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The Lineage 2–Beijing (L2–Beijing) sub-lineage of Mycobacterium tuberculosis has

received much attention due to its high virulence, fast disease progression, and

association with antibiotic resistance. Despite several reports of the recent emergence of

L2–Beijing in Africa, no study has investigated the evolutionary history of this sub-lineage

on the continent. In this study, we used whole genome sequences of 781 L2 clinical

strains from 14 geographical regions globally distributed to investigate the origins

and onward spread of this lineage in Africa. Our results reveal multiple introductions

of L2–Beijing into Africa linked to independent bacterial populations from East- and

Southeast Asia. Bayesian analyses further indicate that these introductions occurred

during the past 300 years, with most of these events pre-dating the antibiotic era. Hence,

the success of L2–Beijing in Africa is most likely due to its hypervirulence and high

transmissibility rather than drug resistance.
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INTRODUCTION

Tuberculosis (TB) is mainly caused by a group of closely related bacteria referred to as
the Mycobacterium tuberculosis Complex (MTBC). The MTBC comprises seven phylogenetic
lineages adapted to humans and several lineages adapted to different wild and domestic animal
species (Gagneux, 2018). The human-adapted lineages of the MTBC show a distinct geographic
distribution, with some “generalist” lineages such as Lineage (L)2 and L4 occurring all around
the world and others being geographically restricted “specialist” that include L5, L6, and L7
(Coscolla and Gagneux, 2014; Stucki et al., 2016). Africa is the only continent which is home to
all seven human-adapted lineages, including the three “specialist” lineages exclusively found on
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the continent. Current evidence suggests that the MTBC overall
originated in Africa (Gagneux, 2018) and subsequently spread
around the globe following humanmigratory events (Wirth et al.,
2008; Comas et al., 2013). The broad distribution of some of
the “generalist” lineages and their presence in Africa has been
attributed to past exploration, trade, and conquest. For instance,
an important part of the TB epidemics in sub-Saharan Africa is
driven by the generalist Latin–American–Mediterranean (LAM)
sublineage of L4, which is postulated to have been introduced
to the continent post-European contact (Stucki et al., 2016;
Brynildsrud et al., 2018).

Among the different human-adapted MTBC lineages, the
L2–Beijing sublineage has been of particular interest (Merker
et al., 2015). L2–Beijing has expanded and emerged worldwide
from East Asia; its most likely geographical origin (Luo et al.,
2015; Merker et al., 2015). In some parts of the world, the
recent emergence of L2–Beijing has been linked to increased
transmission (Yang et al., 2012; Holt et al., 2018), high prevalence
of multidrug–resistant TB (MDR–TB) (Borrell and Gagneux,
2009), and to social and political instability, resulting into
displacement of people and poor health systems (Eldholm et al.,
2016). Increasingly, L2–Beijing is also being reported in Africa
(Bifani et al., 2002; Affolabi et al., 2009; Gehre et al., 2016; Mbugi
et al., 2016), and evidence suggests that L2–Beijing in African
regions is becoming more prevalent over time (Cowley et al.,
2008; van der Spuy et al., 2009; Glynn et al., 2010). Some authors
have hypothesized that the introduction of L2–Beijing into South
Africa resulted from the importation of slaves from Southeast
Asia during the 17th and 18th centuries and/or the Chinese
labor forces arriving in the 1900s (van Helden et al., 2002).
Alternatively, in West Africa, the presence of L2–Beijing was
proposed to reflect more recent immigration from Asia (Affolabi
et al., 2009; Gehre et al., 2016). To a certain extent, the recent
expansion of L2–Beijing in parts of Africa has been associated
with drug resistance (Githui et al., 2004; Klopper et al., 2013)
and higher transmissibility (Guerra-Assunção et al., 2015). In
addition, a study in the Gambia showed a faster progression
from latent infection to active TB disease in patient house-hold
contacts exposed to L2–Beijing (de Jong et al., 2008).

Whilst L2–Beijing seems to be expanding in several regions
of Africa, no study has formally investigated the evolutionary
history of L2–Beijing on the continent. In this study, we used
whole genome sequencing data from a global collection of L2
clinical strains to determine the most likely geographical origin
of L2–Beijing in Africa and its spread across the continent.

MATERIALS AND METHODS

Identification of Lineage 2 Strains and
Whole-Genome Sequencing
We obtained whole-genome sequencing data of L2 strains from
the two previously largest studies focusing on the evolutionary
history and global spread of L2–Beijing strains (Luo et al., 2015;
Merker et al., 2015). We then identified additional published
genomes as African and non-African representatives of L2–
Beijing strains from other studies (Comas et al., 2010, 2013; Casali

et al., 2012, 2014; Kato-Maeda et al., 2012; Zhang et al., 2013;
Portevin et al., 2014; Guerra-Assunção et al., 2015; Koch et al.,
2017; Manson et al., 2017). Moreover, we newly sequenced 116
additional L2–Beijing strains using Illumina HiSeq 2000/2500
paired end technology (PRJNA488343). In total, we included 781
L2 genome sequences (Figure S1 and Table S1).

Whole Genome Sequence Analysis and
Phylogenetic Inference
We used a customized pipeline previously described to map
short sequencing reads with BWA 0.6.2 to a reconstructed
hypothetical MTBC ancestor used as reference (Comas et al.,
2013). SAMtools 0.1.19 was used to call single nucleotide
polymorphisms (SNPs), and these SNPs were annotated using
ANNOVAR and customized scripts based on theM. tuberculosis
H37Rv reference annotation (AL123456.2). For downstream
analyses, we excluded SNPs in repetitive regions, those annotated
in problematic regions such as “PE/PPE/PGRS” and SNPs in
drug-resistance associated genes. Small insertions and deletions
were also excluded from the analyses. Only SNPs with minimum
coverage of 20x and minimum mapping quality of 30 were kept.
All SNPs classified by Samtools as having frequencies of the
major non-reference allele lower than 100% (AF1<1) within each
genome were considered to be heterogeneous and were treated as
ambiguities and excluded, and were otherwise considered fixed
(AF1 = 1). Mixed infections or contaminations were discarded
by excluding genomes with more than 1,000 heterogeneous
positions and genomes for which the number of heterogeneous
SNPs was higher than the number of fixed SNPs. In addition we
excluded genomes for which the number of fixed SNPs would fall
below Q1–1.5 IQR of all fixed SNPs considering all L2 genomes
(Q1 being the first quantile and IQR the inner quantile range
as calculated in R3.5.0). All genomes were typed for lineage and
sub-lineage using SNP markers as defined in Steiner et al. (2014)
plus Coll et al. (2014) and those showing simultaneously more
than one marker were excluded. We concatenated fixed SNPs
from the variable positions obtained, which yielded a 32,269 bp
alignment. The alignment was then used to infer a maximum
likelihood phylogeny using RAxML 8.3.2 with a general time
reversible (GTR) model in RAxML and 1,000 rapid bootstrap
inferences, followed by a thorough maximum-likelihood search
(Stamatakis, 2006). The topology was rooted using the reference
strain, H37Rv which belongs to Lineage 4.

