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Accumulating evidence supports the importance of belowground interactions for plant

performance, ecosystem functioning, and conservation biology. However, studying

species interactions belowground has unique challenges relative to the aboveground

realm. The structure of the media and spatial scale are among the key aspects

that seem to strongly influence belowground interactions. As a consequence, our

understanding of species interactions belowground is limited, at least compared to what

is known about interactions aboveground. Here we address the general question: Do

the ecological concepts that have been developed largely in aboveground systems

apply to understanding species interactions in the rhizosphere? We first explore to what

extent ecological concepts related to species interactions are considered in rhizosphere

studies across various subdisciplines. Next, we explore differences and similarities

above- and belowground for fundamental concepts in ecology, choosing topics that

are underrepresented in rhizosphere studies but represent a swath of concepts:

species diversity, island biogeography, self-organization and ecosystem engineering,

trophic cascades, and chemical communication. Finally, we highlight to overcome

major challenges of current methodologies to study rhizosphere interactions in order

to advance the understanding of belowground interactions in an ecological context.

By synthesizing literature related to rhizosphere interactions, we reveal similarities, as

well as key differences, in how fundamental ecological concepts are used and tested in

above- and belowground studies. Closing the knowledge gaps identified in our synthesis

will promote a deeper understanding of the differences above- and belowground and

ultimately lead to integration of these concepts.
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INTRODUCTION

There has been a recent surge in studying species interactions that
occur in the rhizospheres of plants (Brussaard, 1997; Hooper
et al., 2000; Wardle et al., 2004; Orgiazzi et al., 2016). This surge
has opened doors to new and exciting research questions related
to how species interactions in the rhizosphere may influence
various processes both above- and belowground, that integrate
across many subdisciplines in ecology. For example, a recent
list of 100 fundamental ecological questions includes several
questions on how above- and belowground biodiversity interact
and how biotic and abiotic feedbacks between plants and the
soil influence plant growth (Sutherland et al., 2013). However,
while substantial progress has been made in understanding
both above- and belowground ecological processes as well
as above-belowground linkages (e.g., Wardle et al., 2004;
Lavelle et al., 2016; Coleman et al., 2018), the development of
ecological concepts in above- vs. belowground systems have been
somewhat disparate (Nobis and Wohlgemuth, 2004; Barot et al.,
2007). The disconnect between concepts used in above- and
belowground realms is perhaps because these realms differ in
many important ways. The scale at which interactions operate
between organisms belowground is often much smaller than in
aboveground systems. Vertebrate herbivores may explore areas
exceeding the size of 1 ha within a day, whereas most soil
organisms do not explore more than 1 m2 in their life time
(van Der Putten et al., 2016). A further key difference lays in
the provision of nutrients and energy, although root exudates
provide a significant link of energy flow between the realms (Bais
et al., 2006). Nevertheless, belowground, energy flows primarily
through the detritus cycle rather than primary production on the
terrestrial surface. Moreover, the soil medium differs from the
aboveground environment, being a complex and heterogeneous
matrix of interconnected spaces. Belowground interactions occur
in darkness, where temperature fluctuations are low, relative
humidity and CO2 levels are high (Russell and Appleyard, 1915).
Such specific characteristics belowground dictates dynamics of
organism movement and sensory perception specific to the
soil medium. For instance, arthropods adapted to live in deep
soil layers show reduced body size, or loss of sight and flight
capacity (Andújar et al., 2017). To summarize, fundamental
differences between the above- and belowground realms suggest
that patterns of interactions above- and belowground are, at least
partially, governed by different mechanisms. Reconciling these
differences in key ecological processes is critical to developing
predictive theory and understanding responses to environmental
changes (Wardle et al., 2004; Sutherland et al., 2013).

