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Flux quantification for riverine water-quality constituents has been an active area of

research. Statistical approaches are often employed to make estimation for days without

observations. One such approach is the Weighted Regressions on Time, Discharge,

and Season (WRTDS) method. While WRTDS has been used in many investigations,

there is a general lack of effort to identify factors that influence its estimation bias.

This work was aimed to (1) synthesize and compare WRTDS estimation bias for

constituent concentrations and fluxes for rivers and streams in the Chesapeake Bay

watershed (including headwater sites) and (2) identify controlling factors from five broad

categories (watershed size, sampling practice, concentration and discharge conditions,

land use, and geology). Five major constituents were considered, namely, suspended

sediment (SS), total phosphorus (TP), total nitrogen (TN), orthophosphate (PO4), and

nitrate-plus-nitrite (NOx). For both concentration and flux, estimation bias follows the

general order of SS > TP > PO4 > TN ≈ NOx. Median TN and NOx bias statistics

were near zero, with an equal distribution of small positive and negative bias. TP,

PO4, and SS each showed a median positive bias across sites of <18% for flux and

<7% for concentration. Particulate constituents, especially SS, tend to have larger

bias at sites with smaller sampling frequencies, shorter sampling record lengths, and

smaller watershed sizes. Results of multivariate models showed that both flux and

concentration biases are most affected by concentration and discharge variabilities and

the length of concentration record. In comparison, flux bias of particulate constituents

is more affected by flow variability, whereas flux bias of dissolved constituents is

more affected by concentration variability. Moreover, analysis using classification and

regression trees provided additional information on how the factors affected flux bias:

when all site-constituent combinations are considered, large flux biases are more likely

associated with sites that have large concentration and discharge variabilities, small

lengths of concentration record, and small sampling frequencies. These results may be

useful for identifying sites with large biases, modifying monitoring practice at existing

sites to reduce those biases, and choosing new monitoring locations in the Chesapeake

watershed and beyond.
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INTRODUCTION

Surface water quality is of increasing concern around the
world, with important consequences to the ecological health of
rivers and downstream lakes, estuaries, and oceans. Accurate
quantification of the concentration and flux of materials
transported by streams and rivers is critical to the management
of water resources. Water-quality flux, expressed as the total mass
passing a river gauging location over a given period of time, can
play an essential role toward the establishment of restoration
targets (e.g., total maximum daily loads), calibration of watershed
models (e.g., SPARROW), and evaluation of water-quality trends
and changes (Stow and Borsuk, 2003; Bowes et al., 2008; Shenk
and Linker, 2013; Zhang et al., 2015).

For many river monitoring programs, discharge is available
at a daily resolution but water-quality constituent concentration
(e.g., nitrogen, phosphorus, and sediment) is sampled at
more sparse frequencies. For example, sites in the Chesapeake
Bay watershed, which has comparatively intense long-term
monitoring in the United States, have 20–40 samples per year that
include at least 12 regular monthly samples and eight targeted
storm flow samples (Chanat et al., 2016). In comparison, water-
quality data at many other locations tend to have even smaller
temporal resolutions and often do not have targeted storm
flow samples.

Over the last few decades, many regression-based flux
estimation approaches have been developed by investigators
(Dolan et al., 1981; Cohn et al., 1989, 1992; Kronvang and Bruhn,
1996; Crowder et al., 2007; Johnes, 2007; Birgand et al., 2010,
2011; and Stenback et al., 2011; Park and Engel, 2015). These
approaches generally estimate daily concentrations and fluxes
based on statistical relations between observed concentration
and a set of explanatory variables, which typically include
time, discharge, and season. The estimation bias of these
approaches depends on several factors, including the type of
constituent (dissolved or total), the calculation method, the
length of data record, variabilities of discharge and fluxes, the
size of watershed, and the sampling strategy (Robertson and
Roerish, 1999; Littlewood and Marsh, 2005; Moatar et al., 2013;
Raymond et al., 2013; Worrall et al., 2013; Williams et al.,
2015). For these approaches, a single regression model is usually
established for the entire record based on common assumptions
of homoscedasticity of model errors and fixed relations between
concentration and each covariate. These assumptions, however,
can be frequently violated in reality and pose obstacles for
unbiased flux estimation—see examples in Hirsch et al. (2010)
and Zhang et al. (2016).

To overcome these obstacles, Hirsch et al. (2010) put forth a
method called “Weighted Regressions on Time, Discharge, and
Season (WRTDS).” Like many of its predecessors, WRTDS uses
time, discharge, and season as explanatory variables:

ln(C) = β0 + β1t + β2ln(Q)+ β3 sin (2π t) + β4 cos (2π t) + ε

where C is concentration, t is time in decimal years, Q is daily
discharge, βi are fitted coefficients, and ε is the error term.
However, it functionally develops a separate regression model for

each day in the observed record by evaluating the dependencies
of concentration on time, discharge, and season using samples
deemed to be most relevant to the day of estimation (Hirsch
et al., 2010; Hirsch and De Cicco, 2015). Consequently, WRTDS
can better represent the temporally-varying seasonal and
discharge-related patterns (Moyer et al., 2012; Hirsch, 2014;
Chanat et al., 2016; Lee et al., 2016). Since its publication,
WRTDS has been adopted in a range of surface water-quality
studies in the United States (Sprague et al., 2011; Zhang et al.,
2013, 2015; Green et al., 2014; Corsi et al., 2015; Stackpoole
et al., 2017; Stets et al., 2018; Zhang and Blomquist, 2018) and
elsewhere (Vrzel and Ogrinc, 2015; Rankinen et al., 2016; Van
Meter and Basu, 2017; Purina et al., 2018). WRTDS has been
used to compute water-quality loads for a variety of constituents
including total nitrogen (TN), nitrate-plus-nitrite (NOx),
total phosphorus (TP), orthophosphate (PO4), and suspended
sediment (SS).