Phylogeographic Analyses
Reconstruction of the Ancestral Geographic Range
To investigate the likely geographic origin of L2–Beijing strains
in Africa, we inferred the historical biogeography of L2 using
the RASP software (Yu et al., 2015) on a representative subset
of 422 genomes due to software’s sample limitation. We achieved
this by randomly removing clustered genomes (i.e., those with
12 or less SNP distances) from the same country of origin,
using hierarchical clustering implemented in pvclust package
in R (Suzuki and Shimodaira, 2006) on a distance matrix of
the 781 genome sequences. We then applied a Bayesian binary
based method (BBM) in RASP to reconstruct geographical states
at the ancestral nodes on the best-scoring ML tree inferred
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with RAxML using the 422 L2 genomes. We used geographical
regions (according to United Nations geoscheme) as proxy for
origins of the L2 strains. In total 14 regions were loaded as
geographic distributions (indicated in Table S1). The ancestral
reconstruction was performed with the Proto-Beijing clade as
outgroup. We finally ran Bayesian analysis with 10 chains and
50,000 generations.

Stochastic Character Mapping
To determine the number of introduction events of L2–Beijing
into African regions, we applied stochastic character mapping
as implemented in SIMMAP (Bollback, 2006) on the 781 L2
phylogeny inferred from the best-scoring ML tree rooted on
the Proto-Beijing clade, using the make.simmap function in
phytools package 0.6.60 in R 3.5.0 (Revell, 2012; R Core Team,
2018). Geographical origin of the L2 strains was treated as a
discrete trait and modeled onto the phylogeny using ARD model
with 100 replicates. This model allows unequal rates of state
transition permiting independent region-to-region transfers. We
summarized the results of the 100 replicates using the function
summary in phytools package 0.6.60 in R (Revell, 2012). We
referred to the resulting introductions as migration events “M,”
and discuss only those introductions with 5 or more genomes.

Population Genetic Analyses

Nucleotide diversity (pi)
We calculated the mean pair-wise nucleotide diversity per site
(Pi) measured by geographic region. We excluded geographic
regions represented by <20 genomes. Confidence intervals were
obtained by bootstrapping through resampling using the sample
function in R with replacement and the respective lower and
upper confidence levels by calculating 2.5th and 97.5th quartiles.
Resampling was additionally done using the smallest size of
the geographical regions to account for the effect of different
sample sizes.

Pairwise SNP distances
We used dist.dna function of ape package implemented in R
(Paradis et al., 2004) to calculate pairwise SNP distances with
raw mutation counts and pairwise deletions for gaps. Mean
pairwise SNP distance to all strains of the same geographic
population was calculated per strain and the distribution of
the mean SNP pairwise distance for all strains plotted. The
mean pairwise SNP distances were assumed not to be normally
distributed and we therefore used Wilcoxon rank-sum test to
test the differences among geographic regions. Additionally,
we calculated pairwise SNP distances within African L2–
Beijing populations for migration events with more than 10
genomes each.

Drug Resistance
To distinguish between drug-susceptible and drug-resistant
strains, we used genotypic drug resistance molecular markers
previously described (Steiner et al., 2014). We categorized strains
into: susceptible as having no drug resistance specific mutations;
monoresistant as having mutations conferring resistance to a
single drug; MDR as having mutations conferring resistance to

isoniazid and rifampicin; and extensively drug-resistant (XDR) as
having mutations conferring resistance to fluoroquinolones and
aminoglycosides in addition to being MDR (Table S2).

Bayesian Molecular Dating

Data preparation and preliminary analysis
To estimate the historical period in which L2–Beijing was
introduced to Africa, we performed a set of Bayesian
phylogenetic analyses using tip-calibration (Rieux and
Khatchikian, 2017). Among the 781 studied L2 strains, we
had information on the year of sampling for 308. We performed
all further analysis on this subset of 308 strains. We excluded
all genomic positions that were invariable in this subset and all
positions that were undetermined (missing data or deletions)
in more than 25% of the strains, and obtained an alignment of
10,769 polymorphic positions.

In tip dating analysis it is important to test whether the
dataset contains strong enough temporal signal (Rieux and
Balloux, 2016). To do this, we performed a tip randomization
test (Ramsden et al., 2008) as follows. We used BEAST2 v. 2.4.8
(Bouckaert et al., 2014) to run a phylogenetic analysis with a
HKY + GAMMA model (Hasegawa et al., 1985), a constant
population size prior on the tree and a strict molecular clock.
Additionally, we used the years in which the strains were sampled
to time-calibrate the tree, and we modified the extensible markup
language (xml) file to specify the number of invariant sites as
indicated by the developers of BEAST2 here: https://groups.
google.com/forum/#!topic/beast- (strict_preliminary.xml). We
ran three independent runs (245 million generations in total),
and we used Tracer 1.7 (Rambaut et al., 2018) to identify the
burn-in (8 million generations), to assess that the different runs
converged, and to estimate the effective sample size (ESS) for
all parameters, the posterior and the likelihood (ESS > 110
for all parameters). We then used TipDatingBeast (Rieux and
Khatchikian, 2017) to generate 20 replicates of the xml file in
which the sampling dates were randomly reassigned to different
strains. For each replication, we ran the same BEAST2 analysis
as for the original (observed) dataset (one run per replicate, 50
million generations, 10% burn-in). We used TipDatingBeast to
parse the log files output of BEAST2 and compare the clock rate
estimates for the observed data and the randomized replications.
The estimates of the molecular clock rate did not overlap between
the observed and the randomized dataset, indicating that there is
a clear temporal signal and that we could proceed with further
analysis (Figure S2).

Model selection
To identify the clock model that best fits the data, we estimated
the marginal likelihood of three different clock models: UCED
and UCLD (Drummond et al., 2006), assuming a coalescent
constant population size tree prior and the HKY model of
nucleotide substitution. We used the Model selection package of
BEAST2 to run a path sampling analysis (Lartillot and Philippe,
2006) following the recommendations of the BEAST2 developers
(http://www.beast2.org/path-sampling/). We used the following
settings: 100 steps, 4 million generations per step, alpha = 0.3,
pre-burn-in= 1million generations, burn-in for each step= 40%
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(∗PS.xml). For these analyses, we used proper priors as suggested
by (Baele et al., 2012).

