b) and in humans (Fisher-
Wellman and Bloomer, 2009). Oxidative stress is a common
consequence of physical activity. But does this mean that physical
activity can shorten lifespan? After all, moderate physical activity
is known to increase lifespan (e.g., lab rodents: Navarro et al.,
2004; Boveris and Navarro, 2008; Vaanholt et al., 2010) and to
offer protective benefits against oxidative damage (Radak et al.,
2008). Potentially, the relationship between health and levels
of physical activity is hormetic, whereby increases in physical
activity lead to increases in physical or physiological benefits up
to a threshold beyond which benefits then decline (Costantini
et al., 2010; Pontzer, 2018; Figure 1A). Whilst evidence for
hormetic responses are widespread in humans (Radak et al.,
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2008; though see Arem et al., 2015) and lab animals (Goto et al.,
2007), evidence in wild animals is rarer, quite possibly because
so few studies carry out suitable experiments. To date, studies
have mainly investigated the extremes of the theoretical curve
only, such as low activity vs. high activity (e.g., Aniagu et al.,
2006). Combining studies that have investigated activity at low,
intermediate and high levels suggests that low levels of voluntary
activity have no effect on oxidative stress (Selman et al., 2002),
intermediate levels of activity are associated with lower levels of
oxidative stress and/or higher antioxidant protection (Costantini
et al., 2008), and higher levels of activity have higher oxidative
stress and lower antioxidant protection (Costantini et al., 2008).
This is consistent with the hormetic response. There is a critical
need for more studies, and the testing of a fuller range of activity
levels, to understand how commonly the health effects of activity
are hormetic. The impact of increasing activity levels on health
will no doubt vary between species and contexts. Knowing at
what point exercise may start to negatively impact health is a
challenge; for example, it is possible that organisms carrying out
sustained exercise below their energetic ceiling (i.e., <7 x resting
metabolic rate: Hammond and Diamond, 1997), may not suffer
obvious costs (e.g., Welcker et al., 2010). Only when organisms
exercise above this ceiling, may negative impacts on health be
apparent (Pontzer, 2018) and it is not clear that dose-dependent
studies of human mortality capture this (Arem et al., 2015).
Furthermore, while in some cases the hormetic response may
be apparent, in other species, increasing activity levels may have
no effect on health until a threshold beyond which this increase
becomes deleterious (Figure 1B). In other cases, perhaps simply
the greater the activity level the greater the negative impact
on health (Figure 1C). The shape of the response in humans
can change both with physical training and antioxidant intake
(Radak et al., 2017; Pontzer, 2018). For example, training can
increase the level of exercise required before it becomes damaging
or minimizes the oxidative stress damage (Radak et al., 2017).
Similarly, experimental work in lab animals shows that training
can decrease oxidative stress (Larcombe et al., 2010). In the wild,
migrating birds may have higher intakes of dietary antioxidants,
which could offer a protective benefit during long distance
flight by countering increased RS production (Cooper-Mullin
and McWilliams, 2016). The implications of these findings for
the importance of animal exercise (Halsey, 2016), and exercise
ecology (van Dijk and Matson, 2016), needs further exploration.

Despite reviews on humans (Powers et al., 2011) and examples
from animal laboratory models (Yap et al., 2017b), as yet
no studies have summarized broadly whether physical activity
causes oxidative stress and DNA damage in wild animals either
in the lab or wild. To date, such studies on wild animals have
manipulated the “effort” they exhibit, an ill-defined term often
used in the literature to allude to investment (physical and/or
physiological) in some activity. To understand how manipulated
changes in “effort” influence oxidative stress biomarkers and
levels of DNA damage, we collated studies found in the literature
(N = 15). We found that in about half of studies, physical
activity such as long distance flight or raising offspring was
found to cause increases in oxidative stress (7/13 studies) and
DNA damage (3/6 studies: Table 1). Moreover, increases in DNA
damage were most evident when physical activity was considered

FIGURE 1 | Hypothetical health outcomes as a result of increasing volumes of

activity: (A) a hormetic response where increasing activity provides initial health

benefits, before then having an increasingly negative impact; (B) increasing

activity has no or little impact on health up to a threshold, after which it

becomes progressively more deleterious; (C) the impacts on health of

increasing activity are progressively more deleterious [inspired by 43].

to be high; where activity levels were classified as “low” or
“voluntary,” there was no effect on oxidative stress or DNA
damage (Table 1).

