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Selective inference is considered for testing trees and edges in phylogenetic tree selection

from molecular sequences. This improves the previously proposed approximately

unbiased test by adjusting the selection bias when testing many trees and edges at the

same time. The newly proposed selective inference p-value is useful for testing selected

edges to claim that they are significantly supported if p > 1−α, whereas the non-selective

p-value is still useful for testing candidate trees to claim that they are rejected if p < α. The

selective p-value controls the type-I error conditioned on the selection event, whereas

the non-selective p-value controls it unconditionally. The selective and non-selective

approximately unbiased p-values are computed from two geometric quantities called

signed distance and mean curvature of the region representing tree or edge of interest in

the space of probability distributions. These two geometric quantities are estimated by

fitting amodel of scaling-law to the non-parametric multiscale bootstrap probabilities. Our

general method is applicable to a wider class of problems; phylogenetic tree selection is

an example of model selection, and it is interpreted as the variable selection of multiple

regression, where each edge corresponds to each predictor. Our method is illustrated in

a previously controversial phylogenetic analysis of human, rabbit and mouse.

Keywords: statistical hypothesis testing, multiple testing, selection bias, model selection, Akaike information

criterion, bootstrap resampling, hierarchical clustering, variable selection

1. INTRODUCTION

A phylogenetic tree is a diagram showing evolutionary relationships among species, and a tree
topology is a graph obtained from the phylogentic tree by ignoring the branch lengths. The primary
objective of any phylogenetic analysis is to approximate a topology that reflects the evolution
history of the group of organisms under study. Branches of the tree are also referred to as edges in
the tree topology. Given a rooted tree topology, or a unrooted tree topology with an outgroup, each
edge splits the tree so that it defines the clade consisting of all the descendant species. Therefore,
edges in a tree topology represent clades of species. Because the phylogenetic tree is commonly
inferred from molecular sequences, it is crucial to assess the statistical confidence of the inference.
In phylogenetics, it is a common practice to compute confidence levels for tree topologies and
edges. For example, the bootstrap probability (Felsenstein, 1985) is the most commonly used
confidence measure, and other methods such as the Shimodaira-Hasegawa test (Shimodaira and
Hasegawa, 1999) and the multiscale bootstrap method (Shimodaira, 2002) are also often used.
However, these conventional methods are limited in how well they address the issue of multiplicity
when there are many alternative topologies and edges. Herein, we discuss a new approach, selective
inference (SI), that is designed to address the issue of multiplicity.
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For illustrating the idea of selective inference, we first look at a
simple example of 1-dimensional normal random variable Z with
unknown mean θ ∈ R and variance 1:

Z ∼ N(θ , 1). (1)

Observing Z = z, we would like to test the null hypothesis
H0 : θ ≤ 0 against the alternative hypothesis H1 : θ > 0. We
denote the cumulative distribution function of N(0, 1) as 8(x)
and define the upper tail probability as 8̄(x) = 1 − 8(x) =

8(−x). Then, the ordinary (i.e., non-selective) inference leads to
the p-value of the one-tailed z-test as

p(z) : = P(Z > z | θ = 0) = 8̄(z). (2)

What happens when we test many hypotheses at the same time?
Consider random variables Zi ∼ N(θi, 1), i = 1, . . . ,Kall,
not necessarily independent, with null hypotheses θi ≤ 0,
where Ktrue hypotheses are actually true. To control the number
of falsely rejecting the Ktrue hypotheses, there are several
multiplicity adjusted approaches such as the family-wise error
rate (FWER) and the false discovery rate (FDR). Instead of
testing all the Kall hypotheses, selective inference (SI) allows
for Kselect hypotheses with zi > ci for constants ci specified
in advance. This kind of selection is very common in practice
(e.g., publication bias), and it is called as the file drawer problem
by Rosenthal (1979). Instead of controlling the multiplicity of
testing, SI alleviates it by reducing the number of tests. The
mathematical formulation of SI is easier than FWER and FDR in
the sense that hypotheses can be considered separately instead of
simultaneously. Therefore, we simply write z > c by dropping
the index i for one of the hypotheses. In selective inference,
the selection bias is adjusted by considering the conditional
probability given the selection event, which leads to the following
p-value (Fithian et al., 2014; Tian and Taylor, 2018)