UCLD analysis
Since the model selection analysis indicated that the UCLD clock
was the best fitting model, we repeated the analysis using the
UCLD and the same settings used in the path sampling analysis,
sampling every 10,000 generations. We ran three independent
runs (800 million generations in total), we used Tracer 1.7
(Rambaut et al., 2018) to identify the burn-in (10 million
generations), to assess that the different runs converged and
to estimate the effective sample size (ESS) for all parameters,
the posterior and the likelihood (ESS > 260 for all parameters)
(UCLD_final.xml and Table S3).

We checked the sensitivity to the priors by running one
analysis of 250 million generation sampling from the prior,
and compared the parameter estimates with the analysis using
the data. We observed the posterior distribution and the prior
distribution of all parameters are very distinct (Table S4),
indicating that the parameter estimates are influenced by the
data and not by the priors (Bromham et al., 2018). Additionally
we repeated the dating analysis with a coalescent exponential
population growth tree prior (UCLD + HKY + exponential
growth) andwith a GTRmodel of nucleotide substitution (UCLD
+ GTR + constant size). All these analyses resulted in similar
estimates of the age of the introductions of L2 in Africa, thus
showing that our results are not strongly influenced by the tree
prior and the nucleotide substitution model (Table S6).

We repeated the tip randomization test with the UCLDmodel
as described above (20 replicates, one run per replicate, 105
million generations per replicate or more, burn-in 10%), and
again we found a temporal signal (Figure S3).

To summarize the results, we sampled the trees from the three
runs (5% burn-in corresponding to 10 million generations or
more, sampling every 25,000 generation). We then summarized
the 31,758 sampled trees, created a maximum clade credibility
tree using the software TreeAnnotator from the BEAST2 package
and used FigTree version 1.4.2 (http://tree.bio.ed.ac.uk/software/
figtree) for visualization (Figure S4).

RESULTS

Phylogenetic Inference of L2 Strains
We analyzed a total of 781 L2 genomes originating from 14
geographical regions including Eastern and Southern Africa
(Figure S1 and Table S1). We focused on seven geographical
regions that had more than 20 genomes each, and assigned the
remainder to “Other,” including two genomes from Western
Africa (Figure 1A). The resulting phylogeny of L2 was divided
into two main sublineages: the L2–proto-Beijing and L2–
Beijing, supporting previous results (Luo et al., 2015; Shitikov
et al., 2017). The L2–proto-Beijing was the most basal L2
sublineage and was restricted to East- and Southeast Asia. L2–
Beijing, particularly the “modern” (also known as “typical”)
sublineage, was geographically widely distributed and included
strains from Africa. We further characterized L2–Beijing using

the recently described unified classification scheme for L2
(Shitikov et al., 2017).

The Population Structure of L2–Beijing in
Eastern and Southern Africa
Our findings showed the population of African L2–Beijing to be
heterogeneous (Figures 1B, 2 and Table S5). Most of the African
L2–Beijing strains were classified into several groups within
the “modern” sublineage, which included primarily the “Asian-
African” sublineages (L2.2.4, L2.2.5 and L2.2.7), consistent with
previous findings (Merker et al., 2015). We also identified the
“ancient” (atypical) strains among the African L2–Beijing. Given
that “ancient” L2–Beijing strains (L2.2.1—L2.2.3) are generally
uncommon (Luo et al., 2015), it is interesting to observe such
strains in both African regions. In several instances, African L2–
Beijing strains did not fall into any of the previously defined
groups (Figure 2). Of the two African regions studied here,
East Africa had higher proportion of previously uncharacterized
L2–Beijing strains (43/92, 46.7%).

In summary, our findings show that African regions harbored
distinct L2–Beijing populations. This is unlike Eastern Europe
and Central Asia, where L2–Beijing is dominated by a few
highly similar strains (Casali et al., 2014; Eldholm et al.,
2016). Of note, L2–Beijing strains typical Eastern Europe
and Central Asia were completely absent from the African
populations (Figure 2).

Genetic Diversity of L2–Beijing Strains
Across Geographic Regions
The spatial distribution of L2–Beijing sublineages and the
prevalence of “ancient” L2–Beijing strains observed in this study
and previously (Luo et al., 2015; Merker et al., 2015), suggest
that L2–Beijing has expanded worldwide from Asia. This view
can further be supported by the measures of genetic diversity
of L2–Beijing in the different geographical regions (Figure 3).
As expected, East- and Southeast Asia contained the most
genetically diverse L2 populations, which is consistent with
previous results (Luo et al., 2015). Conversely, L2 populations in
other geographies were less genetically diverse, suggesting recent
dissemination of L2 to these regions. Within Africa, Southern
Africa showed a higher diversity in L2–Beijing populations
compared to Eastern Africa.

The genetic diversity within the African L2–Beijing
populations not only reflects the number and variety of
source populations but also local patterns of diversification that
occurred after their introduction. Therefore, the higher genetic
diversity of the L2–Beijing populations in Southern Africa
compared to Eastern Africa likely reflects both aspects.

Multiple Introductions of L2–Beijing From
Asia Into Africa
Based on our reconstructed phylogeny, African L2–Beijing
strains clustered into several unrelated clades indicating multiple
introductions into Africa (Figure 1B). We next investigated
the most likely geographical origins of those introductions. As
anticipated, our ancestral reconstruction using RASP estimated

Frontiers in Ecology and Evolution | www.frontiersin.org 4 April 2019 | Volume 7 | Article 112

http://tree.bio.ed.ac.uk/software/figtree
http://tree.bio.ed.ac.uk/software/figtree
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Rutaihwa et al. M. tuberculosis L2-Beijing in Africa

FIGURE 1 | Global phylogeny and geographical distribution of L2 strains. (A) Geographical origin (according to United Nations geoscheme) for the 781 L2 strains. The

geographical origins with less than 20 strains are colored dark gray and those with missing data light gray. (B) Maximum likelihood phylogeny inferred from 32,269

variable single nucleotide positions of the 781 strains rooted with the reference strain H37Rv. Taxa are colored according to the geographical origin of the strains and

the clades are highlighted according to previously defined sublineages. L2 defining markers i.e., deletions (RD) are also mapped onto the phylogeny.

East Asia as the most likely origin of all L2 (posterior
probability of 96.1%) and L2–Beijing (posterior probability
92.5%) (Figure S5). Our data further indicate that L2–Beijing
was introduced into Africa from East- and Southeast Asia on
multiple occasions independently. Furthermore, we observed
both direct introductions from Asia into Africa as well as
subsequent dispersal within the continent (Figures S6, S7).