Recently, several studies have explored the relative
performance of WRTDS vs. other statistical methods. The
first such study was done by Moyer et al. (2012), who compared
WRTDS and the 7-parameter LOADESTmodel (L7) (Cohn et al.,
1989, 1992; Cohn, 2005). The authors concluded that WRTDS
produced flux estimates for all site-constituent combinations
that were more accurate than L7. For 67% of the combinations,
WRTDS and L7 both produced estimates of flux that were
minimally biased compared to observed fluxes; however, for
33% of the combinations, WRTDS produced estimates of flux
that were considerably less biased (by at least 10%) than L7.
In addition, Hirsch (2014) further compared WRTDS with
both the L7 model and the 5-parameter LOADEST model
(L5) using subsampling of six nearly-daily monitoring records
of NOx and total phosphorus TP. The author showed that
although L5 and L7 often produced nearly unbiased estimates,
they sometimes produced highly biased estimates. These
severe biases may arise in three conditions: (1) lack of fit of
the concentration-discharge relationship (on log-log scale),
(2) substantial differences in the shape of this relationship
across seasons, and (3) severely heteroscedastic residuals. By
contrast, WRTDS was found to be more resistant to these
issues due to its more flexible structure, although it was not
always immune to these issues. Furthermore, Chanat et al.
(2016) expanded upon the above efforts by comparing WRTDS
and L7 for 80 sites in the Chesapeake Bay watershed. The
authors reported that WRTDS had greater explanatory power
than L7, with the greatest degree of improvement observed
for records longer than 25 years—particularly for SS and
TP—and the least degree of improvement for records shorter
than 10 years, for which the two models performed nearly
equally. Based on these results, the USGS adopted WRTDS as
the primary model for estimating constituent fluxes for sites
in the Chesapeake Bay Nontidal Water-Quality Monitoring
Network (Chanat et al., 2016). Finally, Lee et al. (2016)
evaluated the accuracy of WRTDS, L7, and several other
methods across a broad range of sampling and environmental
conditions. The authors reported that most methods provided
accurate estimates of specific conductance and TN but less
accurate estimates for NOx, TP, and SS. WRTDS and other
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methods that allow for flexible concentration-discharge
relations exhibited better estimation accuracy. The authors
also concluded that high-flow sampling can result in improved
estimation accuracy, which is supported by several other
investigations (Sprague, 2001; Chanat et al., 2016; Zhang and
Ball, 2017).

While WRTDS has been used in many investigations
worldwide, there is a general lack of effort to identify factors
that influence the method’s estimation bias. In this regard,
the overall objectives of this work were: (1) to provide
a comparison of WRTDS estimation bias for water-quality
constituent concentrations and fluxes for a range of rivers and
streams in the Chesapeake Bay watershed, and (2) to investigate
the relative importance of various factors in determining the
magnitude of WRTDS bias. To limit the scope of the work, we
focused on evaluating WRTDS models recently published for the
100+ stations in the Chesapeake Bay Nontidal Water-Quality
Monitoring Network (Moyer et al., 2017). While that prior
work provides the daily estimates of water-quality constituent
concentration and load for the various sites, our current work
quantifies the WRTDS estimation bias for each site-constituent
combination and provides a pioneering exploration of the factors
affecting the estimation bias using machine learning techniques.
In the latter regard, a number of potentially influential factors
are considered, which fall into five broad categories, namely,
watershed size, sampling practice, concentration and discharge
conditions, land use, and geology. While prior studies have
typically used a sub-sampling methodology from relatively high-
frequency data to quantify the effects of factors such as watershed
size, sampling strategy, and length of record (Johnes, 2007;
Birgand et al., 2010, 2011; Defew et al., 2013; Kumar et al., 2013;
Horowitz et al., 2014; Elwan et al., 2018), our analysis approach
is unique as the candidate factors are evaluated simultaneously
using machine learning techniques. The results from this project
are expected to provide useful information on the accuracy of
estimated constituent concentrations and fluxes in a wide range
of tributaries to Chesapeake Bay. This would be valuable to the
Bay management and research community in several aspects,
including the development and calibration of the Chesapeake
Bay Watershed Model (Shenk and Linker, 2013) in the context
of the Chesapeake Bay Total Maximum Daily Loads (U. S.
Environmental Protection Agency, 2010; Linker et al., 2013)
and the exploration of estuarine processes that are primarily
driven by river inputs. These results can help the Chesapeake
Bay Program partnership refine sampling and site selection for
its Nontidal Water-Quality Monitoring Network, which may be
useful to the design and operation of water-quality monitoring
networks elsewhere.

METHODS

Sites and Data
The Chesapeake Bay Nontidal Water-Quality Monitoring
Network is a partnership implemented among the States in the
Chesapeake Bay watershed, the U.S. Environmental Protection
Agency, the U.S. Geological Survey, and the Susquehanna
River Basin Commission (https://cbrim.er.usgs.gov/index.html).

The initial network formed around 1985 with coordinated
monitoring at nine sites located at the fall line of nine
major tributaries. In 2004, the network was formalized and
subsequently expanded. Currently (2018), the network has 115
monitoring sites (Figure 1). These sites span four orders of
magnitude in drainage area (1.7–70.189 km2). Details of these
sites are listed in Table 1 and Table S1 (Data Sheet S2).

Sites in this network have been sampled using standardized
protocols and quality-assurance procedures designed to compute
pollutant loads and assess changes in pollutant loads over
time. Primary water-quality constituents involved TN, NOx,
TP, PO4, and SS. Routine samples are collected monthly, and
eight additional storm-event samples are collected per year to
obtain at least 20 samples per year (Tango and Batiuk, 2016).
Samples are collected by nine agencies and are analyzed by five
laboratories according to standard operating procedures that
conform to Nontidal Monitoring Network protocols and quality-
control specifications (U. S. Environmental Protection Agency,
2010; Tango and Batiuk, 2016).