p(z, c) : = P(Z > z | Z > c, θ = 0) = 8̄(z)/8̄(c), (3)

where p(z) of Equation (2) is divided by the selection probability
P(Z > c | θ = 0) = 8̄(c). In the case of c = 0, this corresponds to
the two-tailed z-test, because the selection probability is 8̄(0) =
0.5 and p(z, c) = 2p(z). For significance level α (we use α = 0.05
unless otherwise stated), it properly controls the type-I error
conditioned on the selection event as P(p(Z, c) < α | Z > c, θ =

0) = α, while the non-selective p-value violates the type-I error
as P(p(Z) < α | Z > c, θ = 0) = α/8̄(c) > α. The selection bias
can be very large when 8̄(c)≪ 1 (i.e., c≫ 0), or Kselect ≪ Kall.

Selective inference has been mostly developed for inferences
after model selection (Taylor and Tibshirani, 2015; Tibshirani
et al., 2016), particularly variable selection in regression
settings such as lasso (Tibshirani, 1996). Recently, Terada and
Shimodaira (2017) developed a general method for selective
inference by adjusting the selection bias in the approximately
unbiased (AU) p-value computed by the multiscale bootstrap
method (Shimodaira, 2002, 2004, 2008). This new method
can be used to compute, for example, confidence intervals of
regression coefficients in lasso (Figure 1). In this paper, we

FIGURE 1 | Confidence intervals of regression coefficients for selected

variables by lasso; see section 6.8 for details. All intervals are computed for

confidence level 1− α at α = 0.01. (Black) the ordinary confidence interval
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]. (Green) the selective confidence interval [Lmodel
j

,Umodel
j

]

under the selected model. (Blue) the selective confidence interval

[Lvariable
j

,Uvariable
j

] under the selection event that variable j is selected.

(Red) the multiscale bootstrap version of selective confidence interval
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j
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] under the selection event that variable j is selected.

apply this method to phylogenetic inference for computing
proper confidence levels of tree topologies (dendrograms) and
edges (clades or clusters) of species. As far as we know,
this is the first attempt to consider selective inference in
phylogenetics. Our selective inference method is implemented
in software scaleboot (Shimodaira, 2019) working jointly with
CONSEL (Shimodaira and Hasegawa, 2001) for phylogenetics,
and it is also implemented in a new version of pvclust (Suzuki
and Shimodaira, 2006) for hierarchical clustering, where
only edges appeared in the observed tree are “selected” for
computing p-values. Although our argument is based on
the rigorous theory of mathematical statistics in Terada and
Shimodaira (2017), a self-contained illustration is presented
in this paper for the theory as well as the algorithm of
selective inference.

Phylogenetic tree selection is an example of model selection.
Since each tree can be specified as a combination of edges,
tree selection can be interpreted as the variable selection of
multiple regression, where edges correspond to the predictors
of regression (Shimodaira, 2001; Shimodaira and Hasegawa,
2005). Because all candidate trees have the same number
of model parameters, the maximum likelihood (ML) tree is
obtained by comparing log-likelihood values of trees (Felsenstein,
1981). In order to adjust the model complexity by the
number of parameters in general model selection, we compare
Akaike Information Criterion (AIC) values of candidate
models (Akaike, 1974). AIC is used in phylogenetics for selecting
the substitution model (Posada and Buckley, 2004). There are
several modifications of AIC that allow formodel selection. These
include the precise estimation of the complexity term known as
Takeuchi Information Criterion (Burnham and Anderson, 2002;
Konishi and Kitagawa, 2008), and adaptations for incomplete
data (Shimodaira and Maeda, 2018) and covariate-shift data
(Shimodaira, 2000). AIC and all these modifications are derived
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FIGURE 2 | Examples of two unrooted trees T1 and T7. Branch lengths represent ML estimates of parameters (expected number of substitutions per site). T1

includes edges E1, E2, and E3 and T7 includes E1, E6, and E8.