In this perspective, we address the general question
whether ecological concepts that have been developed largely
in aboveground systems apply to understanding species
interactions in rhizospheres. To answer this question we
first performed a literature search to evaluate how widely
ecological concepts related to studying species interactions
are used in studying belowground interactions. We looked at
frequencies of studies related to ecological concepts in general
ecology journals compared to sub-discipline journals. Next,
we discuss several of the understudied concepts, focusing

on concepts that are likely to function fundamentally
different in above- and belowground realms. Finally, we
outline challenges in studying rhizosphere interactions and
some potential solutions. An improved understanding of
how ecological concepts are used below- and aboveground
should therefore improve research progress of rhizosphere
interactions and ultimately enhance understanding of
above-belowground linkages.

ADDRESSING THE USE OF ECOLOGICAL
CONCEPTS IN SUBDISCIPLINES RELATED
TO RHIZOSPHERE INTERACTIONS

To examine how widely ecological concepts related to studying
species interactions in general ecology vs. sub-discipline journals,
we focus on recent usage of ecological concepts in the literature
by searching for articles published in the last two decades. We
examined general ecology journals and four other subdisciplines
related to rhizosphere interactions that cover ecological topics
(Supplementary Material 1): soil science, botany, entomology,
and microbial ecology. Within each of these five categories, we
searched for keywords that represent fundamental concepts in
ecology (see Figure 1 and Supplementary Material 1). While
our list of key concepts is not exhaustive, it is representative
in that it covers topics dealing with species interactions in
population, community, landscape, and ecosystem processes. We
also included “soil” or “rhizosphere” and “species” to include
only articles that were most likely to investigate rhizosphere
interactions. Differences between the proportion of articles
published in each subdiscipline vs. general ecology journals were
tested using proportion tests, corrected for family-wise error rates
(Newcombe, 1998).

As we expected, most ecological keywords were more
highly referenced within ecology journals compared to other
subdisciplines (Figure 1). Rarely, some of the terms were
better represented in the sub-discipline journals. For example,
compared to their use in ecology journals, “plant defense” is
better referenced in the botany literature and ‘species diversity’
is better referenced in the microbial ecology literature. Some
concepts also appear to not be well studied in the rhizosphere
in any subdiscipline, such as “communication” or “island
biogeography”. Nevertheless, we found that most of the concepts
were underrepresented in sub-discipline journals compared to
ecology journals.

Clearly, there is a limited use of ecological concepts related
to studying rhizosphere interactions in the focal subdisciplines.
We posit that one reason for that is that researchers are still
facing considerable technical challenges studying belowground
biology. Hence, roots are still “the hidden half” (Waisel et al.,
2002), the soil medium is “the final frontier” (Sugden et al.,
2004), and soils are still viewed “through a ped darkly” (Coleman,
2011). Regardless of the reason, a disconnection of concepts
among subdisciplines that investigate rhizosphere interactions
may ultimately impede progress of understanding of general
ecological processes in the rhizosphere and particularly above-
belowground linkages.
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FIGURE 1 | Results of a literature search (1998–2018) for how frequently ecological concept keywords appear in articles that investigated rhizosphere interactions

published in general ecology journals by subdiscipline journals. Bars represent the percent of articles related to each concept by subdiscipline. Numbers above the

bars indicate the number of articles studying rhizosphere interactions within that subdiscipline that reference the concept, while the total number of articles that

investigated rhizosphere interactions per subdiscipline is listed in the key. Subdisciplines that significantly differed in the percent of articles published compared to

ecology journals based on pairwise proportion tests, corrected for family-wise error rates, are indicated as follows: •P < 0.1; *P < 0.05.

LIMITED UNDERSTANDING OF
RHIZOSPHERE INTERACTIONS

According to the Global Soil Biodiversity Atlas (Orgiazzi
et al., 2016) the soil is the most biodiversity rich habitat on
Earth. It is estimated that 23% of terrestrial animals are soil
invertebrates (Decaëns et al., 2006), of which 80% are insects