WRTDS Estimation Bias
Water-quality concentration and daily river discharge data have
been compiled and analyzed by Moyer et al. (2017) to estimate
daily concentrations and fluxes using WRTDS. Functionally, for
each day in the observed record, WRTDS develops one separate
regression model to estimate constituent concentration. It pre-
screens the entire concentration data set and selects samples that
are sufficiently “close” to the estimation day in three dimensions,
i.e., time, season, and discharge. The selected samples are used
to build a weighted regression model and the fitted coefficients
are used to estimate concentration on the estimation day by
substituting known values of time and daily discharge. To
expedite the estimation, the steps above are conducted on a
grid network formed by time and log-discharge. For the time
axis (x-axis), grid values are spaced 1/16th of a year apart
from the beginning year to the end year of the record. For
the log-discharge axis (y-axis), 14 grid values are spaced with
equal distance for the discharge range from five percent below
the minimum discharge to five percent above the maximum
discharge in the record—see Hirsch and De Cicco (2015) or
Zhang et al. (2016) for examples of the grid. For each grid point,
WRTDS develops a separate weighted regression model, which
results in an estimated concentration “surface” as functions of
time and log-discharge. Daily concentration is then estimated
using a bi-linear interpolation of this regression surface, which
is then multiplied by daily discharge to compute daily flux.
Full estimation details are described in Hirsch and De Cicco
(2015). WRTDS is currently (2018) implemented through the
Exploration and Graphics for RivEr Trends (EGRET) R package
(Hirsch and De Cicco, 2015).

An important point to note is that WRTDS is a highly
flexible method, which can be over fitted to the data,
particularly to the more extreme values in the data set.
Toward that end, WRTDS uses a “leave-one-out-cross-
validation” approach to compute the estimated concentrations
(Hirsch and De Cicco, 2015). For each observation in the
concentration record, WRTDS runs the weighted regression
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FIGURE 1 | Map of the Chesapeake Bay watershed and sites in the Chesapeake Bay Nontidal Monitoring Network.

for that specific discharge and time, but with that specific
observation left out of the data set. This cross-validation
approach provides a more realistic evaluation of the model’s
ability to make predictions.

In this work, we downloaded the published R workspaces
for the Chesapeake Bay Nontidal Water-Quality Monitoring
Network for all applicable sites and constituents (Moyer
et al., 2017). There are 100, 68, 90, 77, and 90 sites for
TN, NOx, TP, PO4, and SS, respectively, totaling 425
site-constituent combinations. For each site-constituent
combination, we used the fluxBiasStat function in the
EGRET R package version 2.6.0 to quantify the bias in

estimated daily flux, relative to observed daily flux, on the
subset of days having observed concentration data. It is
defined as

(mean of estimated daily flux - mean of observed daily flux)/

mean of observed daily flux, or

(mean of estimated daily flux / mean of observed daily flux) –1

This metric was selected for model evaluation for two reasons:
(1) water resource managers are often interested in average
annual and long-term mean fluxes and (2) it is a standard output
of WRTDS. We note that there are other metrics that may

Frontiers in Ecology and Evolution | www.frontiersin.org 4 April 2019 | Volume 7 | Article 109

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Zhang et al. Estimation Bias in Riverine Constituent Flux

TABLE 1 | List of explanatory variables and their definitions, units, and data sources.

Variable Definition Sourcea Unit Min Median Max

WATERSHED SIZE

Area_km2 Drainage area of the monitoring station NWIS km2 1.7 609 70189

SAMPLING PRACTICE

N_yr Length of the record in years NWIS Year 5.0 12 32

N_perYear Average number of samples per year NWIS Year−1 7.3 18 40

NhighQ_perYear Average number of storm flow samples per yearb NWIS Year−1 0.063 3.6 8.7

CONCENTRATION AND DISCHARGE CONDITIONS

Qmed_mpy Median daily discharge NWIS m/year 0.092 0.24 0.44

Q.CoV Coefficient of variation of daily discharge NWIS Unitless 0.49 1.5 3.2

Cmed Median concentration NWIS mg/l 0.0030 0.51 36

C.CoV Coefficient of variation of concentration NWIS Unitless 0.11 0.91 5.8

CQ.cor Absolute value of correlation between paired concentration and discharge NWIS Unitless 0.00036 0.49 0.93

BFI Base-flow indexc NWIS Unitless 0.18 0.47 0.83

LAND USE

Urban_pct Fraction of urban land NLCD Percent 1.2 55 98

Forest_pctd Fraction of forest land NLCD Percent 1.9 7.3 74

Crop_pct Fraction of cropland NLCD Percent 0 6.2 89

Pasture_pct Fraction of pasture land NLCD Percent 0.058 19 75

GEOLOGY

Unco_pct Fraction of unconsolidated area NWALT Percent 0 0 100

Carb_pct Fraction of carbonate area NWALT Percent 0 1.3 100

Crys_pct Fraction of crystalline area NWALT Percent 0 4.1 100

See Figure S1 (Data Sheet S1) for variable distribution. See Table S1 (Data Sheet S2) for site-specific values of the variables.
aNWIS=National Water Information System (http://dx.doi.org/10.5066/F7P55KJN); NLCD=National Land Cover Database (https://www.mrlc.gov/data); NWALT=U.S. conterminous

wall-to-wall anthropogenic land use trends (Falcone, 2015).
bA concentration sample is considered as a storm flow sample if its associated daily discharge exceeds the 95th percentile of the daily discharge record for that specific year (Chanat

et al., 2016).
cEstimated for each station using the Lyne-Hollick filter method (Lyne and Hollick, 1979; Nathan and McMahon, 1990) through the R package EcoHydRology version 0.4.12 (Fuka et al.,

2014).
dThe variable “Forest_pct

′′

was excluded from the statistical modeling analysis due to its high correlation with the other land use variables.

be used for model evaluation, e.g., the Nash-Sutcliff efficiency,
but we focused on the bias statistic in our current work. In
experiments with records having dense (in some cases nearly
daily) sampling, this statistic was found by Hirsch (2014) to be
a useful, although non-linear, predictor of bias in annual flux
estimates made using WRTDS on sub-sampled concentration
data, relative to more accurate estimates computed directly from
the full set of concentration observations; see Hirsch (2014)
for details.