Using stochastic mapping, we estimated a total of 13
introductions or migration events (M1–M13) into Africa
(Figure 4). Eight of the African L2–Beijing introductions
originated from East Asia and five from Southeast Asia. Out

of the 13 introductions, three (M3, M10, and M13) were
present in both African regions analyzed here, suggesting
initial introductions from Asia followed by subsequent spread
within Africa. Overall, our analysis inferred more independent
introductions into Southern Africa (n = 7, M1, M4, M7-9, M11
and M12, all of them with extant strains sampled in South
Africa) than Eastern Africa (n = 3, M2 sampled in Malawi
and Tanzania; M5 and M6 sampled in Kenya and in Malawi,
respectively). Taken together, our data suggest that multiple
migration events have shaped the populations of L2–Beijing
in Africa.
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FIGURE 2 | Frequency in proportions of L2 sub-lineages across seven geographical regions.

FIGURE 3 | Genetic diversity of L2 strains within geographical regions. (A) Nucleotide diversity (π) per site of L2 strains by geography. Error bars are the 95%

confidence intervals obtained by bootstrapping. (B) Pairwise genetic SNP distance of L2 by geography (p-values were obtained from Wilcoxon rank-sum tests). Each

box represents the 25% and 75% quartiles and the line denotes the median.

Bayesian Molecular Dating
Different hypotheses have been formulated on the possible timing
of the introduction of L2–Beijing into Africa (van Helden et al.,
2002). Here we used tip-calibration to date the phylogenetic
tree of L2 and estimate the age of its introduction to Africa.
For these analyses, we identified 308 strains among the 781
for which the sampling year was known. These strains were
sampled during a period of 19 years; 1995–2014 (Figure S8), were
evenly distributed on the complete phylogenetic tree (Figure S9)
and included 40% members of the African L2–Beijing strains
(Figure S10). Eleven of the 13 African introductions were
represented in this dataset (M1-M3 and M6-M13).

We performed a Date Randomization Test with a strict clock
and with a relaxed clock. With both models we detected no
overlap in the 95% credibility interval of the clock rate estimates
of observed and randomized datasets indicating that there was

sufficient temporal signal in the dataset to perform inference
(see methods, Figures S2, S3). Further, We found that the UCLD
clock had the highest marginal likelihood and a Bayes Factor of
27 with the second best fitting model, the strict clock (Table 1),
indicating strong evidence in favor of the UCLD clock (Kass and
Raftery, 1995).

We performed a phylogenetic analysis with BEAST2 using the
UCLD clock. Under the UCLDmodel, the coefficient of variation
(COV), which is a summary of the branch rates distribution
(standard deviation divided by the mean), gives an indication
on the clock-likeness of the data (Drummond et al., 2006). A
coefficient of variation of zero indicates that the data fit a strict
clock, whilst a greater COV indicates a higher heterogeneity
of rates through the phylogeny. We obtained a mean COV
of 0.22 (95% credibility interval= 0.1732, 0.2732), indicating a
moderate level of rate variation across different branches and
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FIGURE 4 | Introductions of L2 strains to Africa. (A) Stochastic mapping of the geographic origin of L2 strain obtained with SIMMAP onto the Maximum Likelihood

phylogeny of the 781 MTB Lineage 2 strains. Branches are colored according to the geographical region inferred and one random tree is represented. The 13

migration events to Africa (M1–M13) are indicated and summary posterior probabilities (from 100 runs) of the ancestral states (colored according to their geographical

region) are indicated at the nodes defining each M event (B) Proposed scenario for representative events of the multiple introductions of L2–Beijing into Africa. (C) Plot

summarizing the number of introduction events to Eastern and Southern Africa from East- and Southeast Asia. Color codes are the same as in Figure 3.

TABLE 1 | Model selection based on path sampling Log-Marginal Likelihood.

Clock model Log(e) Marginal Likelihood Bayes factor (UCLD vs. model)

UCLD −5374827 –

Strict −5374854 27

UCED −5374897 70

thus supporting the results of the path sampling analysis that
favored the UCLD model.

Recent Origins of the African
L2–Beijing Clades
We used the UCLD clock model to infer the clock rate and
divergent times of the 308 L2 strains with known sampling
dates and estimated a mean substitution rate of 1.34 × 10−7

[95%Highest Posterior Density (HPD), 9.2867× 10−8–1.7719×
10−7]. These estimates are in agreement with previously reported
rates from epidemiological studies (Walker et al., 2013; Eldholm
et al., 2016). However, the estimated rate by Eldholm et al.
(2016) is relatively higher compared to our estimates, which likely
reflects the fact that our dataset included the entire Lineage 2
as opposed to a only a single particular clade in the case of
Eldholm et al. (2016).

We estimated the most recent common ancestor (MRCA)
of the extant L2–Beijing of the 308 strains to the year 1225
[95% HPD, 900–1519] (Figure S4). This estimate was slightly
younger than the previous estimate for the whole of Lineage 2

by the study of (Bos et al., 2014), likely reflecting the difference
in methodology. The latter study used ancient M. pinipeddii
DNA recovered from pre-Columbian human remains to calibrate
the phylogeny as opposed to tip-dating based on contemporary
sampling dates. For each African clade, we estimated the year
of introduction using the 0.975 quantile of the HPD of the
age of the MRCA as the upper limit (most recent possible
year) and the 0.025 quantile of the HPD of the divergence
time between the closest non-African L2–Beijing strain (the
closest outgroup) and the African clade of interest as lowest
limit (most ancient possible year). This approach produced
conservative estimates, while relying only on the age of the
MRCA of the African clades would systematically underestimate
the age of the introductions. Our estimates placed the earliest
introductions of the African L2–Beijing (M1, M3, M7, and
M12) in the eighteenth and nineteenth century (Figure 5 and
Table S6). Four additional migration events (M6, M9, M10, and
M11) were estimated to have occurred between the beginning of
the nineteenth century and the first half of the twentieth century.
Finally, the three most recent introductions to Africa happened
in the second half of the twentieth century (M2, M8, and M13).
Diversity patterns of the African clades exclusive to Eastern-
and Southern Africa could further provide support for the
recent introductions of African L2–Beijing. We thus calculated
the pairwise SNP distances within the individual introductions
to explore the local patterns of diversification associated with
regional epidemics after the introductions. Although strains
within Southern African introductions were relatively more
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FIGURE 5 | Estimated time in median ages for the introductions of African L2–Beijing (M1-M3 and M6-M13). Introductions to Eastern Africa are colored in red and

those to Southern Africa in blue. Migration M10 contained L2–Beijing from both Southern and Eastern Africa. Dotted line marks the year of first anti-TB drug discovery

(1943). The error bars correspond to the 95% HPD.

distantly related, L2–Beijing strains from both African regions
were on average 20 to 40 SNPs apart (Figures S11–S13). The
latter thresholds were proposed to correspond to strains involved
in transmission clusters of estimated 50 to100 years (Meehan
et al., 2018), supporting the relatively recent introductions of
L2–Beijing into the African continent.

