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Empirical time series of interacting entities, e.g., species abundances, are highly

useful to study ecological mechanisms. Mathematical models are valuable tools to

further elucidate those mechanisms and underlying processes. However, obtaining

an agreement between model predictions and experimental observations remains a

demanding task. Asmodels always abstract from reality one parameter often summarizes

several properties. Parameter measurements are performed in additional experiments

independent of the ones delivering the time series. Transferring these parameter values

to different settings may result in incorrect parametrizations. On top of that, the properties

of organisms and thus the respective parameter values may vary considerably. These

issues limit the use of a priori model parametrizations. In this study, we present a method

suited for a direct estimation of model parameters and their variability from experimental

time series data. We combine numerical simulations of a continuous-time dynamical

population model with Bayesian inference, using a hierarchical framework that allows

for variability of individual parameters. The method is applied to a comprehensive set

of time series from a laboratory predator-prey system that features both steady states

and cyclic population dynamics. Our model predictions are able to reproduce both

steady states and cyclic dynamics of the data. Additionally to the direct estimates of the

parameter values, the Bayesian approach also provides their uncertainties. We found that

fitting cyclic population dynamics, which contain more information on the process rates

than steady states, yields more precise parameter estimates. We detected significant

variability among parameters of different time series and identified the variation in the

maximum growth rate of the prey as a source for the transition from steady states

to cyclic dynamics. By lending more flexibility to the model, our approach facilitates

parametrizations and shows more easily which patterns in time series can be explained

also by simple models. Applying Bayesian inference and dynamical population models

in conjunction may help to quantify the profound variability in organismal properties in

nature.

Keywords: Bayesian inference, chemostat experiments, ordinary differential equation, parameter estimation,

population dynamics, predator prey, time series analysis, trait variability
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1. INTRODUCTION

Trophic interactions provide the elementary link in all food webs.
Long-term data sets of such interactions become increasingly
available, both from field observations, and highly controlled
large-scale and laboratory experiments (Fussmann et al., 2000;
Tirok and Gaedke, 2007; Becks et al., 2010, 2012; Magurran
et al., 2010; Weigelt et al., 2010; Boit and Gaedke, 2014). To
mechanistically understand these trophic interactions, models
are employed with the goal of reproducing the observed
population dynamics, which can either settle to a steady state,
or include more complex patterns like limit cycles or chaos
(Fussmann et al., 2000; Boit et al., 2012; Becks and Arndt,
2013; Barraquand et al., 2017). Obtaining an agreement of
such non-static experimental observations and modeled time
series remains a demanding task. Often, modelers are faced
with situations where they can reproduce basic features of the
dynamics, but not on the right time scales or not on biomass
levels close to the data. One logical reaction would be to refine
the model structure and include a higher level of biological
detail. However, another reason for such disagreements between
model and data may be a generally valid model structure
but an incorrect parametrization. In this study, we present a
method to obtain the relevant model parameters directly from
the experimental data by applying Bayesian inference to a
comprehensive set of time series data for a laboratory predator-
prey system that features both steady states and cyclic population
dynamics.

Incorrect parametrizations can arise for different reasons.
Firstly, a model always has to abstract from reality. This implies
that individual model parameters summarize a multitude of
different ecological processes. The impact of these processes
on the model parameter likely changes over time. Due to
these non-modeled processes a one-to-one relationship between
empirically determined parameter values and model parameters
is impossible. For example, typical predator-prey models
consider a conversion efficiency by which prey biomass is
converted into predator growth. Among others this efficiency
depends on the variable prey abundance (S. Schälicke in prep.)
and the relative importance of basal and activity respiration (Kath
et al., 2018). Secondly, model parameters are often obtained
experimentally under slightly different settings than the actually
observed population dynamics. An example would be to measure
the prey’s population growth rate in batch experiments and then
use this parameter in a chemostat model. By design, growth
conditions in batch and chemostat cultures differ in some aspects,
such as the dynamics of nutrient limitation or the selection
pressure, e.g., for higher nutrient affinities vs. maximum growth
rates. Therefore, the parameters that were obtained for one
experimental setting might be of limited value for a different one.

It is more and more recognized that the functional traits
of organisms that determine trophic interactions comprise a
considerable variability (Litchman and Klausmeier, 2008; Bolnick
et al., 2011; Violle et al., 2012; Bolius et al., 2017; Gaedke and
Klauschies, 2017). This trait variability can have far-reaching
consequences both at the population level (Abrams, 1999; Post
and Palkovacs, 2009; Becks et al., 2010; Ehrlich et al., 2017; Raatz

et al., 2017; Cortez, 2018) and at the community level (McGill
et al., 2006; Hillebrand and Matthiessen, 2009). In such cases,
employing just one parametrization for different time series of
the same system may be insufficient and hamper the agreement
of experimental and modeled population dynamics. Instead, the
model will potentially support parts of the data or comprise
certain general features, but will fail to reproduce its entire
behavior. Our Bayesian framework allows to retrieve information
on such parameter-related uncertainties directly from the time
series data, which might even become apparent as between-
replicate differences, and provide individual parameter estimates
for each data set.

Dynamical population models have traditionally been fitted
to time series data by least squares or maximum likelihood
methods (Costantino et al., 2005; Cao et al., 2008; DeLong
et al., 2014; Rall and Latz, 2016; Curtsdotter et al., 2018), see
Bolker (2008) and Aster et al. (2012) for a general introduction.
While they offer point estimates for unknown parameters,
their confidence intervals rely on a local approximation and a
normality assumption of the likelihood function (Bolker, 2008,
Chap. 6.5).

Bayesian methods, on the other hand, quantify uncertainty
more precisely by globally exploring the parameters’ posterior
probability distribution using Markov chain Monte Carlo
(MCMC) sampling. They allow, for instance, direct inference
on sought parameters and derived quantities, utilizing prior
information, defining hierachical levels among parameters, and
recovering unobserved system states (Kindsvater et al., 2018).