for estimating the expected Kullback-Leibler divergence between
the unknown true distribution and the estimated probability
distribution on the premise that the model is misspecified.
When using regression model for prediction purpose, it may
be sufficient to find only the best model which minimizes
the AIC value. Considering random variations of dataset,
however, it is obvious in phylogenetics that the ML tree
does not necessarily represent the true history of evolution.
Therefore, Kishino and Hasegawa (1989) proposed a statistical
test whether two log-likelihood values differ significantly (also
known as Kishino-Hasegawa test). The log-likelihood difference
is often not significant, because its variance can be very
large for non-nested models when the divergence between
two probability distributions is large; see Equation (26) in
section 6.1. The same idea of model selection test whether two
AIC values differ significantly has been proposed independently
in statistics (Linhart, 1988) and econometrics (Vuong, 1989).
Another method of model selection test (Efron, 1984) allows
for the comparison of two regression models with an adjusted
bootstrap confidence interval corresponding to the AU p-value.
For testing which model is better than the other, the null
hypothesis in the model selection test is that the two models
are equally good in terms of the expected value of AIC on
the premise that both models are misspecified. Note that the
null hypothesis is whether the model is correctly specified or
not in the traditional hypothesis testing methods including
the likelihood ratio test for nested models and the modified
likelihood ratio test for non-nested models (Cox, 1962). The
model selection test is very different from these traditional
settings. For comparing AIC values of more than two models,
a multiple comparisons method is introduced to the model
selection test (Shimodaira, 1998; Shimodaira and Hasegawa,
1999), which computes the confidence set of models. But the
multiple comparisons method is conservative by nature, leading
to more false negatives than expected, because it considers
the worst scenario, called the least favorable configuration.
On the other hand, the model selection test (designed for
two models) and bootstrap probability (Felsenstein, 1985) lead
to more false positives than expected when comparing more
than two models (Shimodaira and Hasegawa, 1999; Shimodaira,
2002). The AU p-value mentioned earlier has been developed

for solving this problem, and we are going to upgrade it for
selective inference.

2. PHYLOGENETIC INFERENCE

For illustrating phylogenetic inference methods, we analyze
a dataset consisting of mitochondrial protein sequences
of six mammalian species with n = 3, 414 amino acids
(n is treated as sample size). The taxa are labeled as
1=Homo sapiens (human), 2=Phoca vitulina (seal), 3=Bos
taurus (cow), 4=Oryctolagus cuniculus (rabbit), 5=Mus
musculus (mouse), and 6=Didelphis virginiana (opossum).
The dataset will be denoted as Xn = (x1, . . . , xn). The
software package PAML (Yang, 1997) was used to calculate
the site-wise log-likelihoods for trees. The mtREV model
(Adachi and Hasegawa, 1996) was used for amino acid
substitutions, and the site-heterogeneity was modeled by
the discrete-gamma distribution (Yang, 1996). The dataset
and evolutionary model are similar to previous publications
(Shimodaira and Hasegawa, 1999; Shimodaira, 2001, 2002),
thus allowing our proposed method to be easily compared with
conventional methods.

The number of unrooted trees for six taxa is 105. These
trees are reordered by their likelihood values and labeled as
T1, T2, . . ., T105. T1 is the ML tree as shown in Figure 2

and its tree topology is represented as (((1(23))4)56). There are
three internal branches (we call them as edges) in T1, which
are labeled as E1, E2, and E3. For example, E1 splits the six
taxa as {23|1456} and the partition of six taxa is represented
as -++---, where +/- indicates taxa 1, . . . , 6 from left to
right and ++ indicates the clade {23} (we set - for taxon
6, since it is treated as the outgroup). There are 25 edges
in total, and each tree is specified by selecting three edges
from them, although not all the combinations of three edges
are allowed.

