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All basic processes of ecological populations involve decisions; when and where
to move, when and what to eat, and whether to fight or flee. Yet decisions and
the underlying principles of decision-making have been difficult to integrate into the
classical population-level models of ecology. Certainly, there is a long history of
modeling individuals’ searching behavior, diet selection, or conflict dynamics within
social interactions. When all the individuals are given certain simple rules to govern
their decision-making processes, the resultant population—level models have yielded
important generalizations and theory. But it is also recognized that such models do not
represent the way real individuals decide on actions. Factors that influence a decision
include the organism’s environment with its dynamic rewards and risks, the complex
internal state of the organism, and its imperfect knowledge of the environment. In the
case of animals, it may also involve complex social factors, and experience and learning,
which vary among individuals. The way that all factors are weighed and processed to
lead to decisions is a major area of behavioral theory.

While classic population-level modeling is limited in its ability to integrate decision-making
in its actual complexity, the development of individual- or agent-based models
(IBM/ABMs) (we use ABM throughout to designate both “agent-based modeling” and
an “agent-based model”) has opened the possibility of describing the way that decisions
are made, and their effects, in minute detail. Over the years, these models have increased
in size and complexity. Current ABMs can simulate thousands of individuals in realistic
environments, and with highly detailed internal physiology, perception and ability to
process the perceptions and make decisions based on those and their internal states.
The implementation of decision-making in ABMs ranges from fairly simple to highly
complex; the process of an individual deciding on an action can occur through the use
of logical and simple (if-then) rules to more sophisticated neural networks and genetic
algorithms. The purpose of this paper is to give an overview of the ways in which decisions
are integrated into a variety of ABMs and to give a prospectus on the future of modeling
of decisions in ABMs.

Keywords: agent-based models, spatially explicit models, optimization, proximate decisions, genetic algorithms,
artificial neural networks
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INTRODUCTION

The role of decision-making by individual organisms is largely
ignored in the classical mathematical models of ecology, such as
the logistic population models, Lotka-Volterra predator-prey and
competition models, and their many variations. These models,
as well as their extensions to space, as reaction-diffusion partial
differential equation (PDE) models, treat organisms as randomly
moving atoms, with added features of growth, reproduction,
mortality, and interactions with their environment and other
organisms. Because the classical models of ecological populations
have been successful in revealing much about ecological systems,
one might ask if decision-making by individuals is unimportant
enough that it can be ignored at the population level, at
least for simple organisms. But something like decisions are
continually made, even by organisms perceived as simple.
Bray (2009) notes that single-celled animals, like swimming
paramecia, “continually encounter different situations... and
have to evaluate their options and assign priorities.” Wagner
(2009) asks “Does the bacterium choose to change direction?”
and concludes that this may be a matter of perspective. In more
complex organisms, such as social ants, “each individual is a
sensitive unit which can process a lot of information” (Detrain
and Deneubourg, 2006). These actions are programmed into the
organism’s DNA, and are unconscious, but clearly decisions are
being made, and we will follow Ydenberg (2010) (cited in Rypstra
etal., 2015) in calling a decision “wherever one or two (or more)
options is/are selected.”

How important these decisions are at the population level and
above is therefore an important question, even for organisms
of low cognitive ability. Our perspective in this review is from
that of population and community ecology and how modeling
helps link individual behaviors to phenomena at the level of
collections of individuals. We begin with a brief overview of
how decisions have been incorporated in some classical analytic
models of ecology. Then we introduce agent-based modeling
(ABM) and describe how it has been used to simulate decision-
making in individual movement, foraging behavior, population
interactions, and social interactions within populations. This is
not intended to be comprehensive, but to touch on a variety of
ways ABM is used. Finally, we discuss more recent developments
in modeling decisions within population models and present a
prospectus for future directions.

DECISIONS IN CLASSICAL POPULATION
MODELS

The use of modeling to address the question of the effect of
individual decisions on population level dynamics developed
more slowly than modeling of the converse question of how
ecological context influences the effects of decisions on individual
fitness. The latter has been explored by behavioral ecologists
using classical population models for several decades, focusing
especially on decisions regarding foraging movement and its
effects on the fitness of individuals. Additionally, some models
have been able to incorporate decision-making when modeling

collections of individuals, whole populations, and even multiple
populations.

Movement of animals toward favorable conditions could be
decomposed into simple decisions on directed movement, or
taxis, in relation to light, temperature, or resource gradients.
Because it may be difficult for organisms to detect gradients,
but possible to assess conditions at a current location, many
models focused on kinesis, which involves decisions on when
to speed up, slow down, or turn in response to detected local
conditions (e.g., Gunn and Fraenkel, 1961; Schone, 1984; Bell,
1991; Griinbaum, 1999; Gautestad, 2016). Other models used
“restricted area search” in which organisms evaluate conditions
within a limited area before making a movement choice (e.g.,
Humston et al., 2004). Movement decisions can be combined
with decisions on settling at a place or leaving it, for which
a variety of modeling approaches are used (Lima and Zollner,
1996). At one extreme, animals may simply move in one direction
until they find a spot to settle, or they may use spatial memory
and learning to gain knowledge of the landscape such that they
can choose the nearest detectable habitat patch (Fahrig, 1988).
Decisions on leaving a patch may increase as the level of resources
is depleted. Mathematical theory has been applied to predict the
optimal time to leave a patch, depending on its resource level
relative to other patches and travel costs (Charnov, 1976), or
to predict what succession of patches, with varying risks and
rewards, to choose in order to maximize fitness over longer times
(Mangel and Clark, 1988; Houston and McNamara, 1999; Clark
and Mangel, 2000), an approach referred to as Dynamic State
Variable Modeling (DSVM).

The step from modeling individuals to modeling collections
of individuals could in some cases be done using mathematical
models, in which all individuals follow the same basic rules
that could be incorporated into PDEs. For example, Skalski and
Gilliam (2000) used an advective-diffusion model to simulate
patterns of fish formation in which the only decisions involved
swimming fast or slow and having an upstream directional bias
rather than pure random movement. However, many observed
movement patterns of collectives, such as of flocks of birds,
schools of fish, swarms of insects, and patterns formed by herding
mammals, are more complex. Modeling these patterns requires
more than movement decisions based on abiotic conditions, but
they can be approximated when the PDEs also incorporate terms
that represent decisions to move up or down population density
gradients. Such individual movement behavior differs from
random walk and can result in various patterns of collections
of organisms (Patterson et al.,, 2008). “Purposeful kinesis” can
alter diffusive patterns (Gorban and Cabukoglu, 2018), leading
to positive density-dependent diffusion, or “super-diffusion,” and
other variations on diffusion through dependence on population
density (Topaz and Bertozzi, 2004; Lutscher, 2008; Almeida et al.,
2015; Tilles and Petrovskii, 2016). For example, the phenomenon
of clustering, in insect swarms and fish shoals, can occur when
individuals accelerate in the direction of a positive density
gradient (Tyutyunov et al., 2004). Flier] et al. (1999) provide a
general review of mathematical modeling of collective behavior.