For discrete-time population dynamics, Bayesian methods
have received growing attention over the last years (Almaraz
and Oro, 2011; Elderd and Miller, 2015; Wittwer et al., 2015;
Compagnoni et al., 2016; Robinson et al., 2017). In a discrete
setup, state-space models (SSM) are feasible and allow, e.g., the
separation of process and observation error (Hefley et al., 2013),
recovering latent states (Hosack et al., 2012), incorporating age-
structure (Taboadai and Anadón, 2016), adding environmental
covariates (Almaraz et al., 2012; Koons et al., 2015), or
spatially explicit models (Iijima et al., 2013). These advances
were facilitated by the probabilistic programming environments
BUGS (Lunn et al., 2009) and JAGS (Plummer, 2003).

The implementation of continuous-time population dynamics
(described by ordinary differential equations, ODEs) is available
in BUGS but not in JAGS. Until recently, modelers often
combined numerical simulations of ODEsmanually withMCMC
routines (Gilioli et al., 2008; Toni et al., 2009; Johnson et al.,
2013; Smith et al., 2015; Papanikolaou et al., 2016; Boersch-Supan
et al., 2017). Like BUGS, the probabilistic programming language
Stan (Carpenter et al., 2017) offers an integrated solution for
ODEs. It comes with a built-in numerical ODE solver, interfaces
to R, Python, Matlab and more, and a Hamiltonian Monte Carlo
(HMC) sampler (Monnahan et al., 2017). Thus, it supports fitting
dynamical population models to time series data in a Bayesian
framework, see Fussmann et al. (2017) and Carpenter (2018) for
recent applications.

In this study, we will apply Bayesian inference in Stan to a
set of time series of a predator-prey system in a chemostat, i.e.,
a continuous flow-through culture (Novick and Szilard, 1950).
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The parameters of a well-established continuous-time chemostat
ODE model will be estimated yielding posterior distributions for
the parameters, which allow also to quantify their uncertainties.
By comparing the posteriors for the individual time series we can
deduce a variability among them that manifests in different types
of population dynamics and pin-point to specific parameters that
seem to determine this variability.

2. MATERIALS AND METHODS

2.1. Data Collection
Chemostat experiments were performed to obtain predator-prey
time series at a high temporal resolution in a highly controlled
environment (Weithoff et al., unpublished) resulting in a large
collection of long-term time series with several different species.
From these we selected a subset of 13 experiments, which were
replicates in the sense that the same species were used at the
same inflow nutrient concentration and dilution rate, and daily
counts of prey and predators are available. The experiments
were conducted with a metazoan predator, the rotifer Brachionus
calyciflorus s.s. (Michaloudi et al., 2018; Paraskevopoulou et al.,
2018), and its preyMonoraphidium minutum, a unicellular green
alga. The algae grew on nitrogen-limitedmedium. However, daily
nitrogen concentrations are not available. The experiments were
performed within a time span of 7 years, with some individual
experiments lasting longer than 1 year. They yielded time series
which differed with respect to the degree that they exhibitedmore
or less regular cyclic dynamics, or more or less constant predator
and prey densities. From these 13 replicates we selected all shorter
time series that showed either clear and pronounced predator-
prey cycles or steady-state equilibria, and excluded pronounced
initial transient phases. We chose a minimum sample length of
20 days which would typically allow for at least two predator-
prey cycles in this system. This process resulted in a set of 18
samples, 10 of which featured a steady state and eight contained
cyclic dynamics.

2.2. Dynamical Population Model
The continuous-time population dynamics of a predator-prey
system in a chemostat with nitrogen S, algae A and rotifers R are
described by the equations:

dS

dt
=

(
S∗ − S

)
δ −

1

cA

fAS

hA + S
A (1)

dA

dt
=

fAS

hA + S
A−

1

cR

fRA

hR + A
R− δA (2)

dR

dt
=

fRA

hR + A
R− δR (3)

This formulation represents a slightly simplified version of the
one originally presented by Fussmann et al. (2000) and neglects
age structure of the predator. δ is the system’s inflow and
outflow rate, and the concentration of nutrients in the inflow
is given by S∗. The factors cA and cR define the conversion
of nutrients into algal biomass and algal into rotifer biomass,
respectively. The growth rate of algae is described by Monod

kinetics
fAS

hA+S
. fA is the maximum growth rate and hA is the half-

saturation constant (the resource density at which the growth
rate equals half of the maximum growth rate). The same applies
to the resource-dependent growth rate of rotifers feeding on

algae
fRA

hR+A
, which is described by a type II functional response

(Real, 1977). The maximum growth rates fA[d
−1], fR[d

−1] and
the conversion factors cA[cells µmol−1], cR[ind cells

−1] are free
parameters, which are estimated as described in the next section.
We used constant values for the following parameters from a
similar system which instead used Chlorella vulgaris as the prey
species: S∗ = 80 µmol l−1 and δ = 0.55 d−1, as they were
carefully controlled in the experiments, and hA = 4.3 µmol l−1

and hR = 7.5 · 108 cells l−1 (Fussmann et al., 2000). These
values for the half-saturation constants were in the range of our
predicted and observed resource states S and A, respectively (cf.
Figures 2, 3).

We chose to not use half-saturation constants hA (or hR) as
free parameters, since the estimates can be highly correlated with
maximum growth rates fA (or fR). Their combined effects on

the resource-dependent growth rate
fAS

hA+S
(or

fRA
hR+A

) can only be

disentangled if the data cover a large range in the resource states
S (or A) (Rosenbaum and Rall, 2018), which is not the case for
the present chemostat experiments.

2.3. Model Fitting and Inference
We combined numerical simulations of the deterministic
dynamical population model (Equations 1–3) with Bayesian
parameter estimation by drawing samples from the posterior
probability distribution P(θ |y) of the free parameters θ given
the data y, based on the likelihood P(y|θ) and the prior
distribution P(θ). We used Hamiltonian Monte Carlo sampling
in Stan, accessed via the RStan R-package (Stan Development
Team, 2018). The Stan software comes with a built-in Runge-
Kutta ODE solver with adaptive stepsize control for generating
predictions ŷ(θ).