The result of phylogenetic analysis is summarized in Table 1

for trees and Table 2 for edges. Three types of p-values are
computed for each tree as well as for each edge. BP is
the bootstrap probability (Felsenstein, 1985) and AU is the
approximately unbiased p-value (Shimodaira, 2002). Bootstrap
probabilities are computed by the non-parametric bootstrap
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TABLE 1 | Three types of p-values (BP, AU, SI) and geometric quantities (β0,β1) for the best 20 trees.

Tree BP AU SI β0 β1 Topology Edges

T1† 0.559 (0.001) 0.752 (0.001) 0.372 (0.001) -0.41 (0.00) 0.27 (0.00) (((1(23))4)56) E1, E2, E3

T2 0.304 (0.000) 0.467 (0.001) 0.798 (0.001) 0.30 (0.00) 0.22 (0.00) ((1((23)4))56) E1 ,E2, E4

T3 0.038 (0.000) 0.126 (0.002) 0.202 (0.003) 1.46 (0.01) 0.32 (0.00) (((14)(23))56) E1, E2, E5

T4 0.014 (0.000) 0.081 (0.002) 0.124 (0.003) 1.79 (0.01) 0.40 (0.01) ((1(23))(45)6) E1, E3, E6

T5 0.032 (0.000) 0.127 (0.002) 0.199 (0.003) 1.50 (0.01) 0.36 (0.00) (1((23)(45))6) E1, E6, E7

T6 0.005 (0.000) 0.032 (0.002) 0.050 (0.002) 2.21 (0.02) 0.35 (0.01) (1(((23)4)5)6) E1, E4, E7

T7‡ 0.015 (0.000) 0.100 (0.003) 0.150 (0.003) 1.72 (0.01) 0.44 (0.01) ((1(45))(23)6) E1, E6, E8

T8 0.001 (0.000) 0.011 (0.001) 0.016 (0.002) 2.74 (0.03) 0.43 (0.02) ((15)((23)4)6) E1, E4, E9

T9 0.000 (0.000) 0.001 (0.000) 0.001 (0.000) 3.67 (0.09) 0.46 (0.04) (((1(23))5)46) E1, E3, E10

T10 0.002 (0.000) 0.022 (0.002) 0.033 (0.002) 2.43 (0.02) 0.42 (0.01) (((15)4)(23)6) E1, E8, E9

T11 0.000 (0.000) 0.004 (0.001) 0.006 (0.002) 3.14 (0.07) 0.51 (0.03) (((14)5)(23)6) E1, E5, E8

T12 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 3.78 (0.09) 0.41 (0.04) (((15)(23))46) E1, E9, E10

T13 0.000 (0.000) 0.000 (0.000) 0.001 (0.001) 3.96 (0.19) 0.54 (0.09) (1(((23)5)4)6) E1, E7, E11

T14 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.66 (0.31) 0.65 (0.12) ((14)((23)5)6) E1, E5, E11

T15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.28 (0.34) 0.43 (0.11) ((1((23)5))46) E1, E10, E11

T16 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 3.63 (0.04) 0.23 (0.01) ((((13)2)4)56) E2, E3, E12

T17 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.81 (0.04) 0.22 (0.01) ((((12)3)4)56) E2, E3, E13

T18 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.33 (0.10) 0.34 (0.03) (((13)2)(45)6) E3, E6, E12

T19 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.36 (0.11) 0.32 (0.04) (((12)3)(45)6) E3, E6, E13

T20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.90 (0.12) 0.44 (0.05) (((1(45))2)36) E6, E8, E14

Standard errors are shown in parentheses. Boldface indicates significance (p < 0.05) for the null hypothesis that the tree is true (outside mode). For the rest of trees (T21, . . . , T105),

p-values are very small (p < 0.001). † T1 is the ML tree, i.e., the tree selected by the ML method based on the dataset of Shimodaira and Hasegawa (1999). ‡ T7 is presumably the

true tree as suggested by later researches; see section 4.3.