The influence of individual decisions on the level of whole
populations and multi-population systems can also be studied
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when decision-making is incorporated into models of classical
ecology, if the decisions are limited to simple rules, such as
optimization of fitness in foraging (MacArthur and Pianka, 1966;
Charnov, 1976), or in diet selection (Pulliam, 1974) and life
history (Roff, 1992). For example, if all individuals foraging on
a spatial environment of habitat patches with different resource
levels are assumed to move among them until no further
movement would increase their fitness, the population would
reach what is called an Ideal Free Distribution (IFD) (Fretwell
and Lucas, 1969). The IFD concept applies to a wider range
of decisions, such as the choice that organisms in a population
have in allocating resources in different proportions to foraging,
defense, reproduction, etc. A particular example is that of
predator-induced defenses, which are known to exist in many
ecological systems and may involve changes in both morphology
and behavior. The defended individuals are still edible but less
so than undefended prey and, as a tradeoff, have lower resource
intake rates than undefended prey. Recently it has been shown
that the existence of inducible defenses in species at the bottom
or middle of the food chain can affect the stability of the food
chain, as well as the ability of the top predator to exert top-
down control on the system (Vos et al, 2004). In DeAngelis
et al. (2007), a system containing a predator, a prey with an
inducible defense, and a resource of the prey, was studied using
a differential equation model, with Holling type 2 functional
responses describing the trophic interactions. The prey could
choose between allocation to induced defense, with the tradeoff of
lower resource uptake. The prey population evolved to switching
between defense and non-defense, leading to a balance in which
certain proportions of prey were in the undefended state and the
rest in the defended state, the proportions depending on predator
density. The prey in each state had equal fitness, so this was an
IED. This strategy of the prey influenced the populations of the
whole food chain.

Mathematical models have also represented simple decisions
on allocation of time and energy to foraging vs. avoiding or
defending against predators (Abrams, 1982, 1993; Lima and
Dill, 1990; Abrams and Matsuda, 1993; Lima and Zollner, 1996;
Werner and Peacor, 2003). Other models, using differential
equations, describe a forager in an environment of several prey, in
which the forager could choose which prey to feed on, based on a
maximization of long-term food intake (e.g., Feng et al., 2009).
Another approach of classical mathematical theory in ecology
is game theory, which can be used to determine the optimal
strategy of an individual when the expected pay-oft of a decision
(e.g., to “fight or flee” when in a confrontation) depends on the
decisions made by other individuals (Riechert and Hammerstein,
1983). In all these cases models showed that optimal decisions
taken by members of the populations can have large ecosystem
consequences.

AGENT-BASED MODELING IN ECOLOGY

The fact that mathematical or analytic models based on a few
simple decision rules can explain even complex patterns is
remarkable, and such modeling is still a lively and important

area of theory. But behaviorists recognized that the capacity
of these simple models to represent the real decisions of
organisms, determined by a multitude of inputs, was limited, and
that inclusion of decision-making was important (Dill, 1987).
Two trends in ecology that are relevant to that problem have
accelerated over the past two decades. One trend is the increasing
recognition of marked variability within populations, not just in
age, size, or stage, but also in behaviors of individuals within
given classes. In fact, individuals across many taxa appear to
have their own personalities, or temporally consistent “behavioral
tendencies” (Biro and Stamps, 2008; Beekman and Jordan,
2017). The prevalence of behavioral differences, or different
personalities, that exists across animal taxa was reviewed in a
pivotal paper (Bolnick et al., 2003). Personality differences such as
“bold” vs. “conservative” behavior in fish (e.g., Blake et al., 2018)
exist and involve various aspects of behavior, such as responses
to intra-and inter-specific competition (Araujo et al., 2011; Dall
et al., 2012), and tradeoffs between growth and mortality (Biro
and Stamps, 2008) and early and late reproduction (Wolf et al.,
2011). Bolnick et al. (2011) discuss several ways in which this
individual-level specialization can affect community dynamics,
which is an impetus to including individual differences in models.
Variation in individuals, and therefore in their possible decision-
making, casts further doubt on the capability of analytic models
to adequately represent real populations. The second trend is
the rapid spread of individual- or agent-based modeling (ABM),
which has become an established approach with numerous
modeling platforms and is encompassed by a vast literature. The
latter development may provide a solution to the impasse of
creating models of sophistication comparable to what is known
about decision-making.

ABMs are ideally suited to accounting for individual
differences in organisms. First applied to tree communities
(Botkin et al., 1972), in the last few decades ABMs have
become well established in all areas of ecology. ABMs simulate
the interactions of autonomous “agents,” generally representing
individual organisms or other real-world entities, with other
agents and with the external environment (DeAngelis and
Mooij, 2005). In ABMs, every individual of a population can,
in principle, be simulated to almost any level of detail. Each
agent may have state variables representing internal states,
including behavioral states, and each can have a unique history
of interactions with its environment and other agents (DeAngelis
and Grimm, 2014). Agent-based modeling attempts to capture
the variation among individuals that is relevant to the questions
being addressed. In particular, it can incorporate what is known
about individual decision-making to explore the consequences
in population and community models (Parunak et al., 1998;
Railsback, 2001; Vincenot, 2018).

An ABM can be used where decisions are complex and/or
are in a setting of populations or communities. The simplest
and most straightforward way to represent individual decision-
making in an ABM is to utilize logical rules following the
“if-then” structure. The behavior of an individual can be
modeled when the “if” part contains a condition, and the
proceeding “then” part presents the individual’s response. The
rules governing decision-making processes can be set up in
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various ways. Strictly logical, deterministic rules would assign
only one possible behavior to an individual in a particular
circumstance (Grimm and Railsback, 2005). Alternatively, a rule
may be probabilistic, with a different probability for each choice
in an array of possible actions in response to some stimulus. Rules
may also be a combination of probabilistic and deterministic. For
many animals, however, decision-making processes may be more
complex, and can be influenced by many variables including
the internal state of the individual, that may vary among
individuals. As will be discussed later, ABMs are increasingly
being used in situations where organisms are assumed to have
incomplete knowledge of the surrounding environment, and
differences in perception and navigation capacities, but are
able to employ cognitive skills to make choices that are good
proximate decisions, albeit less than optimal. In this way, ABMs
are able to encapsulate the basic underlying principles of the
decision-making process in a more realistic way than classical
models, and may more effectively represent the way individuals
actually decide on actions and how the resulting behaviors shape
population-level processes (Figure 1).