The likelihood calculation P(y|θ) is carried out automatically
by the software when provided with predictions ŷ(θ) and the
distribution of residuals ŷ(θ) − y. The predictions ŷ(θ) are
defined by the numerical solutions of the ODE Â(ti) and
R̂(ti), evaluated at times ti, for a given parameter combination
θ . We chose a log-normal distribution of the residuals, i.e.,
ln(Â(ti)) ∼ N(ln(Ai), σA) and ln(̂R(ti)) ∼ N(ln(Ri), σR), with
scale parameters σA and σR. This trajectory matching method
technically corresponds to treating the model deterministically
and to assuming pure observation errors in the data without any
process error (Bolker, 2008, Chap. 11). Note that, even without
data for the concentration nitrogen S, it is possible to fit the ODE

model by including the initial densities of the predictions Ŝ
(j)
0 , Â

(j)
0

and R̂
(j)
0 as free parameters (Carpenter, 2018). However, one-step-

ahead fitting (i.e., assuming pure process error) would only be
possible for this ODE model if data for all state variables S, A
and R was available. We did not consider full state-space models
accounting for both process and observation error.

We fitted the maximum growth rates fA and fR and the
conversion factors cA and cR on their logarithmic scale (seemodel
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TABLE 1 | Free parameters and their prior distributions.

Parameter Distribution Type

Max. growth rates ln(f
(j)
A
) N(µln(fA )

, σln(fA )) Hierarchical

Max. growth rates ln(f
(j)
R
) N(µln(fR )

, σln(fR )) Hierarchical

Conversion factors ln(c
(j)
A
) N(µln(cA )

, σln(cA )) Hierarchical

Conversion factors ln(c
(j)
R
) N(µln(cR )

, σln(cR )) Hierarchical

Overall mean µln(fA )
N(1.194, 1) Weakly informative

Overall mean µln(fR )
N(0.811, 1) Weakly informative

Overall mean µln(cA )
N(17.728, 1) Weakly informative

Overall mean µln(cR )
N(−10.597, 1) Weakly informative

Overall standard deviation σln(fA )
N(0, 1)+ Weakly informative

Overall standard deviation σln(fR )
N(0, 1)+ Weakly informative

Overall standard deviation σln(cA )
N(0, 1)+ Weakly informative

Overall standard deviation σln(cR )
N(0, 1)+ Weakly informative

Initial densities ln(̂S
(j)
0 ) N(2, 2) Weakly informative

Initial densities ln(̂A
(j)
0 ) N(20, 2) Weakly informative

Initial densities ln(̂R
(j)
0 ) N(10, 2) Weakly informative

Residual standard deviation σA N(0, 2)+ Weakly informative

Residual standard deviation σR N(0, 2)+ Weakly informative

N(·, ·) denotes a normal distribution, N(0, ·)+ denotes a positive half-normal distribution

truncated at zero.

code, Supporting Information). The dynamics and the statistical
model are equivalent to fitting them on their original scale. But
since they differ by several orders of magnitude, we found that
log-transforming the parameter search space makes the iterative
MCMC routine more robust.

We used a hierarchical model for the maximum growth rates
fA and fR and for the conversion factors cA and cR by using time
series identity j = 1, . . . ,m as a random effect. This means that
every time series j is fitted with its individual set of parameters

{f
(j)
A , f

(j)
R , c

(j)
A , c

(j)
R }, while each of these four parameters originates

from a joint distribution across allm time series replicates. Thus,
some information is shared across the individual replicates via
the joint distribution, therefore this technique is also known as
partial pooling. In a Bayesian framework, this can be modeled via
hierarchical dependencies in the prior distributions. Including
logarithmic scaling, they read

ln(θ (j)) ∼ N(µln(θ), σln(θ)), j = 1, . . . ,m, θ = fA, fR, cA, cR, (4)

where µln(θ) are the overall means and σln(θ) the standard
deviations across all m time series. µln(θ) and σln(θ) are also free
parameters with their own prior distribution (see Table 1 for a
full description of the priors).

We tested for variation in the dynamics of the different
time series by uncovering differences in parameters. For each
parameter θ = fA, fR, cA, cR, pairwise contrasts θ (j)−θ (k) between
two time series j and k were inferred. I.e., we generated posterior
probabilities Pjk = P(θ (j) > θ (k)) that quantify these differences.
These quantities Pjk are directly computed from the posterior

distribution by dividing the number of samples featuring θ (j) >

θ (k) by the total number of samples.

To further investigate the importance of variation among the
parameter estimates for different time series, we also fitted the
ODE model (Equations 1–3) using a single set of parameters
{fA, fR, cA, cR} for all 18 time series as a null model. In contrast to
the hierarchical (partial pooling) model above, this is also known
as complete pooling, since all information across individual

replicates is combined. Only for the initial states {̂S
(j)
0 , Â

(j)
0 , R̂

(j)
0 }

we allowed distinct values for each of the time series j = 1, . . . , 18.
We briefly comment on numerical issues that can arise

when combining numerical solutions of ODEs with MCMC
sampling. When the MCMC sampler explores the parameter
space, points can be sampled that make the computation of the
likelihood by numerical simulation of the ODE infeasible (e.g., by
requiring an immensely small integration step-size or simply by
divergent state variables). Still, the sampling algorithm requires
the computation of the likelihood to proceed with the iterations.
To prevent the sampler from entering regions of the parameter
space where, over a whole range of values, the likelihood is
not available, we used two strategies. First, we implemented a
numerical condition which prevents the numerical ODE solution
from diverging or crossing the lower boundary of zero by setting
the right-hand-side of the ODE to zero if one of the state variables
exceeds a reasonable range of [10−6, 1016] (see model code in
Supporting Information). Second, we used weakly informative
priors on the overall mean parameters µln(θ) based on measured
values from Fussmann et al. (2000): µln(fA) ∼ N(ln(3.3), 1),

µln(fR) ∼ N(ln(2.25), 1), µln(cA) ∼ N(ln(5.0 · 107), 1), µln(cR) ∼

N(ln(2.5 · 10−5), 1) (see also Table 1). We used the same priors
for the complete pooling model.