and earthworms (Lavelle et al., 2006). Evidence shows that
belowground biodiversity contributes to shaping the functioning
of terrestrial ecosystems (Bardgett and Van Der Putten, 2014).
Nevertheless, while conceptual frameworks are well developed
(Hooper et al., 2000; Wardle et al., 2004; Lavelle et al., 2016) and
some interactions are well studied (e.g., mycorrhiza), knowledge
gaps remain regarding the diversity of other taxa that are
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closely associated with plant roots. To demonstrate the paucity
in understanding of rhizosphere biota, we pose a simple, but
important question: how many of the organisms in a given
ecosystem are associated with plant roots for a significant
portion of their life cycles? This question is paraphrasing a
broader question that several researchers tackled in the last
decades: how many species are there on earth (May, 1988;
Mora et al., 2011)? Similarly to estimating the total richness
of species in an ecosystem based on extrapolations of specified
community richness (Erwin, 1982), we could estimate the
proportion of species engaging in rhizosphere interactions by
looking only at beetles (Supplementary Material 2). The main
problem with this approach is twofold: (1) Data scarcity.
Exhaustive surveys and studies of belowground arthropod
taxa are rare. (2) Conclusions are highly sensitive to model
assumptions. Current theory and data are far from being
able to provide a meaningful estimate to a fairly simple and
fundamental question in ecological theory. It also highlights
the gap of knowledge we still have in relation to belowground
arthropod interactions as compared to microbes (Heinen
et al., 2018). Another fundamental part of ecological research
is related to the ways species are spatially arranged in
the ecosystem.

ISLAND
BIOGEOGRAPHY BELOWGROUND

The theory of Island Biogeography, first proposed by MacArthur
and Wilson (1967), is a foundational concept in ecology that
defined species richness on islands as the equilibrium between
colonization and extinction. Due to the vast difference in scale,
most soil organisms do not conform to the patterns of island
biogeography on physical islands (Maraun et al., 2007; Ulrich
and Fiera, 2009; Lavelle et al., 2016) or in “islands” created
by habitat fragmentation (Mangan et al., 2004; Rantalainen
et al., 2008). Ease of dispersal and low space requirements
allow belowground biota to escape constraints on colonization
faced by larger aboveground organisms (Griffin et al., 2002;
Mangan et al., 2004; Rantalainen et al., 2008). However, there
is some evidence that belowground communities do conform
to the traditional theory of Island Biogeography when plant
rhizospheres are considered as ‘islands’, likely because it is a
more relevant scale (Peay et al., 2007, 2010; Glassman et al.,
2017). The idea of plants as islands for herbivores was proposed
as part of the theory of Island Biogeography and expanded to
include plants as islands for microbes (Andrews et al., 1987;
Martiny et al., 2006). However, studies are lacking assessments
of temporal effects and cross taxa biodiversity when looking
at plant islands. Thus, understanding belowground spatial
ecology would benefit from long-term studies and examination
of how species interactions might structure spatial patterns
in belowground communities. Specifically, researchers asked
how colonization after disturbance is different in rhizosphere
interactions. Historically, the phrase ‘succession’ was used, but
currently, a wider sense of this process is ‘Self-Organization’
(Lavelle et al., 2016).

SUCCESSION IN THE RHIZOSPHERE

Succession describes predictable and mainly linear shifts or
development of communities through time and is one of the
earliest ecological concepts (Cowles, 1899). In soil systems
however, biological communities are often considered to self-
organized across scales of time and space (Lavelle et al., 2016).
The processes of soil community self-organization are generally
consistent with patterns aboveground. Limited evidence suggests
that an area is first colonized by autotrophs such as nitrogen
fixing bacteria and algae, followed by the addition of simple
heterotrophs, followed by larger and more complex animals
and fungal structures (Ohtonen et al., 1999; Maharning et al.,
2009). This turnover leads to increased network tightening
and more efficient carbon uptake (Morriën et al., 2017). In
abandoned agricultural fields, nematode communities shift from
herbivorous to fungivorous species in later successional plots
as plant productivity decreases and fungal biomass increases
(Maharning et al., 2009). Arthropod community turn-over
showed less clearly directional and progressive change. Many
of the studies of soil self-organization focus on single clades
or compare presence of large taxonomic groups, thus missing
granular species diversity and turn-over (Maharning et al., 2009).
Recent advances in sequencing will make it increasingly easy to
monitor these processes in bacterial and fungal soil communities
(Fierer et al., 2009, 2010; Hudson et al., 2017). Furthermore,
network perspectives can shed light on the assembly and
interaction of rhizosphere communities in successional
processes (García de León et al., 2016; Morriën et al., 2017;
Morriën and Prescott, 2018).