resampling (Efron, 1979) described in section 6.1. The theory
and the algorithm of BP and AU will be reviewed in section 3.
Since we are testing many trees and edges at the same time,
there is potentially a danger of selection bias. The issue of
selection bias has been discussed in Shimodaira and Hasegawa
(1999) for introducing the method of multiple comparisons of
log-likelihoods (also known as Shimodaira-Hasegawa test) and
in Shimodaira (2002) for introducing AU test. However, these
conventional methods are only taking care of the multiplicity of
comparing many log-likelihood values for computing just one
p-value instead of many p-values at the same time. Therefore,
we intend to further adjust the AU p-value by introducing
the selective inference p-value, denoted as SI. The theory and
the algorithm of SI will be explained in section 4 based on
the geometric theory given in section 3. After presenting the
methods, we will revisit the phyloegnetic inference in section 4.3.

For developing the geometric theory in sections 3 and 4,
we formulate tree selection as a mathematical formulation
known as the problem of regions (Efron et al., 1996; Efron
and Tibshirani, 1998). For better understanding the geometric
nature of the theory, the problem of regions is explained below
for phylogenetic inference, although the algorithm is simple
enough to be implemented without understanding the theory.
Considering the space of probability distributions (Amari and
Nagaoka, 2007), the parametric models for trees are represented
as manifolds in the space. The dataset (or the empirical
distribution) can also be represented as a “data point” X in
the space, and the ML estimates for trees are represented
as projections to the manifolds. This is illustrated in the

visualization of probability distributions of Figure 3A using log-
likelihood vectors of models (Shimodaira, 2001), where models
are simply indicated as red lines from the origin; see section 6.2
for details. This visualization may be called as model map. The
point X is actually reconstructed as the minimum full model
containing all the trees as submodels, and the Kullback-Leibler
divergence between probability distributions is represented
as the squared distance between points; see Equation (27).
Computation of X is analogous to the Bayesian model averaging,
but based on the ML method. For each tree, we can think of a
region in the space so that this tree becomes the ML tree when
X is included in the region. The regions for T1, T2, and T3 are
illustrated in Figure 3B, and the region for E2 is the union of
these three regions.

In Figure 3A, X is very far from any of the tree models,
suggesting that all the models are wrong; the likelihood ratio
statistic for testing T1 against the full model is 113.4, which is
highly significant as χ2

8 (Shimodaira, 2001, section 5). Instead
of testing whether tree models are correct or not, we test
whether models are significantly better than the others. As
seen in Figure 3B, X is in the region for T1, meaning that
the model for T1 is better than those for the other trees. For
convenience, observing X in the region for T1, we state that T1
is supported by the data. Similarly, X is in the region for E2
that consists of the three regions for T1, T2, T3, thus indicating
that E2 is supported by the data. Although T1 and E2 are
supported by the data, there is still uncertainty as to whether
the true evolutionary history of lineages is depicted because
the location of X fluctuates randomly. Therefore, statistical
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TABLE 2 | Three types of p-values (BP, AU, SI) and geometric quantities (β0,β1) for all the 25 edges of six taxa.

Edge BP AU SI β0 β1 Clade

E1†‡ 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) -3.87 (0.03) 0.16 (0.01) -++---