We alsomodified the fluxBiasStat function to quantify the bias
in estimated concentration, defined as,

(mean of estimated daily concentration / mean of observed

daily concentration) –1

For the purpose of our work, the terms “flux estimation bias”
and “concentration estimation bias” refer to the flux bias statistic
and concentration bias statistic, respectively. These metrics
provide a comparison between estimated daily load (or daily
concentration) and observed daily load (or daily concentration)
for the entire period of analysis and, for flux, provide useful
indices of the bias in annual flux estimates derived fromWRTDS

relative to the “true” annual value that would have been computed
directly, had daily concentration observations been available. In
this work, we have evaluated patterns of both the flux bias and the
concentration bias. These bias values are summarized in Table S1
(Data Sheet S2).

Explanatory Variables
To explain the observed patterns in WRTDS estimation bias, a
set of explanatory variables (n = 17) were considered (Table 1).
These variables fall into the categories of watershed size (n
= 1), sampling practice (n = 3), concentration and discharge
conditions (n = 6), land use (n = 4), and geology (n =

3). For each monitoring site, land use variables, expressed in
the unit of percent, were quantified using the National Land
Cover Database (NLCD) (Multi-Resolution Land Characteristics
Consortium, 2018). We chose to use the NLCD data for year
2001 because it is roughly in the middle of the WRTDS
analysis period (1985–2016). Geology variables, also expressed
in percent, were obtained from the U.S. conterminous wall-to-
wall anthropogenic land use trends (NWALT) dataset (Falcone,
2015). Similarly, we chose to use data associated with year
2002. Watershed size information was extracted from the
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published R workspaces (Moyer et al., 2017). BFI, the ratio
between baseflow and total riverflow, was calculated using the
Lyne-Hollick filter method (Lyne and Hollick, 1979; Nathan
and McMahon, 1990) through the R package EcoHydRology
version 0.4.12 (Fuka et al., 2014). All the other variables
were calculated using the river discharge and concentration
records stored in the published R workspaces (Moyer et al.,
2017), which were originally retrieved from the U.S. Geological
Survey National Water Information System (NWIS; http://dx.
doi.org/10.5066/F7P55KJN) and the Chesapeake Bay Program
Water Quality Database (https://www.chesapeakebay.net/what/
downloads/cbp_water_quality_database_1984_present). In the
calculation of NhighQ_perYear, a concentration sample is
considered as a storm flow sample if its associated daily discharge
exceeds the 95th percentile of the daily discharge record for
that specific year (Chanat et al., 2016). The distributions of all
explanatory variables are shown in Figure S1 (Data Sheet S1)
and their site-specific values are summarized in Table S1

(Data Sheet S2).
The explanatory variables were analyzed in terms of

multicollinearity. Specifically, we calculated the Spearman’s rank
correlation between each two variables as well as the variance
inflation factor (VIF). In general, multicollinearity is considered
severe if VIF > 10 (Kutner et al., 2004). Our results show that
only Forest_pct has a VIF >10, which is strongly correlated with
Crop_pct (correlation = 0.67). Thus, Forest_pct was excluded
from subsequent statistical analysis.

Statistical Modeling
Three statistical approaches were used to examine the
relationship between WRTDS estimation bias and the compiled
set of explanatory variables. These approaches are generalized
additive model (GAM), classification and regression tree
(CART), and random forest (RF) (Hastie et al., 2009). GAM
is a relaxed version of linear models by adding the flexibility
of additive models. As a semi-parametric model, GAM allows
the linear terms in the model to be any desired function of
the covariate or covariates rather than strictly linear functions.
CART is a non-parametric model that recursively partitions
data and uses a very simple model within each partition.
Its advantages include quick insight into data patterns and
relationships using simple tools such as tree plots. Its basic
algorithm involves growing the tree and pruning the tree. RF is
an ensemble non-parametric model that builds multiple decision
trees and merges the trees together to get a more accurate and
stable prediction. RF is a flexible, easy to use machine learning
algorithm that is widely used for its simplicity and its ability to
handle both classification and regression tasks.

We used the R packages mgcv (version 1.8), rpart (version
4.1), and randomForest (version 4.6) for implementing the GAM,
CART, and RF models, respectively. The modeling analysis was
done for each individual constituent and for all constituents
considered together. Model output was diagnosed, and the
relative importance of each explanatory variable was extracted,
which represent the relative significance of each variable in
determining the estimation bias. For each of the three model
types, we scaled the variable importance score of each variable

by their sum, so the scaled scores summed to be one. We adopted
a multiple-model approach to consider the variable importance
scores from all three models. Specifically, we calculated the
average of scaled scores from the three model types for each
explanatory variable and used these average scores to rank
the variables.

Finally, dichotomic tree plots were developed from the CART
model output using the fancyRpartPlot function in the rpart
R package (version 4.1). These plots show whether estimation
bias is large or small while an explanatory variable exceeds an
algorithm-determined threshold. Such tree plots can provide
complementary information to the variable importance scores,
because the latter cannot reveal any information on how the
variables influence the bias.