Many wild-based studies manipulate “effort” by increasing
brood or litter sizes and there is mixed evidence to support the
contention that this leads to reduced survival—a measure of
aging (Santos and Nakagawa, 2012). For example, Golet et al.
(1998) reported that 29% (7/24) of studies manipulating clutch
size negatively affected adult survival, whilst a study on jackdaws
Corvus monedula showed that experimentally increased clutch
sizes were associated with a decrease in long-term survival rates
(Boonekamp et al., 2014). Unfortunately, few studies quantify
the “effort” of the animals, for example in terms of their energy
expenditure, and so are unable to show a link between effort and
measures of senescence such as reduced survivability (though
see: Daan et al., 1996). Moreover, there is only one study (and
it is on captive animals—zebra finches), that includes measures
of oxidative stress, DNA damage and survival (Sudyka et al.,
2016). Hence, studies published so far investigating activity
correlates of wild animal senescence have failed to combine
all the following crucial elements: quantified physical activity,
physiological and DNA damage, and measures of functional or
demographic senescence.

PHYSICAL ACTIVITY: DURATION,
FREQUENCY, OR INTENSITY?

Athletes can run for 100m considerably faster than they can
run a mile. The basic physiology underlying this phenomenon
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TABLE 1 | Published animal studies that assess “effort” and its impact on oxidative stress (OS), antioxidant biomarkers (AO), and DNA damage (telomere length, comet

assays).

Species Study

type

Design Measure of effort Timing of

sampling

Biomarkers DNA

damage

References

Zebra finch

Taeniopygia guttata

C/E Brood size

increase

12 d OS = = Sudyka et al., 2016

Zebra finch

Taeniopygia guttata

C/E Brood size

increase

35 d

1 yr

OS ↑ AO =

OS ↑ AO =

↑

↑

Reichert et al., 2014

Blue tit

Cyanistes caeruleus

W/E Brood size

increase

14 d ↑ Sudyka et al., 2014

Great tit

Parus major

C/E Wing feather

removal

21 d OS = AO ↑ Vaugoyeau et al., 2015

Pigeon

Columba livia

W/E Distance Short distance (39 km)

Long distance (179 km)

Post exercise OS ↓ AO ↑

OS ↑ AO ↓

Costantini et al., 2008

Zebra finch

Taeniopygia guttata

C/E Flight activity Low activity (∼900m)

High activity(∼2,700m)

3 d OS = AO = ↑

OS ↑ AO = ↓

Costantini et al., 2013

Zebra finch

Taeniopygia guttata

C/E Flight activity High activity (number of

trips)

90 d OS ↑ AO = Yap et al., 2017a

Great tit

Parus major

W/E Wing feather

removal

Feeding rate (no

change)

43 d OS = AO = Wegmann et al., 2015

Magellanic penguins

Spheniscus magellanicus

W/N Number offspring = Cerchiara et al., 2017

Chub

Squalius cephalus

C/E Swimming to

exhaustion

Critical swimming

speed

Post 2nd

exercise bout

AO = ↑ Aniagu et al., 2006

Snow bunting

Plectrophenax nivalis

W/N Feeding rate Feeding rate 8–15 d OS ↑ Guindre-Parker et al., 2013

European robin

Erithacus rubecula

W/N Migration

flight

Post-

nocturnal

flight

OS ↑ AO ↑ Jenni-Eiermann et al., 2014

Bald ibis

Geronticus eremite

W/N Migration

flight

Time spent flying Pre vs. post

flight

OS = AO = Bairlein et al., 2015

Barn swallow

Hirundo rustica

W/E Brood size

increase

13 d OS ↑ AO = Pap et al., 2018

Field vole

Microtus agrestris

C/E Voluntary

running

0 vs. 5.9 km/d 7 d OS = AO = = Selman et al., 2002

Publications include both wild (W) and captive (C) studies, natural (N), and experimental (E) manipulations. Changes in measures relative to baseline or pre-exercise values are reported

as increases (↑), decreases (↓), no change (=), or a mixture (where multiple markers recorded) (↑ =).