MOVEMENT DECISIONS AND THEIR
CONSEQUENCES

ABMs have been used extensively to simulate the movement
behavior of both terrestrial and marine organisms, due in
large part to their flexibility in incorporating the various
components that influence an individual’s movement through
space. These components include an individual’s internal state,
external environment, and navigational and motion capabilities
(Tang and Bennett, 2010; Figure2). ABMs can represent a
variety of dynamic physiological and psychological state variables
comprising an organism’s internal state, including commonly
used bioenergetic variables (Tang and Bennett, 2010). When
simulating movement through space, the external environment
is generally spatially-explicit, often represented as grid cells, such
that the location of agents and environmental attributes and the
spatial relationship between them is explicitly defined (Duning,
1995; Bauer and Klaassen, 2013).

By portraying an individual’s dynamic environment and
internal state in detail, ABMs can capture the two important
decisions that an individual in motion must continually make:
when to move, and where to move. The models can also be
used to derive the consequences of many organisms moving and
interacting with each other at the same time, which gives rise to
spatial patterns.

When to Move?

ABMs for movement generally incorporate rules that dictate
when an individual agent decides to move from its current
location. For real-world organisms, the onset of movement at
fine scales may depend on the individual’s current internal
state, including its physiological and psychological conditions,
the condition of the current area that the individual is in, and
the presence of competition and predation (Semeniuk et al.,
2011; Martin et al, 2013; Doherty and Driscoll, 2017). As

such, ABMs simulating the fine-scale movement of individuals
often keep track of temporal changes in the individual agent’s
internal state and its local surroundings. These changes generally
prompt agent movement if they somehow increase (or at the
very least, not decrease) the agent’s fitness. For example, brown
and rainbow trout agents decide to move from their position if
the previous day’s calculated ratio of mortality risk to growth
is greater than expected. Thus, at a given time step, fish
agents might move to maximize the ratio of growth to risk of
mortality (Van Winkle et al., 1998). Bear agents in an ABM
simulating human-bear interactions decide to move to a new
location if their current location has a low amount of food,
or if they are threatened by human activity (Marley et al,
2017).

An individual’s decision on when to move may be influenced
by the individual’s life cycle and social factors. ABMs can
track important biological changes of many individuals through
time and be utilized to explore how these changes influence
movement when placed within a social context. For example,
Neuert et al. (1995) developed a model of the territorial group-
living green woodhoopoe (Phoeniculus purpureus) to address
the question of when a subdominant (and thus non-breeding)
individual should decide to leave the group and scout for
a territory on which it could breed, vs. waiting around to
become high enough in status to breed at its natal site. In
the model, the decision was based on its own age and rank,
where the rank is correlated with age. The simple decision
trait of higher propensity to go on scouting forays with
increasing age provided the best agreement with empirical
data.

Large scale movement, such as migration, may be triggered
by temporal changes in resource availability (Van Moorter et al.,
2013) along with a number of other factors, and ABMs have
been utilized to explore the potential decision-rules that may
dictate the timing of such behavior for various species. For
example, (Duriez et al., 2009) assumed the following factors to
be important for the timing of pink-footed geese migration; (1)
having minimal body stores, (2) having maximal stores, (3) date,
(4) temperature, (5) plant phenology, and (6) fixed duration
of stay. The authors found that decision-rules related to food
resources were important for dictating the onset of migration,
but later in the season, decision-rules related to the geese agents’
internal clocks and date are likely used.

Movement is also involved in the range expansion of
a population, and Bocedi et al. (2014) modeled range
expansion by considering three phases. Within the ABM,
there is an initial probability of offspring dispersing from
a natal cell, which can depend on population density.
Then there is “transfer probability;” the direction of which
is weighted by the costs of moving to each adjacent cell,
which depends on landscape composition of the cell and
neighboring animals. In the final phase, four alternative
strategies were compared to determine which best described
settlement probability, and each of which was based
on a combination of several factors, including habitat
suitability, presence of a potential mate, and density of
conspecifics.

Frontiers in Ecology and Evolution | www.frontiersin.org

January 2019 | Volume 6 | Article 237


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

DeAngelis and Diaz

Decision-Making in Agent-Based Models

More proximate
decision-making,
uncertainty, emergence

‘State and
prediction’

Adaptive ~ models ABM:s of

dy foraging and
species

Individual-based
neural-network-genetic
algorithm (ING)

ABM:s of social
interactions
within
populations

Mathematical
models of
collective
behavior

Mathematical
models and
simple
simulations

behaviors resulting from lower-level interactions.

FIGURE 1 | Schematic representation of the models and methodologies utilized to model decision-making in ecology. Along the horizontal axis, these models and
methodologies are able to introduce greater individual complexity and represent more complex interactions. Along the vertical axis, the models’ entities can be
characterized by more proximate decision-making. There is more uncertainty introduced along this axis, but also a greater level of emergence, or higher-level

interactions

ABMs of
collective
movement

ABMs of
individual
animal
movement

More individual-level
complexity and complex
interactions

Where to Move?

Many organisms can process information about
environment and make movement decisions to

their
satisfy
internal desires. Changes in the internal state of an organism
may result in changes in the organism’s goals, movement
decisions, and subsequent movement behavior (Tang and
Bennett, 2010). When deciding where to move, mobile
animals rely on their navigation capacity, which links the
animals’ internal states and external variables and manifests
itself as either non-oriented, oriented, or memory-driven
movement (Nathan et al., 2008; Doherty and Driscoll, 2017).
The ABM framework lends itself to representing dynamic
environmental cues, particularly when the spatiotemporal
relationships between the agent and the environment is
explicitly represented, as in spatially explicit ABMs. The
internal states of individuals can be represented as dynamic

state variables and integrated with the cognitive capabilities
of individuals, which allows model agents to assess various
movement decisions within complex landscapes and ultimately
decide on their next destination (Tang and Bennett, 2010).
Additionally, some stochasticity in selecting an area to
move to is incorporated within many ABMs by using a
combination of probabilistic and logical rules, reflecting
imperfect knowledge of the environment and perception
capabilities.