RESULTS

Distribution of WRTDS Estimation Bias
Flux estimation bias is summarized with boxplots in Figure 2A.
In general, sediment-associated constituents tend to have larger
flux biases than dissolved constituents–the median bias follows
the general order of SS > TP > PO4 > TN ≈ NOx. Median TN
and NOx bias statistics were near zero, with an equal distribution
of small positive and negative bias. TP, PO4, and SS each showed
a median positive bias across sites of <18% for flux (Figure 2A)
and <7% for concentration (Figure 3A). The bias for TN flux is
almost identical to that of NOx flux, reflecting the dominance of
NOx in TN flux. These two constituents also show very narrow
ranges in bias with medians of ∼0.3%. The bias for TP flux
is moderately larger than that of PO4 flux, because TP flux is
more dominated by particulate P in many river systems. The two
constituents also show wider ranges in bias than TN and NOx,
but their 3rd quantiles are still below 16%. The bias for SS flux
has the widest range among all constituents, with a median of
∼18%, a third quantile of 47%, and a maximum of 89%.

Flux estimation bias is further broken down to subgroups
to provide clues on the effects of sampling frequency
(Figures 2B,C), sampling record length (Figures 2D,E),
and watershed size (Figures 2F,G). For N_perYear, the median
value, i.e., 18 year−1, is used as the cutoff, which is also close to
the sampling protocol of 20 year−1. For N_yr, the median value,
i.e., 12 years, is used as the cutoff. For Area_km2, the median
value is 609 km2, but 200 km2 is used as the cutoff to capture
the patterns at small watersheds. Several important patterns
have emerged. First, the general ranking of constituent flux
bias—i.e., SS> TP> PO4 > TN≈NOx—remains valid for these
different subgroups of sites. Second, flux bias for TN and NOx

is still centered around zero with narrow ranges. By contrast,
the other three constituents, especially SS, show contrasting
patterns between different site conditions: flux bias tends to be
larger for sites with smaller sampling frequencies (Figure 2C
vs. Figure 2B), shorter sampling record lengths (Figure 2E
vs. Figure 2D), and smaller watershed sizes (Figure 2G vs.
Figure 2F).

Concentration estimation bias is summarized with boxplots
in Figure 3, using the same y-axis scale as in Figure 2 to aid
comparison with flux bias. First, the general ranking of flux bias
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FIGURE 2 | Boxplots showing the estimation bias for constituent flux for (A) all data and (B-G) their subsets. The subsets correspond to different groups of (B,C)

sampling frequency, (D,E) sampling record length, and (F,G) watershed size. Numbers in the brackets indicate numbers of applicable sites for each boxplot.

remains valid for concentration bias for all data (Figure 3A) and
for different subgroups (Figures 3B–G). Second, as was the case
with flux bias, concentration bias for TN and NOx is centered
around zero in all plots. Third, the other three constituents,
especially SS and TP, show generally smaller concentration bias
than their flux bias. The median concentration bias for TP and
PO4 is 3% or smaller, close to the nearly unbiased status of TN
andNOx estimates. SS concentration bias has a median of 7% and
3rd quantile of 22%, about only half of those statistics for SS flux
bias. Fourth, SS still shows contrasting patterns between different
site conditions: its concentration bias tends to be larger for sites
with smaller sampling frequencies (Figure 3C vs. Figure 3B),

shorter sampling record lengths (Figure 3E vs. Figure 3D), and
smaller watershed sizes (Figure 3G vs. Figure 3F). However, such
contrast appears to be no longer applicable to TP and PO4.

Importance of the Explanatory Variables
In contrast to the boxplots presented above, multivariate
approaches (i.e., GAM, CART, and RF) allowed the potential
effects of the explanatory variables to be evaluated simultaneously
and ranked in terms of their relative importance in determining
WRTDS estimation bias (Figure 4 and Table 2). For flux
estimation bias (Figure 4A and Table 2), C.CoV is the most
influential variable, followed by Q.CoV, N_yr, Cmed, BFI,
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FIGURE 3 | Boxplots showing the estimation bias for constituent concentration for (A) all data and (B-G) their subsets. The subsets correspond to different groups of

(B,C) sampling frequency, (D,E) sampling record length, and (F,G) watershed size. Numbers in the brackets indicate numbers of applicable sites for each boxplot.

CQ.cor, Area_km2, and Qmed_mpy. The land use and geology
variables appear to be the least influential in determining flux
bias. For concentration bias (Figure 4B and Table 2), C.CoV
is again the most influential variable. The top-eight variables
remain almost the same as in the case of flux bias; the only
new top-eight variables for concentration bias are two land use
variables (Crop_pct and Pasture_pct), which replace Area_km2
and Qmed_mpy. Consistent with flux bias, concentration bias
seems to be least influenced by the geology variables.

The relative importance of explanatory variables appears to
be constituent-specific. For brevity, we focus only on constituent
flux bias and the top-five variables for each constituent (Table 2).

For the category of watershed size, none of the five constituents
has Area_km2 in the top-five variable list. For the category of
sampling practice, N_yr is on the top-five lists of TP, PO4, and
SS, and NhighQ_perYear is on the top-five lists of PO4 and SS.
For the category of concentration and discharge conditions, every
variable is on the top-five lists for at least two constituents. In
particular, C.CoV has a high ranking for TN, NOx, and PO4,
while Q.CoV has a high ranking for SS and TP. For the category
of land use, Urban_pct is on the top-five lists of TN and TP, and
Crop_pct is on the top-five list of TN. Finally, for the category of
geology, Unco_pct is on the top-five list of NOx and Crys_pct is
on the top-five list of SS.

Frontiers in Ecology and Evolution | www.frontiersin.org 8 April 2019 | Volume 7 | Article 109

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Zhang et al. Estimation Bias in Riverine Constituent Flux

FIGURE 4 | Variable importance ranking from the highest to the lowest based on the three model types developed for constituent (A) flux bias and (B) concentration

bias for all site-constituent combinations. See Table 2 for numeric rankings used to calculate variable importance, as described in section Statistical Modeling.