E2† 0.930 (0.000) 0.956 (0.001) 0.903 (0.001) -1.59 (0.00) 0.12 (0.00) ++++--

E3† 0.580 (0.001) 0.719 (0.001) 0.338 (0.001) -0.39 (0.00) 0.19 (0.00) +++---

E4 0.318 (0.000) 0.435 (0.001) 0.775 (0.001) 0.32 (0.00) 0.16 (0.00) -+++--

E5 0.037 (0.000) 0.124 (0.002) 0.198 (0.002) 1.47 (0.01) 0.32 (0.00) +--+--

E6‡ 0.060 (0.000) 0.074 (0.001) 0.141 (0.002) 1.50 (0.00) 0.05 (0.00) ---++-

E7 0.038 (0.000) 0.091 (0.002) 0.154 (0.002) 1.56 (0.01) 0.22 (0.00) -++++-

E8‡ 0.018 (0.000) 0.068 (0.002) 0.110 (0.003) 1.80 (0.01) 0.31 (0.01) +--++-

E9 0.003 (0.000) 0.014 (0.001) 0.023 (0.002) 2.48 (0.02) 0.27 (0.02) +---+-

E10 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 3.72 (0.07) 0.29 (0.03) +++-+-

E11 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.31 (0.10) 0.35 (0.03) -++-+-

E12 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.68 (0.05) 0.17 (0.02) +-+---

E13 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.90 (0.04) 0.15 (0.02) ++----

E14 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.03 (0.09) 0.30 (0.04) ++-++-

E15 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.03 (0.13) 0.38 (0.06) +-+++-

E16 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.44 (0.05) 0.12 (0.01) -+-+--

E17 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.70 (0.07) 0.19 (0.02) ++-+--

E18 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 3.94 (0.09) 0.26 (0.04) -+-++-

E19 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.23 (0.43) 0.57 (0.13) --++--

E20 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.66 (0.29) 0.28 (0.09) +-++--

E21 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 6.38 (0.33) 0.24 (0.08) --+++-

E22 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.62 (0.21) 0.17 (0.07) --+-+-

E23 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 4.86 (0.43) 0.70 (0.13) -+--+-

E24 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 5.61 (0.17) 0.23 (0.04) +-+-+-

E25 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 6.32 (0.71) 0.52 (0.20) ++--+-

Standard errors are shown in parentheses. Boldface without underline indicates significance (p < 0.05) for the null hypothesis that the edge is true (outside mode). Boldface with

underline indicates significance (p > 0.95) for the null hypothesis that the edge is not true (inside mode). † Edges included in T1. ‡ Edges included in T7.

confidence of the outcome needs to be assessed. A mathematical
procedure for statistically evaluating the outcome is provided in
the following sections.

3. NON-SELECTIVE INFERENCE FOR THE
PROBLEM OF REGIONS

3.1. The Problem of Regions
For developing the theory, we consider (m + 1)-dimensional
multivariate normal random vector Y , m ≥ 0, with unknown
mean vector µ ∈ R

m+1 and the identity variance matrix Im+1:

Y ∼ Nm+1(µ, Im+1). (4)

A region of interest such as tree and edge is denoted as R ⊂

R
m+1, and its complement set is denoted as RC = R

m+1 \ R.
There are Kall regions Ri, i = 1, . . . ,Kall, and we simply write
R for one of them by dropping the index i. Observing Y = y,
the null hypothesis H0 : µ ∈ R is tested against the alternative
hypothesis H1 : µ ∈ R

C. This setting is called problem of regions,
and the geometric theory for non-selective inference for slightly
generalized settings (e.g., exponential family of distributions) has
been discussed in Efron and Tibshirani (1998) and Shimodaira
(2004). This theory allows arbitrary shape ofRwithout assuming

a particular shape such as half-space or sphere, and only requires
the expression (29) of section 6.3.

The problem of regions is well described by geometric
quantities (Figure 4). Let µ̂ be the projection of y to the boundary
surface ∂R defined as

µ̂ = argmin
µ∈∂R

‖y− µ‖,

and β0 be the signed distance defined as β0 = ‖y − µ̂‖ > 0
for y ∈ R

C and β0 = −‖y − µ̂‖ ≤ 0 for y ∈ R; see
Figures 4A,B, respectively. A large β0 indicates the evidence for
rejectingH0 : µ ∈ R, but computation of p-value will also depend
on the shape ofR. There should be many parameters for defining
the shape, but we only need the mean curvature of ∂R at µ̂,
which represents the amount of surface bending. It is denoted
as β1 ∈ R, and defined in (30).