Many ABMs simulating animal movement explicitly represent
and track various components of an individual agent’s internal
state in detail, often resulting in movement characteristics that
closely mimic those of real-world organisms. For example,
Semeniuk et al. (2012) explored potential habitat-selection
strategies employed by woodland caribou in response to
industrial features in the landscape and represented the caribou’s
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FIGURE 2 | Schematic illustrating the major components influencing animal movement, all of which can be represented within an ABM (Baguette et al., 2014).

internal states by primarily tracking an individual’s energy gain
and loss. The caribou’s decision on selecting a destination
cell was influenced by its daily energetic state, reproductive
energy requirement, and predation risk. The way that the
internal state of the agent influenced movement varied for each
alternative habitat-selection strategy. The authors found that the
behavioral strategy concerned with balancing daily energy intake,
conserving energy for reproduction, and minimizing predation
risk agreed with real-world data better than the other strategies
(Semeniuk et al., 2012). Watkins et al. (2015) kept track of energy
reserves of jaguar agents within a model landscape representing
central Belize. The landscape cells were characterized by
attributes including food availability, the presence of marks
from other jaguars, and the presence of roads. When agents
decide to move, their decision-making process concerning cell
selection depends on the habitat attributes underlying a specific
cell and the agent’s internal state, namely, energy reserves. The
individual jaguar’s energy reserve levels modulate the preference
of different attributes; consequently, agents with high energy
reserve levels may decide to move to a cell that does not
necessarily have high food availability; see also Lewison and
Carter (2004) for an ABM simulating hippopotamus foraging
behavior.

When information on the dynamics of an individual’s internal
state is lacking, it may be appropriate to simulate movement
by using simple decision rules based on empirical observations
of the resistance that different habitat types may confer to
the movement of real-world individuals. For example, Aben
et al. (2014) developed and explored the effectiveness of an
ABM in simulating forest bird movement, in which a bird
agent’s selection of a cell (habitat area) to move to at any

given time step was partially determined by the land-cover class
that characterized a given cell. Land-cover classes conferring
more resistance to movement were given higher “cost” values.
Spatial cells characterized as having a low cost to birds that
are moving through the cells had a higher probability of
being selected than cells characterized as having a high cost.
Similarly, simple decisions rules governing the selection of
destination cells may be based on the quality of the surrounding
environment, such that agents generally move toward preferred
or favorable areas. In an ABM developed to estimate landscape
connectivity for bighorn sheep, each cell in the landscape is
represented by landscape attributes including its proximity to
escape terrain and the presence of roads (Allen et al., 2016).
Bighorn sheep agents have a higher probability of moving to
cells closer to escape terrain and away from roads as these
cells represent more favorable habitats to real-world bighorn
sheep. The characteristics of the surrounding environment also
played a major role for agents deciding on a destination in
ABMs simulating movement for tiger (Kanagaraj et al., 2013),
tortoise (Anadon et al, 2012), and capercaillie (Graf et al.,
2007).

Collective Movement Behavior

Many of the above models of animal movement are single-
agent ABMs, as opposed to multi-agent ABMs used to
simulate collections of interacting individuals. One of
the enigmas of natural history is the striking coordinated
collective movements of various taxa (birds, insects, fish,
mammals, etc.). Investigation of these phenomena is based
on the recognition that the movement characteristics of
individuals are often influenced by the spatial position and
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movement of conspecifics, which results in collective movement
(Krause et al, 2010). Individuals must make decisions on
the initialization and direction of movement, and these
decisions somehow incorporate the states of their neighbors.
As Sumpter (2006) notes, the key to understanding collective
behavior lies in identifying the principles of the behavioral
algorithms followed by individual animals and how information
flows between the animals. The decision-making process
of individuals involved in collective movement has been
represented by a spectrum of simple to complex rules within
ABMs.

Both Sumpter (2006) and Couzin and Krause (2003) provide
reviews of the use of ABM in describing collective behaviors
of organisms based on relatively small sets of decision rules.
In an early use of a spatially explicit ABM, Huth and Wissel
(1992) showed that the complex movement of fish schools
could be described by a few rules; the fish tend to keep
a certain distance between themselves and a number of its
close neighbors and move parallel to other fish when they
are within a certain range. The fish agents decide to move
away from neighbors if they are too close (repulsion) or align
themselves with their neighbors if they are too far (attraction).
Size sorting also occurs in fish schools, which may be represented
by simple rules, where individuals tend to actively stay with
individuals of similar size and avoid those of a different size
(Hemelrijk and Kunz, 2005). Couzin et al. (2002) proposed a
similarly simple model in which individual animals followed
three rules of thumb; (1) move away from very nearby neighbors,
(2) adopt the same direction as those that are close by, and
(3) avoid becoming isolated; thus, the authors utilized the
simple rules of repulsion, alignment, and attraction. In taking
into account the location of an individual’s neighbors at all
times, the authors’ model was able to reproduce collective
behavior often seen in nature, including swarming and torus
behavior.

Dynamics of a small herd of mammal browsers were described
by a more complex decision tree than those used by Huth
and Wissel (1992), and Couzin et al. (2002). Gueron et al.
(1996) integrated a combination of “stress zones,” “attraction
zones,” “neutral zones” and “rear zones” in the decision-
making process of individuals moving within a herd. The
various zones corresponded to specific distances extending
from each individual, and each individual could invade the
zones of other individuals. Probabilities and directions of
movement depended on the type of zone an individual
invaded. For example, if an individual sensed another individual
within its “stress zone,” the individual slowed down to avoid
collision. If neighbors were all on one side of the individual,
the individual moved toward neighbors. Even though this
sort of collective behavior is a much looser kind of group
cohesion than fish schooling, the ABM showed that by simply
integrating information about an individual’s neighbors into
the decision rules, many patterns of collective movement
could emerge. Hoare et al. (2004) used a similar model to
explain the group size distributions of fish, where dynamic
“zones of interactions” strongly influence the size of groups in
simulations.

FORAGING DECISIONS AND POPULATION
INTERACTIONS

The use of ABM in modeling foraging behavior changes
the emphasis from predicting the fitness of the individual
based on its decisions to predicting temporal and spatial
patterns formed by large collections of individuals foraging
and competing for resources (though sometimes interacting
positively).