Overall, these results indicate that the different introductions
of L2–Beijing to Africa occurred over a period of 300 years.While
the earliest introduction is unlikely to have happened after 1732–
1874, the most recent is unlikely to have occurred before 1946–
1980. However, our 95%HPDs show a wide range of uncertainty,
which likely resulted from extrapolating several centuries back in
time based on a comparably short calibration interval spanning
only 19 years.

Introductions of L2–Beijing Into Africa
Unrelated to Drug Resistance
Because of the repeated association of L2–Beijing with antibiotic
resistance (Borrell and Gagneux, 2009), the emergence and
dissemination of L2–Beijing strains has often been attributed
to drug resistance. However, our estimated timing of these
introductions suggest that African L2–Beijing strains were
introduced prior the discovery of TB antibiotics, and thus must
have involved drug-susceptible strains (Figure 5). To explore
this question further, we assessed the drug resistance profiles
of L2–Beijing strains linked to the various introduction events

into the two African regions. We found that all the Eastern
African populations contained only drug-susceptible strains and
that approximately three-quarters of L2–Beijing strains in the
Southern African populations were drug-susceptible, with the
remaining being either mono–, multi–, or extensively drug-
resistant (Figure 6 and Figure S14). Taken together, these results
suggest that the emergence of L2–Beijing in Africa, particularly
in Eastern Africa, was not driven by drug resistance. Moreover,
our data indicate independent acquisition of drug resistance
for the resistant strains detected in the Southern African L2–
Beijing population (Figure 6), which might partly contribute to
the subsequent spread of L2–Beijing in Southern Africa but not
in Eastern Africa.

DISCUSSION

This study investigated the most likely geographical origin of the
L2–Beijing in Africa. In line with previous findings (Luo et al.,
2015; Merker et al., 2015), we identified East Asia as the most
likely place of origin of L2 and L2–Beijing. Our findings further
revealed multiple independent introductions of L2–Beijing into
Africa linked to separate populations originating from both East-
and Southeast Asia. Some of these introductions were followed
by further onward spread of L2–Beijing within African regions.
Finally, we demonstrate that most introductions of L2–Beijing on
the continent occurred before the age of antibiotics.
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FIGURE 6 | Proportions of drug resistance profiles for L2 strains in seven geographical regions.

L2–Beijing has received much attention given its
hypervirulence in infection models (Manca et al., 2001;
Ribeiro et al., 2014), faster progression to disease and higher
transmission potential in humans (de Jong et al., 2008; Holt
et al., 2018), frequent association with drug resistance, and recent
emergence in different regions of the world (Bifani et al., 2002;
Borrell and Gagneux, 2009; Fenner et al., 2013). Several studies
indicate L2–Beijing originated in Asia and spread from there to
the rest of the world (Luo et al., 2015; Merker et al., 2015). Our
results support this notion by identifying “Asia” as the most likely
geographical origin of both L2 and L2–Beijing based on our
ancestral reconstructions and the fact the L2–Beijing populations
in Asia are much more diverse than in other regions. In addition,
our findings show that L2–Beijing was introduced into Africa
multiple times from both East- and Southeast Asia. The presence
of L2–Beijing in South Africa has previously been proposed
to be due to the importation of slaves from Southeastern Asia
by Europeans in the seventeenth and eighteenth centuries
followed by the import of Chinese labor-forces in the early
1900s (van Helden et al., 2002; Mokrousov et al., 2005). Our
Bayesian dating estimates predicted the earliest introductions
of L2– Beijing into Africa to have occurred in the eighteenth
and nineteenth centuries, concurring with these proposed time
periods. However, our findings also point to later introductions
of L2–Beijing into the continent in the nineteenth and early
twentieth centuries. The timings of the latest three introductions
in the second half of the twentieth century coincide with
the decolonization and post-colonial period in Africa when
investments into infrastructure and other projects by Chinese
enterprises substantially increased (Yuan, 2006; Rice, 2011).
These activities also brought many Chinese workers to Africa
during a time when TB was still very prevalent in China (Murray,
2018). Hence, many of these workers were likely latently infected
with L2–Beijing and might have later reactivated (Pescarini et al.,
2017). Overall, our findings suggest that L2–Beijing has emerged

in Africa over the last 300 years and that these introductions
have occurred sporadically ever since.

The repeated association of L2–Beijing with drug resistance
(Borrell and Gagneux, 2009) has led some to propose that
drug resistance is another reason why this sublineage might
successfully compete against and eventually replace other M.
tuberculosis genotypes (Parwati et al., 2010). However, the
underlying reason for the association of L2–Beijing with drug
resistance remains unclear (Borrell and Trauner, 2017), and it
is also far from universal, with several reports from e.g., China
and other regions finding no such association (Hanekom et al.,
2007; Yang et al., 2012). Our results show that most introduction
events of L2–Beijing into Africa pre-date the antibiotic era, and
because of that, these introductions were most likely caused by
drug-susceptible strains. The notion that the initial emergence of
L2–Beijing in Africa was not driven by drug resistance is further
supported by our findings that none of L2–Beijing strains from
Eastern Africa strains analyzed here were drug-resistant. Of note,
our observations suggest that drug resistance in South Africa
was acquired via independent events post initial introductions
from Asia. This is in sharp contrast to the situation in Eastern
Europe and Central Asia, where L2–Beijing is highly prevalent
but dominated by few recently expanded drug-resistant clones,
which account for up to 60% of the L2–Beijing populations
in some of these countries (Casali et al., 2014; Eldholm et al.,
2016). The association of L2–Beijing with drug resistance in these
regions were likely favored by the economic and public health
crises that followed the collapse of Soviet Union (Luo et al., 2015;
Merker et al., 2015).