TABLE 2 | Numeric ranking of explanatory variables’ importance for flux bias of all constituents, concentration bias of all constituents, and flux bias of each

individual constituent.

Variable All data

(flux)

All data

(concentration)

TN

(flux)

NOx

(flux)

TP

(flux)

PO4

(flux)

SS

(flux)

WATERSHED SIZE

Area_km2 7 9 12 11 7 9 6

SAMPLING PRACTICE

N_yr 3 2 13 15 3 1 3

N_perYear 10 14 11 12 13 11 11

NhighQ_perYear 11 15 9 13 14 4 4

CONCENTRATION AND DISCHARGE CONDITIONS

Qmed_mpy 8 10 8 3 11 3 10

Q.CoV 2 3 10 6 2 8 1

Cmed 4 4 3 4 6 10 16

C.CoV 1 1 2 2 8 2 8

CQ.cor 6 7 6 5 1 5 14

BFI 5 5 5 7 4 13 2

LAND USE

Urban_pct 14 11 1 9 5 12 12

Crop_pct 13 6 4 8 9 7 7

Pasture_pct 12 8 16 10 12 6 9

GEOLOGY

Unco_pct 16 13 14 1 16 16 13

Carb_pct 15 12 7 16 15 14 15

Crys_pct 9 16 15 14 10 15 5

The five most important variables in each case (i.e., orders 1–5) are highlighted in red. See Table 1 for variable definition.

Insights From CART Trees
While the relative variable importance ranking can help
identify the most influential variables, they cannot provide any
information on how the variables influence estimation bias. Thus,

we used the CART model output to develop dichotomic tree
plots to better visualize the effects of key variables. These plots
are presented in Figures 5–7 and Figures S2–S4 (Data Sheet S1)
for different constituents. For brevity, we elaborate on NOx and
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FIGURE 5 | Regression and classification tree developed for constituent flux bias for all site-constituent combinations. In each node, the top number represents the

average bias (percent) of cases and the bottom numbers represent the number of cases and the percentage of cases (in bracket). Of the 425 cases for all

site-constituent combinations, 16 were excluded due to missing values in land use and/or geology variables.

SS below to represent a dissolved constituent and a particulate
constituent, respectively. These tree plots reveal changes in
WRTDS estimation bias when an explanatory variable exceeds
an algorithm-determined threshold. (Note that these plots were
based on CART only, whereas the variable importance scores in
section Importance of the Explanatory Variables were based on
all three statistical models.)

Figure 5 shows the CART tree plot for flux bias with all
constituents and sites considered. The first split is based on
C.CoV with a threshold of 1.7. The top node, with a mean
bias of 9.2%, is split to child nodes of small bias (mean: 4.5%)
for small C.CoV and large bias (mean: 25%) otherwise. In
other words, cases with larger concentration variabilities are
more difficult to accurately estimate, an inference consistent
with the variable importance ranking (Figure 4, Table 2). For
small C.CoV cases, the node is further split by C.CoV with a

new threshold of 0.75, again with small C.CoV corresponding
to small bias (mean: 0.88%) and large C.CoV corresponding
to large bias (mean: 8.5%). The latter child node is then
split by N_yr with a threshold of 10 years, with large N_yr
corresponding to small bias (mean: 4.8%) and small N_yr
corresponding to large bias (mean: 17%). Back to the right
at the top node of the tree, the child node is further split
by Q.CoV with a threshold of 1.4, with small Q.CoV leading
to small bias (mean: 12%). The next levels of split are
associated several variables, with smaller bias corresponding to
smaller Crys_pct, smaller BFI, larger N_yr, larger N_perYear,
and larger NhighQ_perYear at the various splits. Overall,
the subgroup with the highest bias (mean: 56%) has the
characteristics of large C.CoV (>1.7), large Q.CoV (>1.4),
small N_yr (<11 years), and small N_perYear (<20 year−1).
This result highlights the importance of sampling practice in
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FIGURE 6 | Regression and classification tree developed for constituent flux bias for nitrate-plus-nitrite (NOx). In each node, the top number represents the average

bias (percent) of cases and the bottom numbers represent the number of cases and the percentage of cases (in bracket). Of the 68 cases for NOx, one was excluded

due to missing values in land use and/or geology variables.

determining flux bias for cases where C.CoV and Q.CoV are both
relatively large.

The CART tree for NOx flux bias is considerably simpler
(Figure 6). At the top node, NOx flux has a mean bias of 1.5%,
which is split by Unco_pct with a threshold of 34%. For sites
with Unco_pct >34%, NOx flux bias becomes strongly negative
with a mean of −8.1%. For sites with Unco_pct <34%, NOx flux
bias is slightly positive with a mean of 2.8%. This important role
of Unco_pct is consistent with the variable importance ranking
result for NOx (Table 2). The latter child node is further split
by C.CoV with a threshold of 0.72, with small C.CoV leading to
small bias (mean: 1.1%) and large C.CoV leading to large bias
(mean: 9.2%). The node with mean bias of 1.1% is then further
split by two variables, with small bias corresponding to large
NhighQ_perYear and large Area_km2. Overall, the subgroup
with the highest bias (mean: 9.2%) has the characteristics of

small Unco_pct (<34%) and large C.CoV (>0.72), although it
should be noted that the subgroup with large negative bias (mean:
−8.1%) corresponds to large Unco_pct (>34%).