A common, though not universal, characteristic of ABMs
is that they are based on observations of real populations
in real locations. Thus, the assumptions built into the
models constitute hypotheses that can be tested against
observational data. A few models will be mentioned here:
Barnacle geese (Branta leucopsis) in Helgeland, Norway,
white-fronted geese (Amnser albifrons) in Lake Miyajimanuma,
Japan, oystercatchers (Haematopus ostralegus) in the Exe
estuary, England, salmonids in Little Jones Creek, California,
USA, and dusky dolphins (Lagenorrhyncus obscurus)
and killer whales (Orcinus orca) near Kaikoura, New
Zealand.

Kanarek et al. (2008) modeled barnacle geese that return
to the same group of islands each year as a migration stop.
The geese are assumed to vary in age, energy reserves, genetic
disposition, and spatial memory of previously visited locations. A
goose chooses a specific island based on a combination of factors;
constraint due to rank in the dominance hierarchy, memories of
previously visited sites and past reproductive success, inherited
genetic influences toward site faithfulness, and knowledge of the
available biomass density. Within the island the goose chooses
to forage on a particular patch until its intake rate drops below
a certain amount. Once a goose decides to leave a patch, it uses
its knowledge to choose where to go next, assigning a score to
a patch based on several factors. A bioenergetics model keeps
track of the body mass of the goose, and the goose leaves the
staging area either when a threshold of the amount of energy
stored or when the end of the stopover period is reached. Each
year that a goose returns to the same patch, its familiarity
and ability to locate food increases as well as its hierarchical
rank.

A dominance hierarchy is also incorporated into the ABM
of a migratory bird, the oystercatcher, feeding on mussels in
a tidal estuary in England during the winter (Stillman et al.,
1997). A population of individual oystercatchers was modeled on
a two-dimensional patch, and the individuals were assigned to
places in a dominance hierarchy. When two individuals come
within a certain distance, and one is handling prey, the other
might attack to attempt to steal the prey, prompting the other
to fight back, with the dominant individual always winning. The
alternative behavior is avoidance, an action taken with higher
probability by less dominant individuals. Avoidance subtracts
less time from foraging than fighting. The authors assumed
that individuals could calculate the costs vs. benefits of a given
action and decide accordingly. The results of the model show,
in accord with observations, much less incidence of interference
than equivalent analytic models, because, given the differences
in rank that are incorporated in the ABM, dominants wasted
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less time avoiding subdominants, and subdominants avoided
fighting.

In the case of white-fronted geese, an ABM explored possible
positive interactions among the geese (Amano et al., 2006). The
model tested the hypothesis that geese foraging in patches usually
have no prior information on patch quality before making a
choice but can benefit from choosing patches already occupied
by conspecifics; i.e., the presence of conspecifics in the patch
has the potential positive effect of decreasing the need for
vigilance, although it also causes prey to be depleted faster.
The authors tested the hypothesis and found that it was better
than alternatives foraging models at describing empirical data,
indicating that the assumptions are realistic bases of foraging
decisions.

In the classical DSVM theory mentioned earlier, tradeoffs
are assumed between risks of starvation and predation. Many
ABM foraging models also incorporate these risks. Railsback
and Harvey (2002) used ABM to predict empirical patterns
of habitat selection in drift-feeding juvenile trout foraging in
a stream, based on assumptions concerning their decisions to
choose habitat to forage in, given a range of empirical factors; e.g.,
water depth, velocity, available food, in the stream environment.
The risks involved in deciding to move to a given location were
starvation, predation by terrestrial animals, predation by fish,
high water velocity (which requires energy to stay in place),
stranding, and competition. A bioenergetics model was used to
follow daily growth, and daily predation mortality depended on
the size of the fish and water depth at its location, which gave the
current “state” of the individual. Three foraging strategies were
compared, based on the agent’s state and prediction of conditions
over the near term (thus the authors label their approach “state
and prediction theory”). The strategy that compared well with
all observed patterns involved daily decisions that maximized,
over a longer term, the “expected maturity” (EM), or the product
of predicted survival from starvation and other mortality risks
and the fraction of reproductive size reached over the period of
the 75-day simulation. The EM strategy, in which the fish agent
maximizes both growth and survival, gives better results than
other maximization criteria, such as maximizing only growth or
only survival probability, used in many classical models.

These studies all illustrate the ability of ABMs not only to
incorporate high amounts of the complexity of real ecological
systems and their ability to compare output with empirically
observed patterns, but also to derive more realistic pictures of the
decision-making process.

Lima (2002) noted the importance of the behavioral decisions
of the predator when studying predator-prey interactions,
rather than treating predators as “unresponsive black boxes.”
Accordingly, ABMs have also been used to extend the focus
of predation risk beyond merely the prey strategy to include
feedbacks from the predator or from competitors. A detailed
investigation of tradeoffs of dusky dolphins choosing between
feeding and avoiding predation by killer whales is given in a
spatially explicit ABM of Srinivasan et al. (2010). The authors
explored the fitness costs and benefits of various escape strategies
potentially used by dusky dolphins, including the time spent
hiding in a refuge from predation and degree of vigilance when

feeding. The model included counter strategies of the amount
of time a killer whale would wait for a dolphin to emerge
from a refuge, so the model contains a version of game theory.
Another example of feedback effects, in this case coming from
competition, is illustrated by a model of Peacor et al. (2007).
Individual foragers and a common resource for which they
compete were simulated, both with and without the presence
of a predator. The density of competing foragers affected the
tradeoff in foraging. Under low density of competitors, the
forager spent 40% of its time eating, but the time eating decreased
to 7% when the forager density was high. This outcome resulted
from the decreased benefits of foraging, as the resource was
reduced by competitors. Such an outcome could not easily be
anticipated or incorporated in simple models. A species’ response
to predation risk can affect whole food chains. An illustration
of how behaviors of herbivores can modify top-down effects of
predators on plants is the ABM of Schmitz and Booth (1997) for
a tri-trophic chain (spiders, grasshoppers, and a food base of two
plant types, grass and a herbaceous plant) of individual organisms
on a spatial lattice. The spiders could affect the grasshoppers
directly, by predation, and indirectly, by causing grasshoppers
within a certain radius to move from grass to the safer herb
sites. The model allowed the relative effects of direct predation
and the predator avoidance by grasshoppers to be examined
individually. The model predicted long-term field observations
of the predator’s top-down effect and showed the importance of
including the behavioral response of the herbivore.