Based on our finding that the original introductions of L2–
Beijing into Africa involved drug-susceptible strains and that
the prevalence of drug-resistant L2–Beijing in Africa overall is
comparably low (WHO, 2017), we propose that some of the other
characteristics of this sub-lineage, in particular its high virulence,
high transmissibility and rapid progression from infection to
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disease, were responsible for the initial competitive success of
L2–Beijing in Africa. Until recently, Africa was considered a
Virgin Soil for TB and that TB was only introduced following
European contact (Comas et al., 2015). However, this notion is
incompatible with the current evidence supporting an African
origin for the MTBC overall (Hershberg et al., 2008; Wirth
et al., 2008; Comas et al., 2013). Indeed, Africa is the only
continent to harbor all seven known human-adapted MTBC
lineages, three of which are almost exclusively observed there
(Gagneux, 2018), as well as several animal-adapted MTBC
ecotypes, which affect several wild Africanmammals (Brites et al.,
2018). Moreover, one study showed that TB epidemics on the
continent were caused bymany different “native” genotypes prior
to foreign contacts (Comas et al., 2015), suggesting that TB
existed in Africa before the initial European contact. Perhaps
the clinical and epidemiological picture of TB in Africa was
different at the time, characterized by a low virulent and slow
progressing disease, which would have escaped the attention
of European colonial officials reporting the absence of TB in
Africa, at a time when the TB epidemic was raging in the
cities of Europe and North America, killing up to 20% of the
adult population (Comas and Gagneux, 2011). We hypothesized
previously that rapid co-expansion of MTBC L2, L3, and L4
with their respective human host populations in China, India
and Europe might have selected for higher virulence and shorter
latency in these “modern” lineages (Hershberg et al., 2008).
The emergence and expansion of these “foreign” genotypes
including L2–Beijing into Africa as reported here, and as reported
earlier for L4 (Stucki et al., 2016; Brynildsrud et al., 2018),
demonstrate the ability of these lineages to successfully compete
against the existing genotypes on the continent, likely as a
result of their high transmissibility and rapid progression to
disease. Following their initial establishment, poor TB treatment
programs subsequently selected for drug resistance in L2–Beijing
but also in other MTBC lineages including L4, which might have
facilitated their further spread in countries such as South Africa
(Müller et al., 2013).

Finally, the estimates of the TMRCA for L2 reported here
are largely consistent with recent reports using similar tip-
dating analyses based on isolation dates (Eldholm et al., 2016),
and support the notion that the MTBC overall is younger
than what has been proposed in earlier studies, based on a
hypothesized co-divergence of the human-adapted MTBC and
modern humans since their migration out of Africa (Comas et al.,
2013; Luo et al., 2015).

This study is limited by the fact that we analyzed a globally
diverse collection of L2 genomes available in public repositories.
Hence, these strains might not be fully representative of the
respective geographical regions. Moreover, our African L2–
Beijing dataset came from convenient sampling and comprised
L2–Beijing mainly from Eastern and Southern Africa, as whole
genome data of L2–Beijing from the other African regions
were unavailable at the time of the study. However, the
representation of African L2–Beijing in our sample reflects
the overall prevalence of this sub-lineage as recently reported
for the continent (Mbugi et al., 2016; Chihota et al., 2018).

Moreover, although regions outside of Eastern- and Southern
Africa were underrepresented, this is unlikely to invalidate
our findings regarding the multiple independents of L2–
Beijing into Africa, except by underestimating the number of
true introductions.

In conclusion, this is the first study to address the geographical
origins of L2–Beijing in Africa using whole genome sequencing
data. Our findings indicate multiple independent introductions
of L2–Beijing epidemics into Africa from East- and Southeast
Asia during the last 300 years that were unrelated to drug
resistance. The TB epidemics in Africa have remained fairly
stable over the last few decades (WHO, 2017). However, Africa’s
population growth and increasing urbanization (driven by
booming economies) are likely to have an impact on the future
of TB in this continent, whether directly by e.g., facilitating
transmission or indirectly by promoting new risk factors such as
diabetes that increase TB susceptibility (Dye andWilliams, 2010).
It is therefore crucial to follow the TB epidemics in the continent
very closely, especially those related to hypervirulent strains such
as L2–Beijing, as these might take particular advantage of this
expanding ecological niche (Cowley et al., 2008).

DATA AVAILABILITY

The xml files used for this study can be found here https://github.
com/SwissTPH/TBRU_L2Africa.git.

AUTHOR CONTRIBUTIONS

LR, DB, FM, DS, LF, and SG planned the study. SL, BM, and
JF performed the experiments. LR, DB, FM, SMG, SL, BM, CB,
SB, KM, MB, LJ, KR, EJC, LD and LF contributed strains and
prepared the data. LR, DB, FM, and SG analyzed the data. LR,
DB, FM, and SG drafted the manuscript. All authors critically
reviewed the manuscript.

ACKNOWLEDGMENTS

We would like to thank Sebastián Duchêne and Yan Yu for their
technical support and Linda-Gail Bekker for contributing strains.
All bioinformatics analyses were performed at the scientific
computing core facility of the University of Basel, sciCORE
(http://scicore.unibas.ch/). This work was supported by the Swiss
National Science Foundation (grants 310030_166687 to SG),
the European Research Council (309540-EVODRTB to SG)
and SystemsX.ch This research was also partially supported
(strain collection) by a funding supplement from the National
Institutes of Allergy and Infectious Diseases (NIAID) under
award numbers U01 AI069924 (IeDEA Southern Africa) andU01
AI069911 (IeDEA East Africa).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fevo.
2019.00112/full#supplementary-material

Frontiers in Ecology and Evolution | www.frontiersin.org 10 April 2019 | Volume 7 | Article 112

https://github.com/SwissTPH/TBRU_L2Africa.git
https://github.com/SwissTPH/TBRU_L2Africa.git
http://scicore.unibas.ch/
https://www.frontiersin.org/articles/10.3389/fevo.2019.00112/full#supplementary-material
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Rutaihwa et al. M. tuberculosis L2-Beijing in Africa

REFERENCES

Affolabi, D., Faïhun, F., Sanoussi, N., Anyo, G., Shamputa, I. C., Rigouts, L.,

et al. (2009). Possible outbreak of streptomycin-resistant Mycobacterium

tuberculosis Beijing in Benin. Emerging Infect. Dis. 15, 1123–1125.

doi: 10.3201/eid1507.080697

Baele, G., Li, W. L., Drummond, A. J., Suchard, M. A., and Lemey, P. (2012).

Accuratemodel selection of relaxedmolecular clocks in bayesian phylogenetics.

Mol. Biol. Evol. 30, 239–243. doi: 10.1093/molbev/mss243

Bifani, P. J., Mathema, B., Kurepina, N. E., and Kreiswirth, B. N. (2002). Global

dissemination of the Mycobacterium tuberculosis W-Beijing family strains.

Trends Microbiol. 10, 45–52. doi: 10.1016/S0966-842X(01)02277-6

Bollback, J. P. (2006). SIMMAP: stochastic character mapping of discrete traits on

phylogenies. BMC Bioinformatics 7:88. doi: 10.1186/1471-2105-7-88

Borrell, S., and Gagneux, S. (2009). Infectiousness, reproductive fitness and

evolution of drug-resistantMycobacterium tuberculosis. Int. J. Tuberc. Lung dis.