is that short-burst exercise employs ATP and phosphocreatine to
generate energy anaerobically—instant energy stores that deplete
over a matter of seconds—while longer-term exercise must
also employ lactic acid and electron-transport phosphorylation
aerobically (Thompson, 2017). There are analogies to short burst
and long endurance activity in animal ecology (Killen et al.,
2017). Barnacle geese Branta leucopsis make migratory flights
lasting around 60 h in total during which their heart rates are
∼60% maximum (Butler et al., 1998), representing moderate
exercise of long duration. In contrast, activities such as flight take-
off, predator avoidance, mating displays and active predation
typically involve rates of energy expenditure at least several-fold
that at rest (Vehrencamp et al., 1989; Green et al., 2009; Lane
et al., 2010; Soulsbury, 2019), and can only be performed for short
periods (Piersma, 2010).

Exercise can be broadly characterized by three interacting
components: (1) Intensity characterizes the percentage of oxygen
consumption rate (VO2) or heart rate relative to that at peak
power output. In humans, high-intensity exercise is typically

characterized as including bouts at 64–90% VO2max or 77–95%
HRmax (Pollock et al., 1998). (2) Duration refers specifically to
time spent carrying out the exercise, and (3) Frequency refers
to the number of bouts of that exercise conducted. Thus the
product of duration, frequency, and intensity in theory represents
the overall volume of activity undertaken. We know that in
isolation, increased duration (Bloomer et al., 2007), intensity
(Wadley et al., 2016) and frequency (humans: Tanimura et al.,
2010; dogs: Hinchcliff et al., 2000) of activity leads to increased
oxidative stress. Furthermore, we know that in humans at least,
oxidative stress is higher during anaerobic than aerobic exercise
when conducted at similar intensities and duration (Bloomer
et al., 2005). Therefore, activities that are of high intensity and
anaerobic are quite possibly more immediately physiologically
damaging than lower-intensity aerobic activities, perhaps even
if the latter are of longer duration. For example, frequent and
intense feeding activity by a passerine bird may be more costly
to an individual than longer but less intense commuting flights
between a foraging area and its nest, even if the volume of
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activity represented by the two activities is similar.With advances
in data loggers to characterize animal activity, it is becoming
progressively more feasible to quantify the composite parts of
animal activities, in turn making it possible to relate the duration,
intensity, and frequency of each part to both the energy costs and
physiological costs of behavior.

CONCLUSIONS AND FUTURE STUDIES

There is a growing awareness that the active behaviors
animals perform in their daily lives may come with short-term
and sometimes also long-term physiological costs, increasing
oxidative stress (Costantini et al., 2008), DNA damage (Aniagu
et al., 2006) and in some case reducing survival (Daan et al.,
1996). However, there is a gap in our knowledge about which
components of these activities are most influential in driving
senescence and under what circumstances this influence is
greatest. To our knowledge, no studies of wild animals have yet
combined a detailed quantification of their physical activity and
measurements of the resultant physiological costs (immunity,
OS, DNA damage, and physiological homeostasis), particularly
during critical periods when physical activity may be heightened
such as reproductive events or migration. An important aspect
of attending to this knowledge gap will be the quantification
of “effort”. Furthermore, while most work to date investigating
how activity affects aging has focussed on oxidative stress,
physiological systems are highly interconnected and physical

activity is likely to impact other biological processes such as
the immune system, and hypothalamus-pituitary-adrenal axis
(Eikenaar et al., 2018; Pontzer, 2018; sensu exercise immunology:
van Dijk and Matson, 2016), which may also be associated with
aging (Jurk et al., 2014).

Individual-based, long-term studies provide excellent
opportunities to address a number of eco-evolutionary questions
(Clutton-Brock and Sheldon, 2010), including how activity and
exercise impact aging. A first step for example, could be to
quantify exercise and physiological markers during the mating
season of polygynous species such as red deer Cervus elephaus
or black grouse Lyrurus tetrix, across multiple breeding seasons.
This could prove insightful in describing differing rates of
senescence between individuals, as indicated by, for instance,
declining home range sizes (Froy et al., 2018). With the right
techniques, there is huge potential in existing study systems to
investigate the impacts of activity on animal senescence.
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