Geometric quantities β0 and β1 of regions for trees (T1, . . . ,
T105) and edges (E1, . . . , E25) are plotted in Figure 5, and these
values are also found in Tables 1, 2. Although the phylogenetic
model of evolution for the molecular dataset Xn = (x1, . . . , xn)
is different from the multivariate normal model (4) for y, the
multiscale bootstrap method of section 3.4 estimates β0 and β1
using the non-parametric bootstrap probabilities (section 6.1)
with bootstrap replicates X ∗

n′ for several values of sample size n′.
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FIGURE 3 | Model map: Visualization of ML estimates of probability distributions for the best 15 trees. The origin represents the star-shaped tree topology (obtained

by reducing the internal branches to zero length). Sites of amino acid sequences t = 1, . . . , n (black numbers) and probability distributions for trees T1, . . . ,T15 (red

segments) are drawn by biplot of PCA. Auxiliary lines are drawn by hand. (A) 3-dimensional visualization using PC1, PC2, and PC3. The reconstructed data point X is

also shown (green point). The ML estimates are represented as the end points of the red segments (shown by red points only for the best five trees), and they are

placed on the sphere with the origin and X being placed at the poles. (B) The top-view of model map. Regions for the best three trees Ti, i = 1, 2, 3 (blue shaded

regions) are illustrated; Ti will be the ML tree if X is included in the region for Ti.

3.2. Bootstrap Probability
For simulating (4) from y, we may generate replicates Y∗ from
the bootstrap distribution (Figure 4C)

Y∗ ∼ Nm+1(y, Im+1), (5)

and define bootstrap probability (BP) of R as the probability of
Y∗ being included in the regionR:

BP(R|y) : = P(Y∗ ∈ R|y). (6)

BP(R|y) can be interpreted as the Bayesian posterior
probability P(µ ∈ R|y), because, by assuming the flat prior
distribution π(µ) = constant, the posterior distribution
µ|y ∼ Nm+1(y, Im+1) is identical to the distribution of Y∗ in (5).
An interesting consequence of the geometric theory of Efron and
Tibshirani (1998) is that BP can be expressed as

BP(R|y) ≃ 8̄(β0 + β1), (7)

where≃ indicates the second order asymptotic accuracy, meaning
that the equality is correct up to Op(n

−1/2) with error of order
Op(n

−1); see section 6.3.
For understanding the formula (7), assume that R is a half

space so that ∂R is flat and β1 = 0. Since we only have to look
at the axis orthogonal to ∂R, the distribution of signed distance

is identified as (1) with β0 = z. The bootstrap distribution for
(1) is Z∗ ∼ N(z, 1), and bootstrap probability is expressed as
P(Z∗ ≤ 0|z) = 8̄(z). Therefore, we have BP(R|y) = 8̄(β0). For
generalRwith curved ∂R, the formula (7) adjusts the bias caused
by β1. As seen in Figure 4C,R becomes smaller for β1 > 0 than
β1 = 0, and BP becomes smaller.

BP ofRC is closely related to BP ofR. From the definition,

BP(RC|y) = 1−BP(R|y) ≃ 1−8̄(β0+β1) = 8̄(−β0−β1). (8)

The last expression also implies that the signed distance and the
mean curvature ofRC is−β0 and−β1, respectively; this relation
is also obtained by reversing the sign of v in (29).

3.3. Approximately Unbiased Test
Although BP(R|y) may work as a Bayesian confidence measure,
we would like to have a frequentist confidencemeasure for testing
H0 : µ ∈ R against H1 : µ ∈ R

C. The signed distance of Y is
denoted as β0(Y), and consider the region {Y | β0(Y) > β0}

in which the signed distance is larger than the observed value
β0 = β0(y). Similar to (2), we then define an approximately
unbiased (AU) p-value as

AU(R|y) : = P(β0(Y) > β0 | µ = µ̂) = BP({Y | β0(Y) > β0}|µ̂),
(9)
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FIGURE 4 | Problem of regions. (A) β0 > 0 when y ∈ RC, then select the null hypothesis µ ∈ R. (B) β0 ≤ 0 when y ∈ R, then select the null hypothesis µ ∈ RC.