TROPHIC CASCADES AND TOP-DOWN
EFFECTS ON SOIL FOOD WEBS

Trophic cascades, where predators indirectly benefit plants by
consuming herbivores, is a fundamental concept in community
ecology (Hairston et al., 1960; Pace et al., 1999).While the original
concept was proposed mainly for aboveground systems, there
has been very little consideration of whether trophic cascades
might occur in belowground food webs (Denno et al., 2008).
Carbon inputs belowground typically occur through detritus, and
thus differ markedly from aboveground primary production by
plants (Moore et al., 2004; Coleman et al., 2018). As such, soil
food webs are considered to be self-organizing systems driven by
bottom-up, mutually reinforcing processes (Lavelle et al., 2016).
Nevertheless, secondary and tertiary consumers have long been
recognized for their role in soil food webs, largely as ecosystem
engineers and regulators of nutrient cycles (Lavelle et al., 2016;
Coleman et al., 2018). Beginning around the turn of the century,
researchers began probing a top-down perspective of soil food
webs, asking whether top predators can regulate the abundance
of lower trophic levels. While these early studies found evidence
of top-down control on invertebrate communities, these impacts
did not affect the basal microbial community (e.g., Mikola and
Sktälä, 1998; Laakso and Setälä, 1999; Salamon et al., 2006).
Other belowground studies, have documented top-down effects
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of invertebrate predators (e.g., arthropods or nematodes) that
have cascading effects on the productivity of plant roots and
aboveground tissue (Preisser et al., 2006; Denno et al., 2008; Ali
et al., 2013). Collectively, these small but representative examples
from the literature suggest amixture of evidence for belowground
trophic cascades. Support for top-down control in belowground
trophic interactions comes from cases largely involving the
effects of insects and nematodes on plant productivity, whereas
lack of support comes from systems with microbes or detritus
at the base of the food web. Thus, predicting belowground
trophic cascades may require knowledge of population growth
rates of organisms interacting in the food webs. Understanding
interspecies dynamics may further benefit from studying the way
they interact and communicate belowground.

CHEMICAL COMMUNICATION IN
THE RHIZOSPHERE

Communication among organisms is central to understanding
any ecosystem, and the soil environment is no exception.
Aboveground, vision and light sensing play an important
role for organisms in many ecosystems (Doring, 2014; Kegge
et al., 2015), but this option is lacking belowground. Thus,
chemical communication is a more effective way for partners
to communicate belowground (van Dam, 2009). The soil
provides an environment that protects chemical compounds
from degradation by oxygen and light, making belowground
chemical signals more stable and possibly more reliable than
aboveground (Karlovsky, 2008). Plant roots and soil microbes
produce large arrays of volatile organic compounds (VOCs) that
readily diffuse under atmospheric pressure and travel throughout
the air- and liquid-filled pockets of the soil (van Dam et al.,
2016). Therefore, they are believed to play important roles in soil
interactions at multitrophic level (Schmidt et al., 2015; Venturi
and Keel, 2016). Nevertheless, ecological functions of VOCs
have mainly been studied for aboveground communities (Dicke
and Baldwin, 2010). More recent studies on VOCs released by
roots and soil bacteria and fungi found that similarly to the
aboveground realm, VOCs also mediate species interactions in
the rhizosphere (Rasmann et al., 2005; Martínez-Medina et al.,
2017; Ossowicki et al., 2017; Schulz-Bohm et al., 2017). In
addition, plants and microbes produce and secrete exudates
containing an array of secondary metabolites, which can signal to
and interfere with other soil organisms (Venturi and Keel, 2016).
However, while the role of plant exudates has received significant
attention (e.g., Steinkellner et al., 2007; Toussaint et al., 2012),
the extent to which chemical communication in the soil affect
interactions and dynamics of networks remains largely unknown.