SOCIAL INTERACTIONS IN POPULATIONS

Social behavior requires decisions involving, among other things,
reproduction, parental care, and territorial or home range
defense. These, plus a wider range of activities, have been
represented in ABMs.

Several studies have addressed the question of when to
reproduce, incorporating external factors such as population
density and the availability and quality of resources in an area
(Stewart et al., 2005; Brouwer et al., 2015). When deciding to
reproduce, individual agents within an ABM often consider
information of the surrounding environment. An individual
agent’s decision to reproduce is frequently represented in a
logistical or probabilistic manner, in which agents may decide
to reproduce if they meet some requirement or threshold. For
example, Ye et al. (2014) used a grid-based spatially explicit
ABM to gain insight on how the population dynamics of a
virtual species is influenced by landscape structure and various
life history traits. In the ABM, the resource share of an individual
reflects the number of individuals in a spatial cell and the
cell's underlying habitat quality. Only individual agents with a
resource fraction over a given threshold may reproduce in a given
time step with a given probability, reflecting the importance of
competition and the quality of the surrounding habitat in driving
reproductive success.

The agent’s internal state also influences its decision to
reproduce. Hancock et al. (2005) developed an ABM to predict
the population dynamics of Bornean bearded pigs, tracking the
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“fatness index” of each pig agent in the model. The reproduction
status of each agent varied according to their respective fatness
index, which in turn depended on the available food supply
and the density of the pig population. A pig agent decides to
reproduce if its fatness index is above a specific threshold, such
that agents in a large population with low food supply are unlikely
to reproduce due to low fatness indices (Hancock et al., 2005).
Fish agents within another ABM also took their internal state
into consideration in deciding when to spawn. The ratio of actual
weight to expected weight of a fish of a given length (a “condition
index”) is tracked for each fish agent, and only agents with ratios
over 0.75 were able to spawn (Rashleigh and Grossman, 2005).

After reproduction, decisions must be made on parental care.
Different strategies of parental investment reflect variation in
the decision-making process of individuals, and ultimately have
consequences for the dynamics of the population. Decisions
involved in provisioning of offspring by bluebirds were studied
by Davis et al. (1999), from the point of view of survival of
the offspring under different conditions of food availability in
the environment. The authors performed model simulations for
different levels of food availability by assuming four different
strategies on feeding decisions: (1) Feed the smallest first,
(2) feed the largest first, or (3) feed the hungriest first, in
each case going to the next larger, smaller, or less hungry,
respectively, if the offspring representing the first choice was full.
These choices were compared to random feeding (strategy 4).
Environmental conditions determined which strategy maximizes
the nest success, in terms of total biomass of surviving fledglings,
with strategies (1), (2), and (3) performing best, successively, with
increasing food availability. The random strategy was never the
best.

The formation and maintenance of territories and home
ranges occurs in many taxa. ABMs can simulate the
spatiotemporal changes in resource availability throughout
the environment and interactions between various agents
through time, potentially elucidating the mechanisms underlying
territory and home range dynamics. In order to aid conservation
planning for the tiger (Panthera tigris) by providing an estimate
of population number, location and size of territories, Carter et al.
(2015), modeled territory formation of both females and males
using a spatially explicit ABM. Females at 3 years of age were
assumed to move to a site within 33 km of their natal site, and at
least 2 km away from any other female, and to establish the center
of her territory where prey density was highest. If the female
failed to find such a site, she lowered the limit on neighboring
females from 2 to 1 km. A female was assumed to be able to sense
the total prey in her territory and in neighboring spatial cells. She
could try to add habitat cells to their territories based on a few
decision rules, including prey availability and the status of the
neighboring female tiger’s hierarchical status (avoiding cells near
a female of higher status, which is correlated with age). When
possible, she adds habitat cells to her territory until the total
amount of prey reaches a certain threshold. Another spatially
explicit model of home range dynamics is that of Wang and
Grimm (2007) for the common shrew (Sorex araneus). Shrews
were assumed to continually adjust their territories by sensing
the amount of food in a cell of the habitat and the presence

of other individuals. Individuals tried to optimize their home
range by preferentially selecting cells with high food sources and
avoiding cells occupied by other individuals. Acquisition and
release of cells followed an optimization procedure, in which the
shrew is assumed capable of ranking all the cells in its territory
and releasing the worst ones in favor of adding new ones. These
simple model rules predicted realistic territories for both tigers
and shrews.

DEVELOPMENTS IN THE MODELING OF
DECISIONS IN POPULATION MODELS

The papers reviewed above show that ABM is an important
departure from earlier mathematical approaches, which,
collectively, have been critical theoretical frameworks over the
past few decades. In many earlier approaches, the individual
was assumed to make a sequence of decisions through time
that would result in optimal fitness at some end time. These
approaches often assume knowledge of future conditions and
ignore the feedbacks on the individuals through changes in
the environment created by the individual’s own decisions. To
incorporate the feedbacks and uncertainty that are present in real
ecological systems, a trend in ABMs has been to simulate how
proximate decisions are made based on the individual’s current
state and short-term predictions. This is modeled differently
by different modeling groups. As noted earlier, Railsback and
Harvey (2002) (see also Railsback et al., 1999) use a “state and
prediction theory” strategy for individuals, which estimate
an “expected survival” over a specified time horizon over
which little appreciable change in the environment is expected,
considering the risks of predation, starvation, etc., and choosing
the behavior that achieves the best fitness over that time. Giske
and his group (e.g., Eliassen et al, 2016) find the adaptive
behaviors for situations encountered through selection in genetic
algorithms (GA) and artificial neural networks (ANNs). Other
ABM modeling approaches include the computational system
Digital Organisms in a Virtual Ecosystem (DOVE), in which a
GA is used to allow phenotypic plasticity to evolve and interact
with a dynamic environment (Peacor et al., 2007).

Borrowing concepts from machine learning and artificial
life studies, modelers such as those noted above have utilized
ANN and GA (together referred to as individual-based neural-
network-genetic algorithm, or ING techniques) to represent
the decision-making processes and consequent behaviors of
organisms. Instead of fixed rules governing the way an organism
makes decisions, ING techniques are flexible approaches that
use principles of neurobiology and natural selection to solve
optimization problems, resulting in individuals making adaptive
decisions (Huse et al., 1999; Hamblin, 2013). ABMs that use
genetic algorithms to govern decisions initialize a population
of individuals with different solutions to a given optimization
problem. Optimization problems may include finding the
decision that will maximize fitness during foraging, or the
probability of survival when selecting a patch (Hamblin, 2013).
The individuals with the best solutions to the problem are allowed
to reproduce through various commonly recognized selection

Frontiers in Ecology and Evolution | www.frontiersin.org

January 2019 | Volume 6 | Article 237


https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

DeAngelis and Diaz

Decision-Making in Agent-Based Models

operators, and reproduction continues for many generations.
Trebitz (1991) was an early user of a GA-type approach to
estimate the optimal spawning time for largemouth bass. In the
model a female that spawned too early in spring risked the loss
of eggs or larvae due to random cold snaps, while if it spawned
too late it risked zooplankton being depleted by the offspring of
earlier spawning females.