13, 1456–1466.

Borrell, S., and Trauner, A. (2017). Strain diversity and the evolution

of antibiotic resistance. Adv. Exp. Med. Biol. 1019, 263–279.

doi: 10.1007/978-3-319-64371-7_14

Bos, K. I., Harkins, K. M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al.

(2014). Pre-Columbian mycobacterial genomes reveal seals as a source of new

world human tuberculosis. Nature 514, 494–497. doi: 10.1038/nature13591

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D., et al. (2014).

BEAST 2: a software platform for bayesian evolutionary analysis. PLoS Comput.

Biol. 10:1003537. doi: 10.1371/journal.pcbi.1003537

Brites, D., Loiseau, C., Menardo, F., Borrell, S., Boniotti, M. B., Warren, R., et al.

(2018). A new phylogenetic framework for the animal-adapted mycobacterium

tuberculosis complex. Front. Microbiol. 9:2820. doi: 10.3389/fmicb.2018.02820

Bromham, L., Duchêne, S., Hua, X., Ritchie, A. M., Duchêne, D. A., and Ho, S.

Y. W. (2018). Bayesian molecular dating: opening up the black box. Biol. Rev.

Wiley Blackwell 93, 1165–1191. doi: 10.1111/brv.12390

Brynildsrud, O. B., Pepperell, C. S., Suffys, P., Grandjean, L., Monteserin, J.,

Debech, N., et al. (2018). Global expansion of Mycobacterium tuberculosis

lineage 4 shaped by colonial migration and local adaptation. Sci. Adv.

4:eaat5869. doi: 10.1126/sciadv.aat5869

Casali, N., Nikolayevskyy, V., Balabanova, Y., Harris, S. R., Ignatyeva,

O., Kontsevaya, I., et al. (2014). Evolution and transmission of drug-

resistant tuberculosis in a Russian population. Nat. Genet. 46, 279–286.

doi: 10.1038/ng.2878

Casali, N., Nikolayevskyy, V., Balabanova, Y., Ignatyeva, O., Kontsevaya, I., Harris,

S. R., et al. (2012). Microevolution of extensively drug-resistant tuberculosis in

Russia. Genome Res. 22, 735–745. doi: 10.1101/gr.128678.111

Chihota, V. N., Niehaus, A., Streicher, E. M., Wang, X., Sampson, S. L.,

Mason, P., et al. (2018). Geospatial distribution of Mycobacterium tuberculosis

genotypes in Africa. PLoS ONE 13:e0200632. doi: 10.1371/journal.pone.02

00632

Coll, F., McNerney, R., Guerra-Assunção, J. A., Glynn, J. R., Perdigão, J., Viveiros,

M., et al. (2014). A robust SNP barcode for typing Mycobacterium tuberculosis

complex strains. Nat. Commun. 5:4812. doi: 10.1038/ncomms5812

Comas, I., Chakravartti, J., Small, P. M., Galagan, J., Niemann, S., Kremer,

K., et al. (2010). Human T cell epitopes of Mycobacterium tuberculosis are

evolutionarily hyperconserved. Nat. Genet. 42, 498–503. doi: 10.1038/ng.590

Comas, I., Coscolla, M., Luo, T., Borrell, S., Holt, K. E., Kato-Maeda,

M., et al. (2013). Out-of-Africa migration and Neolithic coexpansion of

Mycobacterium tuberculosis with modern humans. Nat. Genet. 45, 1176–1182.

doi: 10.1038/ng.2744

Comas, I., and Gagneux, S. (2011). A role for systems epidemiology in tuberculosis

research. Trends Microbiol. 19, 492–500. doi: 10.1016/j.tim.2011.07.002

Comas, I., Hailu, E., Kiros, T., Bekele, S., Mekonnen, W., Gumi, B., et al. (2015).

Population genomics ofMycobacterium tuberculosis in ethiopia contradicts the

Virgin soil hypothesis for human tuberculosis in Sub-Saharan Africa.Curr. Biol.

25, 3260–3266. doi: 10.1016/j.cub.2015.10.061

Coscolla, M., and Gagneux, S. (2014). Consequences of genomic

diversity in Mycobacterium tuberculosis. Semin. Immunol. 26, 431–444.

doi: 10.1016/j.smim.2014.09.012

Cowley, D., Govender, D., February, B., Wolfe, M., Steyn, L., Evans, J., et al.

(2008). Recent and rapid emergence of w-beijing strains of Mycobacterium

tuberculosis in Cape Town, South Africa. Clin. Infect. Dis. 47, 1252–1259.

doi: 10.1086/592575

de Jong, B. C., Hill, P. C., Aiken, A., Awine, T., Antonio, M., Adetifa, I. M.,

et al. (2008). Progression to active tuberculosis, but not transmission, varies

by Mycobacterium tuberculosis lineage in The Gambia. J. Infect. Dis. 198,

1037–1043. doi: 10.1086/591504

Drummond, A. J., Ho, S. Y., Phillips, M. J., and Rambaut, A. (2006).

Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:88.

doi: 10.1371/journal.pbio.0040088

Dye, C., and Williams, B. G. (2010). The population dynamics and control of

tuberculosis. Science 328, 856–861. doi: 10.1126/science.1185449

Eldholm, V., Pettersson, J. H., Brynildsrud, O. B., Kitchen, A., Rasmussen, E. M.,

Lillebaek, T., et al. (2016). Armed conflict and population displacement as

drivers of the evolution and dispersal ofMycobacterium tuberculosis. Proc. Natl

Acad. Sci. 113, 13881–13886. doi: 10.1073/pnas.1611283113

Fenner, L., Egger, M., Bodmer, T., Furrer, H., Ballif, M., Battegay, M., et al. (2013).

HIV infection disrupts the sympatric host–pathogen relationship in human

tuberculosis. PLoS Genetics. 9:e1003318. doi: 10.1371/journal.pgen.1003318

Gagneux, S. (2018). Ecology and evolution of Mycobacterium tuberculosis. Nat.

Rev. Microbiol. 16, 202–213. doi: 10.1038/nrmicro.2018.8

Gehre, F., Kumar, S., Kendall, L., Ejo, M., Secka, O., Ofori-Anyinam, B., et al.

(2016). A Mycobacterial Perspective on tuberculosis in West Africa: significant

geographical variation of M. africanum and other M. tuberculosis complex

lineages. PLoS Negl Trop Dis 10:e0004408. doi: 10.1371/journal.pntd.0004408

Githui, W. A., Jordaan, A. M., Juma, E. S., Kinyanjui, P., Karimi, F. G., Kimwomi,

J., et al. (2004). Identification of MDR-TB Beijing/W and otherMycobacterium

tuberculosis genotypes in Nairobi, Kenya. Int. J. Tuberc. Lung dis. 8, 352–360.