2.4. Simulation Study
Before fitting the presented models to the experimental
chemostat data, we first validated our modeling approach in a
simulation study. By fitting the hierarchical model to simulated
time series, which were generated by known parameters, we
tested the identifiability of model parameters. These parameters

f
(j)
A , f

(j)
R , c

(j)
A and c

(j)
R were drawn randomly from lognormal

distributions using the measured values from above (Fussmann
et al., 2000) as means and a standard deviation of 0.5. Initial
states of the time series were also assigned randomly according
to Table 1. We numerically simulated ODE trajectories of
Equations 1–3 for 100 days and chose 10 time series that settled
to different steady states and 10 time series that featured cyclic
dynamics of different frequencies and amplitudes. We used the
observations of algal and rotifer states of the last 20 days (leaving
out nitrogen states as in the experimental data) and added a
random error with zero mean and standard deviation of 0.1 on
the ln-scale (see also Figures A1, A2, Supporting Information).

3. RESULTS

3.1. Model Convergence
We fitted all models (hierarchical model in simulation study;
hierarchical model and complete pooling model for experimental
chemostat data) by running 10 individual MCMC chains in
parallel with an adaptation phase of 1,000 iterations and
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a sampling phase of 5,000 samples each, summing up to
50,000 samples of the posterior distribution. The runtime was
approximately 7 days on a 2.2 GHz Intel Xeon server architecture.
Visual inspection of the trace plots and density plots showed a
good mixture of the chains. Gelman-Rubin statistics of R̂ < 1.01
and an adequate effective sample size neff (i.e., the estimated
number of independent samples) verified convergence (Gelman
and Hill, 2007). See Supporting Information (Tables A1–A4) for
a full list of parameter estimates and their statistics.

3.2. Identifiability of Parameters
We used the simulation study to assess if known parameters
can be recovered accurately by fitting the hierarchical model
to a synthetic set of 10 steady-states and 10 cyclic time series
(cf. Figures A1, A2, Supporting Information). Figure 1 shows
the posterior error distributions (distributions of estimated
parameter values minus true values on ln-scale) of maximum

growth rates ln(f
(j)
A ) and ln(f

(j)
R ) and conversion factors, ln(c

(j)
A )

and ln(c
(j)
R ) of prey and predators, respectively. We found

that all parameters of cyclic time series 11–20 were accurately
identifiable. The posterior medians generally did not deviate
more than 0.05 from the true parameters and all estimates
featured a low uncertainty (posterior standard deviations smaller
than 0.04).

For steady-state time series 1–10, however, posterior

distributions of algal maximum growth rates ln(f
(j)
A ) showed

relatively high uncertainties (posterior medians deviating up to
0.8 from true values with posterior standard deviations up to
0.34). We assume that, in combination with the lack of nitrogen
data S, steady-state time series, which cover a smaller range
in the state space, contain less information about the resource
density-dependent growth rates of algae feeding on nitrogen
fAS

hA+S
than cyclic time series. Estimates for rotifer maximum

growth rates ln(f
(j)
R ), on the other hand, were highly accurate

just as for cyclic time series. In contrast to fA, the data seem
to provide enough information on the growth rates of rotifers

feeding on algae
fRA

hR+A
even in steady-state time series, since

observations for both involved trophic levels are available. The

estimates for conversion factors ln(c
(j)
A ) and ln(c

(j)
R ) were also

less accurate for steady-state time series 1–10 than for cyclic
time series 11–20 (posterior medians deviate up to 0.47 from
true parameters, with an uncertainty of posterior standard
deviations up to 0.37). We assume that steady-state data is not
as informative as cyclic data on the conversion factors, as we

also observe a high correlation between the posterior of ln(c
(j)
A )

and ln(c
(j)
R ) for every steady-state time series (cf. Supporting

Information, Figure A3). Note that correlation per se does not
imply unidentifiability. We observed correlations between the
posteriors of cyclic time series parameters as well (cf. Supporting
Information, Figure A4), while these parameters are estimated
with a high accuracy.

3.3. Posterior Predictions
After assessing the identifiability of the hierarchical model in
a simulation study, we investigated its performance with the

experimental chemostat data.We generated posterior predictions
by numerical simulations of the ODE system (Equations 1–
3) with all samples of the posterior distribution (Figures 2, 3).
After a short transient phase, the median predicted trajectories
feature either a steady-state equilibrium (time series 1–9),
cyclic behavior (time series 13–18); or the posterior distribution
includes parameter samples producing steady states as well as
cyclic trajectories (time series 10–12). Correspondingly, we found
multimodalities in the posterior distributions of time series 10–12
(see Supporting Information, Figures A6, A7).

Interestingly, the relative uncertainty of the predictions
(quantified by 95% confidence intervals) for all state variables is
substantially reduced in time series 13–18 where the predictions
feature cyclic behavior compared to other time series (Figures 2,
3). We measured the predictive accuracy in the univariate time
series by normalized root mean-square-errors (cf. Figure A7,
Supporting Information). Here we see that the error distributions
are shifted to smaller values and become more narrow for cyclic
dynamics, also indicating a better fit. Again, thismay be explained
by acknowledging that steady-state data, which covers a smaller
range in the state space than cyclic data, contains less information
about the process rates and hence the parameters.