ANNs “train” the weights of input data by continuously
modifying these weights until the resulting decisions and
subsequent behaviors of individuals reach a specific fitness
measure. In this way, ANNs and the way they capture the
decision-making process of individuals mirror brain functions
by “learning” from the outputs of the various input data weight
modifications. Once an ANN is trained, it can be used on
new input data to determine the decisions and behaviors that
satisfy the specific fitness measure (Huse et al., 1999; Lek and
Guégan, 1999). In GAs and ANNS, as in the more fixed logical
and probabilistic decision-making rules within ABMs discussed
earlier, the decision-making processes of individuals are generally
geared to optimize some sort of fitness measure, but the decision-
making strategy evolves through selection.

ANNGs have been increasingly used to represent the decision-
making processes of organisms, particularly with respect to
movement through space. As the decisions of real-world
individuals are driven by neuronal responses to internal and
external stimuli, neural networks are well-suited to represent
decision-making in an individual agent (Eliassen et al., 2016).
Once a fitness criterion is identified for a given ABM, the ANN
can be trained to find the input weights that correspond to
outputs best fitting the fitness criterion (Huse et al., 1999). ANN
training can occur in several ways, but here we focus on training
with GAs, an approach common within ABMs utilizing ANNs.
GAs are optimization tools that utilize the principles of crossing
over and mutation to essentially “evolve” the decision-making
processes of individuals, without the need for probabilistic or
logistical rules.

For example, Okunishi et al. (2009) developed an ABM to
simulate the growth and large-scale movements of Japanese
sardines with the goal of exploring the effects of climate
change on the population dynamics of the species, primarily
its distribution and production in the North Pacific. The
authors utilized an ANN to represent the way fish decide on
movement directions when migrating to spawn. The inputs to
the ANN were environmental factors known to influence the
migration of sardines and included ocean current speed, the
distance from land, and the experienced temperature change
during subsequent days. Back propagation (a training method
where weights are assigned to the various inputs based on a
training data set) was one method used to train the ANN
on spawning migration trajectories from actual sardines. The
authors also used a GA to find the sardine offspring’s input
weights that would produce optimal outputs through crossing
over and mutation of the parent sardine’s weights. In training the
ANN with a GA, the sardines’ decisions representing swimming
directions were allowed to evolve through many simulations;
subsequently, the authors were able to find optimal combinations
of weights that produce realistic migration trajectories. They

found that combining back propagation with a GA to determine
input weights produced the most realistic migration trajectories,
indicating that utilizing the principles underlying the GA (in
tandem with observed movement data) adequately captures the
decision-making process of migrating sardines (Okunishi et al.,
2009).

Morales et al. (2005) utilized several ANNs, each in
combination with a GA, to determine efficient movement
decisions for elk within a spatially explicit ABM. Movement
decisions to be made by the elk included when to switch
behaviors from foraging to exploring, where to move if foraging
or exploring, and which type of plant to consume at a given time if
foraging. The fitness measures that characterized the efficiency of
elk agent decisions were energy gain for fat reserves and survival
probability associated with predation risks. Percent body fat,
forage biomass, and local predation risks were a few of the ANN
inputs representing both internal and external movement stimuli.
Rather than setting specific rules to guide the decision-making
processes, the authors allowed the process to evolve over many
generations.

ANNSs were also used to model movement in Mueller and
Fagan (2008), who noted three basic types of pattern resulting
from movement (or lack thereof): sedentary, migratory, and
nomadism. The authors assumed that landscape structure drove
individual-level movement types and that there were four
gradients in hierarchical order; resource abundance, spatial
configuration of resources, temporal variability of resource
locations, and temporal predictability of resources. Mueller et al.
(2011) followed up by using ANNs to evolutionarily train model
organisms to use and combine different types of information
representing the different movement behaviors (memory,
oriented, and non-oriented movements). 240 individual animals
were simulated moving across landscape and making choices
of patches and, in doing so, depleting exhaustible resources.
Different movement strategies involving combinations of these
movement types worked better on different landscape types.
After 5,000 generations with inheritance, survivors using
unique movement strategies had optimized fitness on particular
landscapes.

In incorporating optimization of fitness, classic analytic
models omit consideration of the immediate, or proximate,
complexities that organisms encounter. This allows the
integration of individual strategies with ultimate fitness, but
the proximate mechanisms through which organisms solve
problems are largely ignored (Sih et al, 2004; Fawcett et al,
2013; Eliassen et al., 2016). Animals need to be able to respond
quickly and adequately in situations they have never experienced
before; that is, the world is too complex for evolution to produce
rules for every possible circumstance. It is likely that animals
will evolve rules that perform well on average in their natural
environment (McNamara and Houston, 2009). One of the basic
advantages of ABMs is their ability to incorporate such heuristic,
or rule of thumb, decision-making to perform well in complex
environments. The GA approach allows one to simulate how
such rules evolve.

Toward this end Giske et al. (2013) formulated a model
based on recent insights from a range of empirical disciplines
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that sheds light on the processes involved with decision
making. In vertebrates, multipurpose rules are arbitrated through
an “emotion system,” which describes the integration of
information, motivation, and physiological state in determining
physiological and behavioral outcomes. These outcomes affect
the survival, growth, development, space use, and life history
of the organism. Giske et al. (2013) modeled fish, where the
fish had the choice of moving among different depths. Fish at
deeper depths were generally safer from predation, but food was
more limited, though uncertainty was entered into the model
by letting both food levels and predation risk vary stochastically
from fish generation to generation. The authors employed the
survival-circuit concept (LeDoux, 2012), in which emotions form
the basis for decisions, and they contribute to the survival or
fitness of the organism. The first half of the survival-circuit is
“emotional appraisal.” It starts with sensory input, considers
motivational impact related to developmental stage, and may
potentially activate the organism into a “global organismic state,”
such that the whole organism is focusing on the situation. The
second half of the survival circuit; the “emotional response,”
consists of physiological responses and behavior. Physiological
activation enables the organism to focus its sensory attention,
brain activity, and potentially also bodily functions, such as
heartbeat and muscle tension, toward the present situation. Fear
and hunger are the emotions, and the ABM includes sensory
inputs. The options for a fish are to stay at its current depth
or move a short distance upward or downward, as determined
by equations incorporating hunger and fear. On the basis of its
global organismic state, the motivated fish behaves in a way that
maximizes its net neuronal response.