The CART tree for SS flux bias (Figure 7) is quite different
from the tree for NOx. At the top node, SS flux has a mean
bias of 26%, which is split by Q.CoV with a threshold of 1.4,
leading to child nodes of small bias (mean: 13%) for small Q.CoV
and large bias (mean: 35%) otherwise. This important role of
Q.CoV is consistent with the variable importance ranking result
for SS (Table 2). For the latter child node, it is further split by
N_yr with a threshold of 11 years, with large N_yr corresponding
to small bias (mean: 25%) and small N_yr corresponding to
large bias (mean: 51%). These two child nodes are further
split by NhighQ_perYear, Pasture_pct, and Crop_pct, with
large NhighQ_perYear, small Pasture_pct, and large Crop_pct
corresponding to low biases at the various splits. Back to the
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FIGURE 7 | Regression and classification tree developed for constituent flux bias for suspended sediment (SS). In each node, the top number represents the average

bias (percent) of cases and the bottom numbers represent the number of cases and the percentage of cases (in bracket). Of the 90 cases for SS, four were excluded

due to missing values in land use and/or geology variables.

left at the top node of the tree, the child node is further
split by Crys_pct, Qmed_mpy, and NhighQ_perYear, with
small biases associated with small Crys_pct, small Qmed_mpy,
and small NhighQ_perYear at the various splits. Two land
use variables appear on the SS tree, but they seem to have
opposite effects: large Pasture_pct leads to large bias, while
large Crop_pct leads to small bias. Overall, the subgroup
with the highest bias (mean: 61%) has the characteristics
of large Q.CoV (>1.4), small N_yr (<11 years), and small
Crop_pct (<5%).

DISCUSSION

Accurate quantification of constituent flux has major
implications to ecological conditions of downstream receiving
waters (e.g., lakes, estuaries), particularly from a mass-balance
perspective. Our analysis of WRTDS estimation bias (Figure 2)

showed that sediment-associated constituents (SS and TP)
tend to have larger flux biases than dissolved constituents
(TN and NOx), as observed in several previous investigations
(Moyer et al., 2012; Chanat et al., 2016; Zhang and Ball,
2017). The breakdown of estimation bias into different
subgroups highlighted the effects of sampling practice
and watershed size: flux bias for particulate constituents,
especially SS, tends to be larger for sites with smaller sampling
frequencies, shorter sampling record lengths, and smaller
watershed sizes.

In addition, accurate quantification of constituent
concentration is critical to understanding in-stream processes
such as biogeochemical cycling. This work provided new
information on concentration estimation bias (Figure 3), which
has not been commonly reported in the literature. We found
that concentration bias follows the general ranking of flux bias
in terms of median—i.e., SS > TP > PO4 > TN ≈ NOx. In
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addition, constituents with nearly unbiased flux estimates, i.e.,
TN and NOx, have nearly unbiased concentration estimates for
most sites. Constituents with positively biased flux estimates,
i.e., TP, PO4, and SS, tend to have less biased concentration
estimates than corresponding flux estimates. These results
should lend more confidence to research that uses WRTDS
to generate concentration estimates. Lastly, we found that
only SS has strongly contrasting patterns in concentration
bias between different conditions of sampling practice and
watershed size.

Characteristics of individual monitoring sites have strong
effects on WRTDS flux estimation bias. While prior studies
have typically used a sub-sampling methodology from relatively
high-frequency data to quantify the effects of factors such as
watershed size, sampling strategy, and length of record (Johnes,
2007; Birgand et al., 2010, 2011; Defew et al., 2013; Kumar
et al., 2013; Horowitz et al., 2014; Elwan et al., 2018), our
analysis was aimed toward a simultaneous evaluation of the
candidate variables. When all constituents are considered, both
flux bias and concentration bias are most affected by the same
top-five variables, namely, C.CoV, Q.CoV, N_yr, Cmed, and BFI
(Figure 4 andTable 2), stressing the importance of concentration
and discharge variability, the length of concentration record,
and the relative contribution of baseflow vs. rapid flow in
determining bias. None of the watershed size, land use, or geology
variables appears on these two lists. When each constituent is
analyzed separately, flux estimation bias appears to be affected
by different combinations of variable categories (Table 2), but
almost all candidate variables appear on the top-five list for at
least one constituent. For the top variables listed above, C.CoV
has high rankings for TN, NOx, and PO4, while Q.CoV has high
rankings for SS and TP. Such contrast shows that the flux bias
of particulate constituents is more affected by flow variability,
whereas the flux bias of dissolved constituents is more affected by
concentration variability, reflecting the distinction of transport
mechanisms between particulate and dissolved constituents. In
addition, N_yr has high rankings for TP, PO4, and SS, suggesting
the importance of the length of concentration record for
these constituents.

The CART tree plots provided additional insights on how
the variables influence flux bias. For all constituents considered
(Figure 5), the subgroup with the highest bias (mean: 56%)
has the characteristics of large C.CoV (>1.7), large Q.CoV
(>1.4), small N_yr (<11 years), and small N_perYear (<20
year−1). The implication is that resource managers should
expect large flux biases for river and streams that have
large concentration and discharge variabilities, small lengths
of concentration record, and small sampling frequencies.
Thus, river monitoring may target the sites where C.CoV
and Q.CoV are relatively large–for these sites, it can be
particularly useful to increase the length of concentration
record and/or the sampling frequency in order to reduce the
flux bias.