RESEARCH METHODOLOGY OF
RHIZOSPHERE INTERACTION

We briefly review important methodological gaps that are
crucial to advance the understanding of rhizosphere interactions;
we point readers to recent reviews for deeper reading into
this topic (see McPhee and Aarssen, 2001; Forey et al., 2011).
The challenge of studying biotic interactions is tackled by

three types of methods: molecular/chemical techniques, field
studies, and controlled conditions. Molecular and analytical
chemistry tools are providing data on diversity of belowground
microbial communities (Hudson et al., 2017). We can see the
variation in broad taxonomic lines, but one of the outstanding
challenges of the field is connecting species identity, or
community composition, to function. Several methodologies
such as large-scale and untargeted Gas Chromatography
(GC)-mass spectrometry, liquid chromatography (LC)-mass
spectrometry platforms, and nuclear magnetic resonance
(H-NMR) are being used to decipher the chemical signaling
in the rhizosphere (Oburger and Schmidt, 2016; van Dam
and Bouwmeester, 2016; van Dam et al., 2016). The large-
scale chemical analysis of the rhizomicrobiome, combined
metagenomics, metatranscriptomics, metaproteomics and
imaging mass spectrometry approaches (MSI) will help to
understand the mechanisms involved in the communication
between different members of the soil community (Oburger
and Schmidt, 2016). Similarly, molecular databases such as
Funguild and PICRUSt offer a promising framework to link
taxa to function using 16S rRNA gene sequences (Langille et al.,
2013; Tedersoo et al., 2014; Hahn et al., 2018). Given the spatial
resolution required to investigate rhizosphere interactions (from
cm to sub µm), the unpredictability of field conditions, and
the instrumental limitations (e.g., immobility) most studies
seek to simulate field conditions in semi-artificial experimental
conditions (Oburger and Schmidt, 2016). Exploration of
belowground organisms could be done with tools as simple
as soil sampling and root excavations. For agricultural and
plant physiology studies, Trachsel et al. (2011) coined the
term “shovelomics” for high-throughput root phenotyping
based on root crown architecture. We stress that continuing
to apply the principles of shovelomics in ecological research
will explore a lot of rhizosphere interactions. While it is
difficult to sample soils with minimal disturbances, emerging
techniques may allow for quantification of root traits and
other belowground measurements using non-destructive
techniques such as X-ray tomography (Bardgett et al., 2014).
We propose that the integrated use of different molecular
and metabolomic methodologies in semi-artificial and field
conditions will be the most promising approach in shedding
light onto the great number of yet unrevealed processes in the
rhizosphere (Ferlian et al., 2018).

CONCLUDING REMARKS

The importance of belowground processes in ecology are being
increasingly recognized (Wardle et al., 2004; Orgiazzi et al.,
2016; Coleman et al., 2018). Still it is uncertain how ecological
theories which were developed to describe aboveground
interactions apply rhizosphere interactions. The literature
shows some similarities between above- and belowground
processes. For example, we can cautiously suggest that soil
and plant heterogeneity is positively related to species diversity
belowground (Kowalchuk et al., 2002). Yet, empirical evidence
is still lacking (Scherber et al., 2009). Similarly, temporal
development of belowground communities is somewhat
predictable, much as it is aboveground (Maharning et al.,
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2009). Evidence is mixed in other areas; trophic cascades
seem to have an important role in community and population
dynamics belowground, as they have aboveground. On the
other hand, there are major differences between below- and
aboveground conditions that affect trophic interactions and
dynamics. For instance, the scale at which key ecological
processes are examined, such as the strength of trophic
cascade linkages, dispersal, and species area curves, all
show differences between above- and belowground systems.
Differences in media structure can influence the pattern of
communication, which is based more on chemicals belowground
as compared to a broader use of light perception in the above-
ground communities. Furthermore, increased attention to
rhizosphere interactions, particularly studies using modern
methodological approaches, will allow for more robust tests of
many ecological theories. In addition to advancing predictive
ecological theory, an improved understanding of rhizosphere
interactions will ultimately aid in preserving biodiversity
and mitigating negative ecological impacts of global change
(Wardle et al., 2004; Sutherland et al., 2013).
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