As no data constrains the predictions for nitrogen, the
uncertainty is even higher here than in algae or rotifers in
time series 1–9 (this was also observed for steady-state time
series in the simulation study, cf. Supporting Information
Figure A1). Also, we found that our ODE model is able
to predict the full amplitude of cycles in algal states better
than in rotifer states (Figures 2, 3). We further validated this
by calculating predictive accuracies (normalized root-mean-
square error, Figure A7, Supporting Information) and posterior
predictive checks (comparing observations and replicated
predictions drawn from the posterior Â

rep
i ∼ lognormal(Âi, σA)

and R̂
rep
i ∼ lognormal(̂Ri, σR), Figures A8, A9, Supporting

Information). This is likely caused by a higher regularity in the
algal data, which covers a larger amplitude decreasing the relative
counting error. Also, algae feature a less complex life cycle than
rotifers and their dynamics should thus be less variable.

3.4. Variation Among Time Series
For assessing the variation in the parameters across the
experimental chemostat time series (j = 1, . . . , 18), we
plotted the marginal (i.e., one-dimensional projections of
the multivariate) posterior probability distributions of the

logarithmic maximum growth rates ln(f
(j)
A ) and ln(f

(j)
R ) and

the logarithmic conversion factors, ln(c
(j)
A ) and ln(c

(j)
R ) of prey

and predators, respectively (Figure 4). We also computed
probabilities of pairwise contrasts Pjk = P(θ (j) > θ (k)) for a
more detailed examination of the differences across time series
(θ = fA, fR, cA, cR, Tables 2–5). Values close to one or close to
zero indicate significant pairwise differences. Note that the tables
are symmetrical in the sense of Pjk = 1− Pkj.

We found that time series with predicted steady states
feature systematically higher values of fA than time series with
cyclic dynamics (Figure 4A; Table 2, top right and bottom
left blocks). While in cyclic time series 13–18 values of fA
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FIGURE 1 | Posterior error distributions of maximum growth rates ln(f
(j)
A
)[d−1], ln(f

(j)
R
)[d−1], and conversion factors ln(c

(j)
A
)[cells µmol

−1 ], ln(c
(j)
R
)[ind cells

−1 ] for fitting

simulated time series (j = 1, . . . , 20). Simulated trajectories 1–10 featured a steady-state equilibrium (green), while simulated trajectories 11–20 featured cyclic

behavior (orange). Vertical lines represent medians, boxes represent 50% highest density intervals (HDIs) and horizontal lines represent 95% HDIs.
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FIGURE 2 | Experimental time series 1–9 of 18, data (dots) and posterior predictions of hierarchical model for nitrogen [µmol l
−1] (blue), algae [cells l

−1] (green) and

rotifers [ind l
−1] (red). Solid lines represent median predictions, shaded areas depict 95% highest density intervals of the predictions. Predicted trajectories 1–9

featured a steady-state equilibrium.

differ among each other (bottom right block), no evidence
was found for differences among steady-state time series 1–
9 (top left block). Steady-state time series also exhibit a high
uncertainty in fA estimates with confidence intervals spanning
from 2.43 d−1 to 40.85 d−1 when transformed back to a linear
scale (Figure 4A, see also Supporting Information, Table A1).
This uncertainty is substantially reduced in cyclic time series 13–
18 with confidence intervals spanning from 2.29 d−1 to 5.31 d−1.
Here, the predicted parameter values are close to the published

value in Fussmann et al. (2000), which however was published for
Chlorella instead of Monoraphidium, but should be in the same
range.

For the rates fR we found pairwise differences across all
time series (Figure 4B, Table 3). No systematic effect of cyclic
or steady-state time series was observed (i.e., fR estimates for
cyclic time series are not systematically smaller than estimates
for steady-state time series or vice versa). In contrast to the
rates fA, even steady-state data provide enough information on
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FIGURE 3 | Experimental time series 10–18 of 18, data (dots) and posterior predictions of fitted model for nitrogen [µmol l
−1] (blue), algae [cells l

−1] (green) and

rotifers [ind l
−1] (red). Solid lines represent median predictions, shaded areas depict 95% highest density intervals of the predictions. Predicted trajectories 13–18

featured cyclic behavior. Time series 10–12 featured multimodalities in the posterior distribution and the predictions did not exhibit a clear tendency toward a steady

state or cycles.

rates fR (with consumer and resource data available), resulting
in a low uncertainty in estimation just as for cyclic time
series.

The conversion factors cA and cR did not show significant
pairwise differences for steady-state time series 1–9
(Figures 4C,D; Tables 4, 5, top left blocks; with few exceptions
for cR). Some pairwise differences among cyclic time series
13–18 (bottom right blocks) and to steady-state time series (top

right and bottom left blocks) were observed, without being as
systematic as in fA. The uncertainty in parameter estimates is
slightly larger in steady-state time series than in cycles time
series, but the effect is not as prominent as in fA estimates
(see also full tables of estimates, Tables A1–A4, Supporting
Information). All findings of this section regarding uncertainties
in the parameter estimation were in accordance to the simulation
study’s results.
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FIGURE 4 | Marginal posterior distributions of maximum growth rates ln(f
(j)
A
)[d−1], ln(f

(j)
R
)[d−1], and conversion factors ln(c

(j)
A
)[cells µmol

−1 ], ln(c
(j)
R
)[ind cells

−1 ] for fitting

experimental time series (j = 1, . . . , 18). Predicted trajectories 1–9 featured a steady-state equilibrium (green), while predicted trajectories 13–18 featured cyclic

behavior (orange). Time series 10–12 (purple) featured multimodalities in the posterior distribution and the predictions did not exhibit a clear tendency toward a steady

state or cycles. Vertical lines represent medians, boxes represent 50% highest density intervals (HDIs) and horizontal lines represent 95% HDIs.