The CART tree plots also demonstrated that flux estimation
bias of each constituent is determined by a unique set of
candidate variables (Figures 6, 7 and Figures S2–S4). For NOx

flux (Figure 6), the subgroup with the highest bias (mean: 9.2%)

has the characteristics of small Unco_pct (<34%) and large
C.CoV (>0.72). For SS flux (Figure 7), the subgroup with the
highest bias (mean: 61%) has the characteristics of large Q.CoV
(>1.4), small N_yr (<11 years), and small Crop_pct (<5%).
These results suggest that resource managers should set different
expectations on different constituents—i.e., large NOx biases for
rivers and streams with large concentration variabilities and small
presence of unconsolidated area and large SS biases for rivers
and streams with large discharge variabilities, small lengths of
concentration record, and small presence of cropland. For SS,
monitoring priority should be given to sites with large Q.CoV
and small Crop_pct, where bias is expected to decrease by
increasing N_yr. For NOx, sites with large Unco_pct (>34%)
are generally located in the Coastal Plain areas on the Eastern
Shore and Western Shore (e.g., Choptank River, Mattaponi
River, and Nanticoke River—see Figure 1). These watersheds are
underlain by unconsolidated sediments (e.g., clay, sand) and
groundwater flows through spaces between the sediment grains
(Fenneman and Johnson, 1946). The subsurface transport of
NOx may complicate its concentration signals manifested in the
rivers, resulting in the relatively high biases at these low-lying
coastal locations.

Overall, these findings may be useful for identifying sites with
large biases, modifying monitoring practice at existing sites to
reduce those biases, and choosing new monitoring locations in
the Chesapeake Bay watershed and beyond. WRTDS is shown
to be appropriate for the majority of sites in this network.
Compared with the previously used LOADESTmethod, WRTDS
has generally enhanced our method capability to estimate
riverine concentrations and fluxes (Moyer et al., 2012; Chanat
et al., 2016). However, WRTDS estimation for small watersheds
(such as headwater watersheds) may not be as satisfactory as
for large watersheds, particularly for sediment and phosphorus
(Figures 2F,G). For such watersheds, sampling design that was
aimed toward understanding the subtlety of nitrogen processes
needs to be improved with modified sampling practice to better
capture the dynamics of sediment and phosphorus. In this
regard, high-frequency (e.g., 15-min to hourly) water-quality
samples can be particularly useful, which can be collected
directly (e.g., nitrate sensors) or derived through surrogates (e.g.,
turbidity, pH, specific conductance) (Pellerin et al., 2016). It has
been established that the surrogate approach can generate flux
estimates that have reduced uncertainty (Jastram et al., 2009;
Pellerin et al., 2014; Stutter et al., 2017). WRTDS, as many
other statistical approaches, is subject to the limitation of data
availability. For SS and TP, more concentration samples need to
be collected to better represent storm flow conditions (Sprague,
2001; Ide et al., 2012; Chanat et al., 2016; Zhang and Ball,
2017). Currently, the Chesapeake network engages a sampling
protocol that collects at least 20 samples per year, with eight
samples targeted toward storm flow conditions (Chanat et al.,
2016). To further reduce estimation bias, more investment may
be needed to increase the number of water-quality observations
collected each year during storm flow periods. Given that
funding resources may not be available to enhance storm flow
sampling and/or high-resolution sampling at all locations in the
network, monitoring can be strategically refined by allocating
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funding resources to monitoring locations where estimation bias
is most affected by the availability (i.e., length and frequency)
of water-quality samples. For example, when all constituents
are considered, the subgroup with the highest bias has the
characteristics of large C.CoV (>1.7), large Q.CoV (>1.4), small
N_yr (<11 years), and small N_perYear (<20 year−1). Thus,
it may be most fruitful to increase N_yr and/or N_perYear at
sites that have large C.CoV, large Q.CoV, and small N_yr. More
broadly, for many monitoring sites in the United States and
beyond, where only river discharge data are available, the variable
Q.CoV may serve as a preliminary guideline—i.e., if new water-
quality monitoring was to established, priority should be given to
locations where Q.CoV is small.

In future work, we recommend including sites from
other geographical regions to place these results into a
more generalizable context to inform river monitoring and
management. This is feasible, since WRTDS has been adopted
in surface water-quality studies in many regions. In addition,
the modeling approaches adopted in this work can be adapted
to other water-quality constituents, such as chloride, pesticides,
and organic carbon. Furthermore, this work is limited to flux and
concentration estimates and it remains unclear how the bias of
these estimates interacts with the accuracy of temporal trends,
which is another important aspect of surface water-quality
research. Lastly, this work focused entirely on traditional,
discretely sampled data. In this regard, future research may
explore how estimation bias might be affected by the addition of
high-frequency data.

CONCLUSIONS

We synthesized and compared WRTDS estimation bias for five
common water-quality constituents for a range of rivers and
streams in the Chesapeake Bay watershed (including headwater
sites) and investigated the relative importance of various
explanatory variables in determining themagnitude of estimation
bias. For both concentration and flux, estimation bias follows the
general order of SS > TP > PO4 > TN ≈ NOx. Median TN and
NOx bias statistics were near zero, with an equal distribution of
small positive and negative bias. TP, PO4, and SS each showed
a median positive bias across sites of <18% for flux and <7%
for concentration. Particulate constituents, especially SS, tend
to have larger bias at sites with lower sampling frequencies,
shorter water-quality record lengths, and smaller watershed sizes.
Three multivariate models were used to investigate the relative
importance of various factors in determining estimation bias.
Results showed that both flux and concentration biases are most
affected by concentration and discharge variabilities as well as
the length of the water-quality record. In comparison, flux bias
of particulate constituents is more affected by flow variability,
whereas flux bias of dissolved constituents is more affected by
concentration variability. Moreover, analysis using classification
and regression trees provided additional information on how the
factors affected flux bias: when all site-constituent combinations
are considered, large flux biases are more likely associated

with sites with large concentration and discharge variabilities,
small lengths of concentration record, and small sampling
frequencies. Overall, these findings may be useful for identifying
sites with large biases, modifying monitoring practice at existing
sites to reduce those biases, and choosing new monitoring
locations in the Chesapeake Bay watershed and beyond. Given
that funding resources may not be available to maintain or
enhance the sampling at all locations in this monitoring
network (or others), monitoring can be strategically refined
by allocating resources to locations where estimation bias is
most affected by the availability (i.e., length and frequency) of
water-quality samples.
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