Glynn, J. R., Alghamdi, S., Mallard, K., McNerney, R., Ndlovu, R., Munthali, L.,

et al. (2010). Changes inMycobacterium tuberculosis genotype families over 20

years in a population based study in Northern Malawi. PLoS ONE 5:e12259.

doi: 10.1371/journal.pone.0012259

Guerra-Assunção, J. A., Crampin, A. C., Houben, R. M., Mzembe, T., Mallard, K.,

Coll, F., et al. (2015). Large-scale whole genome sequencing of M. tuberculosis

provides insights into transmission in a high prevalence area. eLife 4:e05166.

doi: 10.7554/eLife.05166

Hanekom, M., van der Spuy, G. D., Streicher, E., Ndabambi, S. L., McEvoy, C. R.,

Kidd, M., et al. (2007). A recently evolved sublineage of the Mycobacterium

tuberculosis Beijing strain family is associated with an increased ability to

spread and cause disease. J. Clin. Microbiol. Am. Soc. Microbiol. 45, 1483–1490.

doi: 10.1128/JCM.02191-06

Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of the human-ape splitting

by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174.

Hershberg, R., Lipatov, M., Small, P. M., Sheffer, H., Niemann, S., Homolka,

S., et al. (2008). High functional diversity in mycobacterium tuberculosis

driven by genetic drift and human demography. PLoS Biol. 6:e311.

doi: 10.1371/journal.pbio.0060311

Holt, K. E., McAdam, P., Thai, P. V. K., Thuong, N. T. T., Ha, D. T. M., Lan, N. N.,

et al. (2018). Frequent transmission of the Mycobacterium tuberculosis Beijing

lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat.

Genet. 50, 849–856. doi: 10.1038/s41588-018-0117-9

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. J. Am. Stat. Assoc. 90, 773–795.

doi: 10.1080/01621459.1995.10476572

Kato-Maeda, M., Shanley, C. A., Ackart, D., Jarlsberg, L. G., Shang, S., Obregon-

Henao, A., et al. (2012). Beijing sublineages of Mycobacterium tuberculosis

differ in pathogenicity in the guinea pig. Clin. Vaccine Immunol. 19, 1227–1237.

doi: 10.1128/CVI.00250-12

Klopper, M., Warren, R. M., Hayes, C., Gey van Pittius, N. C., Streicher, E. M.,

Müller, B., et al. (2013). Emergence and spread of extensively and totally

drug-resistant tuberculosis, South Africa. Emerging Infect. Dis. 19, 449–455.

doi: 10.3201//EID1903.120246

Koch, A. S., Brites, D., Stucki, D., Evans, J. C., Seldon, R., Heekes, A., et al. (2017).

The influence of HIV on the evolution ofMycobacterium tuberculosis.Mol. Biol.

Evol. 34, 1654–1668. doi: 10.1093/molbev/msx107

Lartillot, N., and Philippe, H. (2006). Computing bayes factors

using thermodynamic integration. Syst. Biol. 55, 195–207.

doi: 10.1080/10635150500433722

Luo, T., Comas, I., Luo, D., Lu, B., Wu, J., Wei, L., et al. (2015). Southern

East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing

Frontiers in Ecology and Evolution | www.frontiersin.org 11 April 2019 | Volume 7 | Article 112

https://doi.org/10.3201/eid1507.080697
https://doi.org/10.1093/molbev/mss243
https://doi.org/10.1016/S0966-842X(01)02277-6
https://doi.org/10.1186/1471-2105-7-88
https://doi.org/10.1007/978-3-319-64371-7_14
https://doi.org/10.1038/nature13591
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.3389/fmicb.2018.02820
https://doi.org/10.1111/brv.12390
https://doi.org/10.1126/sciadv.aat5869
https://doi.org/10.1038/ng.2878
https://doi.org/10.1101/gr.128678.111
https://doi.org/10.1371/journal.pone.0200632
https://doi.org/10.1038/ncomms5812
https://doi.org/10.1038/ng.590
https://doi.org/10.1038/ng.2744
https://doi.org/10.1016/j.tim.2011.07.002
https://doi.org/10.1016/j.cub.2015.10.061
https://doi.org/10.1016/j.smim.2014.09.012
https://doi.org/10.1086/592575
https://doi.org/10.1086/591504
https://doi.org/10.1371/journal.pbio.0040088
https://doi.org/10.1126/science.1185449
https://doi.org/10.1073/pnas.1611283113
https://doi.org/10.1371/journal.pgen.1003318
https://doi.org/10.1038/nrmicro.2018.8
https://doi.org/10.1371/journal.pntd.0004408
https://doi.org/10.1371/journal.pone.0012259
https://doi.org/10.7554/eLife.05166
https://doi.org/10.1128/JCM.02191-06
https://doi.org/10.1371/journal.pbio.0060311
https://doi.org/10.1038/s41588-018-0117-9
https://doi.org/10.1080/01621459.1995.10476572
https://doi.org/10.1128/CVI.00250-12
https://doi.org/10.3201//EID1903.120246
https://doi.org/10.1093/molbev/msx107
https://doi.org/10.1080/10635150500433722
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Rutaihwa et al. M. tuberculosis L2-Beijing in Africa

family with Han Chinese. Proc Natl. Acad. Sci. U.S.A. 112, 8136–8141.

doi: 10.1073/pnas.1424063112

Manca, C., Tsenova, L., Bergtold, A., Freeman, S., Tovey, M., Musser, J. M.,

et al. (2001). Virulence of a Mycobacterium tuberculosis clinical isolate

in mice is determined by failure to induce Th1 type immunity and is

associated with induction of IFN-α/β. Proc. Natl Acad. Sci. 98, 5752–5757.

doi: 10.1073/pnas.091096998

Manson, A. L., Cohen, K. A., Abeel, T., Desjardins, C. A., Armstrong, D. T.,

Barry, C. E., et al. (2017). Genomic analysis of globally diverse Mycobacterium

tuberculosis strains provides insights into the emergence and spread of

multidrug resistance. Nat. Genet. 49: 395–402. doi: 10.1038/ng.3767

Mbugi, E. V., Katale, B. Z., Streicher, E. M., Keyyu, J. D., Kendall, S. L.,

Dockrell, H. M., et al. (2016). Mapping ofMycobacterium tuberculosis complex

genetic diversity profiles in tanzania and other African countries. PLoS ONE.

11:e0154571. doi: 10.1371/journal.pone.0154571

Meehan, C. J., Moris, P., Kohl, T. A., Pečerska, J., Akter, S., Merker, M., et al.
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