Frontiers in Ecology and Evolution | www.frontiersin.org 9 January 2019 | Volume 6 | Article 234

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Rosenbaum et al. Estimating Parameters From Time Series

TABLE 2 | Pairwise contrasts Pjk = P(f
(j)
A

> f
(k)
A

) of maximum growth rates fA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.65 0.66 0.47 0.57 0.47 0.46 0.23 0.51 0.54 0.61 0.84 0.97 0.94 0.99 0.99 1.00 0.88

2 0.35 0.50 0.32 0.40 0.32 0.32 0.15 0.36 0.37 0.45 0.65 0.80 0.75 0.88 0.85 0.97 0.66

3 0.34 0.50 0.32 0.39 0.32 0.31 0.15 0.35 0.36 0.45 0.65 0.80 0.75 0.88 0.86 0.97 0.65

4 0.53 0.68 0.68 0.61 0.50 0.49 0.23 0.53 0.58 0.64 0.87 0.99 0.98 1.00 0.99 1.00 0.95

5 0.43 0.60 0.61 0.39 0.40 0.39 0.17 0.44 0.44 0.55 0.83 0.98 0.96 1.00 0.99 1.00 0.88

6 0.53 0.68 0.68 0.50 0.60 0.49 0.25 0.54 0.58 0.64 0.86 0.98 0.96 0.99 0.99 1.00 0.90

7 0.54 0.68 0.69 0.51 0.61 0.51 0.25 0.54 0.59 0.64 0.86 0.98 0.96 0.99 0.99 1.00 0.91

8 0.77 0.85 0.85 0.77 0.83 0.75 0.75 0.78 0.87 0.83 0.94 1.00 1.00 1.00 1.00 1.00 0.99

9 0.49 0.64 0.65 0.47 0.56 0.46 0.46 0.22 0.53 0.60 0.83 0.96 0.93 0.99 0.98 1.00 0.87

10 0.46 0.63 0.64 0.42 0.56 0.42 0.41 0.13 0.47 0.57 0.87 1.00 1.00 1.00 1.00 1.00 1.00

11 0.39 0.55 0.55 0.36 0.45 0.36 0.36 0.17 0.40 0.43 0.71 0.86 0.82 0.94 0.91 1.00 0.71

12 0.16 0.35 0.35 0.13 0.17 0.14 0.14 0.06 0.17 0.13 0.29 0.88 0.60 0.99 0.98 1.00 0.26

13 0.03 0.20 0.20 0.01 0.02 0.02 0.02 0.00 0.04 0.00 0.14 0.12 0.15 0.98 0.94 1.00 0.00

14 0.06 0.25 0.25 0.02 0.04 0.04 0.04 0.00 0.07 0.00 0.18 0.40 0.85 1.00 0.99 1.00 0.04

15 0.01 0.12 0.12 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.06 0.01 0.02 0.00 0.25 1.00 0.00

16 0.01 0.15 0.14 0.01 0.01 0.01 0.01 0.00 0.02 0.00 0.09 0.02 0.06 0.01 0.75 1.00 0.00

17 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 0.12 0.34 0.35 0.05 0.12 0.10 0.09 0.01 0.13 0.00 0.29 0.74 1.00 0.96 1.00 1.00 1.00

Bold numbers indicate significant differences, quantified by probabilities Pjk > 0.90 (f
(j)
A significantly larger than f

(k)
A ) and probabilities Pjk < 0.10 (f

(j)
A significantly smaller than f

(k)
A ). Block

partitioning refers to time series 1–9 featuring a steady-state equilibrium, 10–12 having multimodal posterior distributions featuring both steady states and cycles, and 13–18 featuring

cyclic dynamics.

TABLE 3 | Pairwise contrasts Pjk = P(f
(j)
R

> f
(k)
R

) of maximum growth rates fR.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1.00 1.00 0.81 0.94 0.99 0.97 0.00 0.98 0.00 0.46 1.00 1.00 1.00 0.61 0.03 0.99 0.01

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.19 1.00 1.00 0.81 0.98 0.92 0.00 0.92 0.00 0.16 0.99 1.00 1.00 0.28 0.00 0.96 0.00

5 0.06 1.00 1.00 0.19 0.91 0.80 0.00 0.79 0.00 0.05 0.96 0.99 0.97 0.09 0.00 0.85 0.00

6 0.01 1.00 1.00 0.02 0.09 0.39 0.00 0.37 0.00 0.01 0.68 0.75 0.70 0.01 0.00 0.39 0.00

7 0.03 1.00 1.00 0.08 0.20 0.61 0.00 0.48 0.00 0.02 0.75 0.81 0.77 0.04 0.00 0.52 0.00

8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99

9 0.02 1.00 1.00 0.08 0.21 0.63 0.52 0.00 0.00 0.02 0.77 0.84 0.79 0.04 0.00 0.54 0.00

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.07 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 0.90

11 0.54 1.00 1.00 0.84 0.95 0.99 0.98 0.00 0.98 0.00 1.00 1.00 1.00 0.66 0.03 0.99 0.01

12 0.00 1.00 1.00 0.01 0.04 0.32 0.25 0.00 0.23 0.00 0.00 0.54 0.51 0.00 0.00 0.24 0.00

13 0.00 1.00 1.00 0.00 0.01 0.25 0.19 0.00 0.16 0.00 0.00 0.46 0.47 0.00 0.00 0.16 0.00

14 0.00 1.00 1.00 0.00 0.03 0.30 0.23 0.00 0.21 0.00 0.00 0.49 0.53 0.00 0.00 0.21 0.00

15 0.39 1.00 1.00 0.72 0.91 0.99 0.96 0.00 0.96 0.00 0.34 1.00 1.00 1.00 0.01 0.98 0.00

16 0.97 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 0.05 0.97 1.00 1.00 1.00 0.99 1.00 0.33

17 0.01 1.00 1.00 0.04 0.15 0.61 0.48 0.00 0.46 0.00 0.01 0.76 0.84 0.79 0.02 0.00 0.00

18 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.01 1.00 0.10 0.99 1.00 1.00 1.00 1.00 0.67 1.00

Bold numbers and block partitioning as in Table 2.