The model of Giske et al. (2013) predicted the same general
type of spatial distribution patterns that classic optimization and
game models produce, such as diel vertical migration with some
extension around the average. But the model of Giske et al.
(2013) differed from the classic models by allowing the fish to
respond on immediate timescales to food and perceived risk, as
opposed to optimization criteria involving only long-term goals.
For example, danger is avoided because of an evolved proximate
preference to stay with others or in darker waters when afraid,
while danger is largely ignored when hungry. This is important in
a fluctuating environment, where simple rules of thumb couple
proximate constraints in determining behavior, with long-term
adaptive value.

PROSPECTUS

In his book “Sociobiology,” Wilson (1975) foresaw the gradual
merger of population biology and behavioral ecology and
the growing importance of neurophysiology to the latter
(Wilson’s Figure 1.2). These developments have been accelerated
through ABM and ANN, particularly through using ABM as
a means through which population and community dynamics
emerge from the adaptive traits of individuals, including “how
individuals make decisions in response to other individuals, the
environment, or changes in themselves” (Grimm and Railsback,
2005).

Future development of ABM in modeling decision-making
in ecology will be influenced by the continued refinement
of modeling methodology and increases in needed data for
parameterizing ABMs. Two of the modeling methodologies,
the “state and predict” (Railsback and Harvey, 2002) and ING
(Eliassen et al., 2016) continue to be developed. In particular,
a cognitive architecture based on the survival-circuit concept
(LeDoux 2012) forms a general modeling framework for linking
decision-making to neurobiological mechanisms (Bach and
Dayan, 2017; Landsred, 2017; Budaev et al., 2018). Other
approaches to providing rules of thumb for individuals, such as
Fuzzy Cognitive Maps (FCM), based on Fuzzy Set Theory (Berkes
and Berkes, 2009), are also being used in evolving predator-prey
systems. In addition, off the shelf ABM modeling programs such
as NetLogo and Ecobeaker are making development and use
of ABM easier (e.g., Railsback and Grimm, 2011). Concerning
relevant data, ABMs generally require a large amount of data
at the individual level and site level. Such data are generally
only available for ecological systems that have been intensively
studied. But technology is rapidly increasing data collection
capabilities, and the availability of remote sensing data and
the ease with which these data are integrated within the ABM
framework facilitates the development of decision rules based
on a plethora of environmental attributes that potentially drive
animal decisions. This may facilitate wider use of ABM, though
this will require more coordinated efforts in making data broadly
available to the modeling community (Hampton et al., 2013).

Recent advancements in technological tools should facilitate
the parameterization of future ABMs developed for simulating
dispersal, migration, and local-scale movements of animal
groups. In particular, developments in GPS telemetry (and
satellite telemetry in general) and biotelemetry devices have
allowed for remote tracking of an individuals movement,
physiological state, and behavior over long periods of time at
relatively fine temporal resolutions (Cooke et al., 2004). This
is especially useful considering the challenges ecologists face
when attempting to directly observe and study free-ranging
animals in a non-invasive manner. Basic movement parameters,
including step length and turning angle distributions, can be
derived from a time series of relocation data obtained from GPS
and satellite telemetry and together shed light onto the limits
of an individual’s motion capacity. Subsequently, parameters
driving agent movement within an ABM can be made more
accurate. Bioenergetic models used to track agents’ growth
and reproduction within ABMs can be further parametrized
with information gained from biotelemetry monitoring of
undisturbed animals in their natural environments. The wealth of
data generated for many species thus far should allow ecologists
to more accurately model how individuals decide on an action
in response to dynamic internal and external variables. What
will most define the future success of ABM will be its ability
to address complex questions that are difficult for traditional
approaches. These questions include, among many others, the
origin of collective actions, the interactions of tradeoffs at the
individual level and the whole ecological system, the dynamics
of complex social systems, and applications to conservation and
management issues.
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How collective actions such as migration are initiated, usually
by a small fraction of leaders, has been discussed as resulting
from differences in experience within populations (Ferno et al.,
1998; Krause et al., 2000). Collective actions that benefit the whole
group, but which may have negative fitness consequences for
individuals, have long attracted attention, but are still not well-
understood and may profit from use of ABM. An example is
“mobbing action” by birds against nest threats. Unrelated birds
and even birds of different species may be involved in these
aggressive actions against a threat to nests, such as hawks or
owls. While there is clear benefit to each individual in protecting
its nest, there are also costs, such as becoming a victim of
the threat or revealing the location of one’s nest. Wheatcroft
and Price (2018), in an empirical/theoretical study, proposed
that collective action in this case can build up among birds
whose nest locations are distributed across various distances
from the threat. Birds nearest the nest respond first, and others
that have nests farther and farther away decide to join as
the risk to any individual declines with the growing size of
the mob. The authors used a mathematical model with two
individuals to analyze the amount of investment in each in
aggressiveness to the threat. While the mathematical model
provides insight, this is the type of problem where an ABM, which
can simulate the actions of many birds with individual variation,
could provide output directly comparable with observations of
mobbing behavior.

Social interactions of at least moderate complexity already
occur in several of the models noted above, in which social
hierarchies constrain actions, but extension to much more
complex interactions is possible using ABM. For example,
in many primate troops the type and level of interaction
between individuals, whether positive (cooperation) or negative
(e.g., fighting) depends on genetic relatedness. Because there
is kin-recognition, any interaction, such as a fight between
two unrelated individuals, can give rise to a larger complex
of interactions involving their relatives (Cheney and Seyfarth,
1992). Modeling the behavior of such societies may require ABM
to represent a network of relevant interactions.

Behavioral ecologists and modelers like to think that their
work can have some useful applications in conservation and
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wildlife management. A review by Caro (2007) of application
of ecological theory found little evidence that many of the
applications proposed so far by behavioral ecology, based on
hypothetical conditions, would be effective in practice. However,
ABM may be able to bridge the gap between theory and
real conservation issues (Wood et al., 2015). For example, to
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