3.5. Comparison to Complete Pooling
Model Fitting
To further support the importance of variation among the
parameter estimates, we also fitted the complete pooling model
using a single set of parameters {fA, fR, cA, cR} for all 18 time
series as a null model. We used the same priors and model fitting

specifications as above. Although a formal model comparison via
information criteria is generally available for Bayesian statistics

(Vehtari et al., 2018), it is not applicable to our dynamical model,
since predictions (and therefore residuals) are correlated along

time. Hence, we compare the complete pooling and the partial

pooling (hierarchical) model qualitatively and quantitatively via
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TABLE 4 | Pairwise contrasts Pjk = P(c
(j)
A

> c
(k)
A
) of conversion factors cA.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.45 0.63 0.46 0.41 0.38 0.32 0.66 0.55 0.69 0.57 0.30 0.13 0.07 0.60 0.89 0.68 0.72

2 0.55 0.68 0.51 0.46 0.43 0.36 0.71 0.61 0.76 0.62 0.33 0.14 0.08 0.67 0.94 0.75 0.79

3 0.37 0.32 0.33 0.28 0.27 0.21 0.55 0.43 0.58 0.44 0.20 0.04 0.02 0.45 0.85 0.55 0.60

4 0.54 0.49 0.67 0.45 0.43 0.36 0.70 0.60 0.74 0.62 0.32 0.14 0.08 0.66 0.93 0.74 0.78

5 0.59 0.54 0.72 0.55 0.47 0.40 0.74 0.65 0.78 0.66 0.37 0.18 0.11 0.70 0.94 0.78 0.81

6 0.62 0.57 0.73 0.57 0.53 0.42 0.76 0.66 0.79 0.68 0.40 0.21 0.14 0.72 0.94 0.79 0.82

7 0.68 0.64 0.79 0.64 0.60 0.57 0.80 0.72 0.84 0.74 0.46 0.29 0.19 0.78 0.96 0.84 0.87

8 0.34 0.29 0.45 0.30 0.26 0.24 0.20 0.39 0.52 0.40 0.20 0.06 0.03 0.41 0.77 0.49 0.53

9 0.45 0.39 0.57 0.40 0.35 0.34 0.28 0.61 0.64 0.51 0.26 0.09 0.05 0.54 0.87 0.62 0.66

10 0.31 0.24 0.42 0.26 0.22 0.21 0.16 0.48 0.36 0.37 0.16 0.02 0.01 0.35 0.84 0.46 0.51

11 0.43 0.38 0.56 0.38 0.34 0.32 0.26 0.60 0.49 0.63 0.25 0.08 0.05 0.52 0.87 0.61 0.65

12 0.70 0.67 0.80 0.68 0.63 0.60 0.54 0.80 0.74 0.84 0.75 0.33 0.19 0.80 0.94 0.84 0.86

13 0.87 0.86 0.96 0.86 0.82 0.79 0.71 0.94 0.91 0.98 0.92 0.67 0.29 0.99 1.00 1.00 1.00

14 0.93 0.92 0.98 0.92 0.89 0.86 0.81 0.97 0.95 0.99 0.95 0.81 0.71 0.99 1.00 1.00 1.00

15 0.40 0.33 0.55 0.34 0.30 0.28 0.22 0.59 0.46 0.65 0.48 0.20 0.01 0.01 0.95 0.64 0.72

16 0.11 0.06 0.15 0.07 0.06 0.06 0.04 0.23 0.13 0.16 0.13 0.06 0.00 0.00 0.05 0.10 0.11

17 0.32 0.25 0.45 0.26 0.22 0.21 0.16 0.51 0.38 0.54 0.39 0.16 0.00 0.00 0.36 0.90 0.57

18 0.28 0.21 0.40 0.22 0.19 0.18 0.13 0.47 0.34 0.49 0.35 0.14 0.00 0.00 0.28 0.89 0.43

Bold numbers and block partitioning as in Table 2.

TABLE 5 | Pairwise contrasts Pjk = P(c
(j)
R

> c
(k)
R
) of conversion factors cR.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.64 0.67 0.61 0.36 0.29 0.16 0.68 0.69 0.92 0.62 0.96 0.99 1.00 0.69 1.00 0.69 0.47

2 0.36 0.52 0.45 0.24 0.19 0.11 0.52 0.54 0.81 0.47 0.91 0.95 0.98 0.50 1.00 0.51 0.31

3 0.33 0.48 0.43 0.21 0.16 0.09 0.50 0.52 0.83 0.44 0.92 0.97 0.99 0.49 1.00 0.50 0.27

4 0.39 0.55 0.57 0.25 0.19 0.10 0.57 0.59 0.89 0.51 0.95 0.99 1.00 0.56 1.00 0.57 0.32

5 0.64 0.76 0.79 0.75 0.40 0.24 0.79 0.80 0.97 0.74 0.98 1.00 1.00 0.82 1.00 0.82 0.63

6 0.71 0.81 0.84 0.81 0.60 0.32 0.84 0.85 0.98 0.80 0.99 1.00 1.00 0.87 1.00 0.87 0.71

7 0.84 0.89 0.91 0.90 0.76 0.68 0.91 0.92 0.99 0.89 0.99 1.00 1.00 0.94 1.00 0.94 0.85

8 0.32 0.48 0.50 0.43 0.21 0.16 0.09 0.52 0.82 0.45 0.91 0.96 0.99 0.48 1.00 0.49 0.28

9 0.31 0.46 0.48 0.41 0.20 0.15 0.08 0.48 0.81 0.43 0.91 0.96 0.98 0.46 1.00 0.47 0.26

10 0.08 0.19 0.17 0.11 0.03 0.02 0.01 0.18 0.19 0.14 0.75 0.86 0.93 0.10 0.99 0.12 0.02

11 0.38 0.53 0.56 0.49 0.26 0.20 0.11 0.55 0.57 0.86 0.93 0.97 0.99 0.55 1.00 0.56 0.34

12 0.04 0.09 0.08 0.05 0.02 0.01 0.01 0.09 0.09 0.25 0.07 0.59 0.79 0.05 0.97 0.05 0.02

13 0.01 0.05 0.03 0.01 0.00 0.00 0.00 0.04 0.04 0.14 0.03 0.41 0.76 0.00 0.97 0.01 0.00

14 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.07 0.01 0.21 0.24 0.00 0.88 0.00 0.00

15 0.31 0.50 0.51 0.44 0.18 0.13 0.06 0.52 0.54 0.90 0.45 0.95 1.00 1.00 1.00 0.51 0.19

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.03 0.12 0.00 0.00 0.00

17 0.31 0.49 0.50 0.43 0.18 0.13 0.06 0.51 0.53 0.88 0.44 0.95 0.99 1.00 0.49 1.00 0.20

18 0.53 0.69 0.73 0.68 0.37 0.29 0.15 0.72 0.74 0.98 0.66 0.98 1.00 1.00 0.81 1.00 0.80

Bold numbers and block partitioning as in Table 2.

their predictions. In contrast to the previous hierarchical model,
the complete pooling model produces transient and steady-
state predictions for all time series. Cyclic dynamics can not be
reproduced (Supporting Information, Figures A10, A11). Also,
the predicted equilibrium fails to reproduce the correct level of
algae and rotifer states in some cases. This corresponds to a
generally lower predictive accuracy when fitting algal and rotifers
time series with the complete pooling model as compared to
the hierachical model (Supporting Information, Figure A7). The

effect is highest for cyclic time series 13–18, but also pronounced
in time series 2, 3, 8, and 10, where the equilibrium states are not
reproduced correctly.

3.6. Transition From Cyclic Dynamics to
Steady States
To support the observation that low maximum growth rates
fA cause cyclic dynamics while high maximum growth rates

Frontiers in Ecology and Evolution | www.frontiersin.org 11 January 2019 | Volume 6 | Article 234

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Rosenbaum et al. Estimating Parameters From Time Series

yield a steady-state equilibrium (Figure 4), we performed a
simulation study. We numerically simulated the chemostat
model (Equations 1–3) while systematically varying growth
rates fA between 1 d−1 and 7.389 d−1 (corresponding to
parameter values ln(fA) between 0 and 2). The maximum
growth rate of the predator and the conversion factors were
held constant at their estimated overall means exp(µln(θ))
across the 18 time series (fR = 1.419 d−1, cA = 3.865 ·

107 cells µmol−1, cR = 1.065 · 10−5 ind cells−1). The bifurcation
diagram (Figure 5) shows system states of simulations over
200 days after discarding the first 100 days and clearly
indicates cycles for low growth rates and steady states for
high growth rates, with the Hopf bifurcation located in fA =

4.446 d−1.

4. DISCUSSION

In this study we presented how a differential equations
model can be fitted to observed time series data of species
abundances, taking predator-prey dynamics as an example. Next
to obtaining key model parameters in situ, this method
allows to decipher variability in the outcomes among
replicates and to point toward probable sources of this
variability.

The comparison of choosing the time series identity as a
random effect (partial pooling) to a model using only a single
set of parameters (complete pooling) shows that allowing for
such a variability in the parameters between replicates can be
crucial to see whether time series data agree with a model.

FIGURE 5 | Bifurcation diagram for simulations with varying maximum growth

rate fA, while keeping the remaining parameters constant at the fitted overall

means. A Hopf bifurcation occurs at fA = 4.446.

Especially if a certain parameter is close to a bifurcation, as it
seems to be the case in our system for the maximum growth
rate of the algae fA, minor deviations in this parameter result
in different predictions for the system dynamics. In such cases,
in-situ parameter estimation allows the detection of parameter
sets for both steady states and cyclic dynamics, which can
be separated by a multi-dimensional bifurcation boundary in
models with a high number of parameters. Thereby, the chosen
model structure may be accepted for all replicates, even if
their dynamics differ, without increasing the model complexity.
Instead, more than one parameter set might be needed to
cover the whole diversity of possible and observable patterns in
population dynamics.

Of course, this method requires that the model structure used
for fitting the data applies sufficiently well to the mechanisms
acting in the system delivering the data. Also, the data quality
has to be high enough. We see that the dynamics of the prey
are fitted better than those of the predator, which may be
explained by different mechanisms: (i) The densities of the
prey in the data are much larger than those of the predator.
Assuming that the relative experimental error of counting
decreases with larger individual numbers, this error should be
smaller for the prey than for the predator. This increases the
regularity of the dynamical patterns and simplifies the fitting
of the prey time series. (ii) Rotifers, as metazoan animals,
possess a more complex life-cycle than algae. Their dynamics
may be affected by age-structure, variable resource co-limitation
and other factors, which, for simplicity, were not included in
the model. These non-modeled processes obviously decrease
the goodness of fit. (iii) As no data was available for the
resource of the prey, the parameters of the prey were confined
only by the prey data, leaving more flexibility to improve the
fitting in the prey’s states. Contrarily, the parameters of the
predator were more restricted, as both prey and predator data
was available, leaving less flexibility for fitting the predator’s
states.

Interestingly, the type of population dynamics affects the
quality of the inference as well. Population cycles contain
a higher degree of information on the system than steady
states, as also rates of change are apparent, additional
to the biomasses of the trophic levels. This manifests in
more narrow parameter estimates (Figure 4) and leads to
more certain predictions (Figures 2, 3). Also, steady-state
fits give rather (and partially unrealistically) high estimates
for algal growth rates, whereas those from cyclic population
dynamics are estimated close to published values. These
findings were also confirmed in a simulation study by fitting
the model to synthetic data generated by known parameters
(Figure 1).

Variability in key parameters suggests a heterogeneity in the
traits that are encoded by these parameters. Heterogeneous traits
imply intra-specific variability which may enable populations to
escape perturbations and to persist in the presence of strong
stressors (Reusch et al., 2005; Bell and Gonzalez, 2009; Chevin
et al., 2010). Bayesian parameter inference provides uncertainty
estimates on key parameters and thereby allows to detect such
variability in experiments. We propose that this technique may
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also help to quantify the presence of trait heterogeneity in
nature.
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