(C) The bootstrap distribution of Y∗ ∼ Nm+1(y, Im+1) (red shaded distribution). (D) The null distribution of Y ∼ Nm+1(µ̂, Im+1) (green shaded distribution).

where the probability is calculated for Y ∼ Nm+1(µ̂, Im+1) as
illustrated in Figure 4D. The shape of the region {Y | β0(Y) >
β0} is very similar to the shape of RC; the difference is in fact
only Op(n

−1). Let us think of a point y′ with signed distance−β0
(shown as y in Figure 4B). Then we have

AU(R|y) ≃ BP(RC|y′) ≃ 8̄(β0 − β1), (10)

where the last expression is obtained by substituting (−β0,β1)
for (β0,β1) in (8). This formula computes AU from (β0,β1). An
intuitive interpretation of (10) is explained in section 6.4.

In non-selective inference, p-values are computed using
formula (10). If AU(R|y) < α, the null hypothesis H0 : µ ∈

R is rejected and the alternative hypothesis H1 : µ ∈ R
C is

accepted. This test procedure is approximately unbiased, because
it controls the non-selective type-I error as

P
(

AU(R|Y) < α | µ ∈ ∂R
)

≃ α, (11)

and the rejection probability increases as µ moves away fromR,
while it decreases as µ moves intoR.

Exchanging the roles of R and R
C also allows for another

hypothesis testing. AU of RC is obtained from (9) by reversing
the inequality as AU(RC|y) = BP({Y | β0(Y) < β0}|µ̂) =

1− AU(R|y). This is also confirmed by substituting (−β0,−β1),
i.e., the geometric quantities ofRC, for (β0,β1) in (10) as

AU(RC|y) ≃ 8̄(−β0 + β1) ≃ 1− AU(R|y). (12)

If AU(RC|y) < α or equivalently AU(R|y) > 1 − α, then we
reject H0 : µ ∈ R

C and accept H1 : µ ∈ R.

3.4. Multiscale Bootstrap
In order to estimate β0 and β1 from bootstrap probabilities, we
consider a generalization of (5) as

Y∗ ∼ Nm+1(y, σ
2Im+1), (13)

for a variance σ 2 > 0, and definemultiscale bootstrap probability
ofR as

BPσ 2 (R|y) : = Pσ 2 (Y
∗ ∈ R|y), (14)

where Pσ 2 indicates the probability with respect to (13).
Although our theory is based on the multivariate normal

model, the actual implementation of the algorithm uses the
non-parametric bootstrap probabilities in section 6.1. To fill
the gap between the two models, we consider a non-linear
transformation f n so that the multivariate normal model holds
at least approximately for y = f n(Xn) and Y∗ = f n(X

∗
n′ ).

An example of f n is given in (25) for phylogenetic inference.
Surprisingly, a specification of f n is not required for computing
p-values, but we simply assume the existence of such a
transformation; this property may be called as “bootstrap trick.”
For phylogenetic inference, we compute the non-parametric
bootstrap probabilities by (24) and substitute these values for (14)
with σ 2 = n/n′.

For estimating β0 and β1, we need to have a scaling law which
explains how BPσ 2 depends on the scale σ . We rescale (13) by
multiplying σ−1 so that σ−1Y∗ ∼ Nm+1(σ

−1y, Im+1) has the
variance σ 2 = 1. y and R are now resaled by the factor σ−1,
which amounts to signed distance β0σ

−1 and mean curvature
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FIGURE 5 | Geometric quantities of regions (β0 and β1) for trees and edges

are estimated by the multiscale bootstrap method (section 3.4). The three

types of p-value (BP, AU, SI) are computed from β0 and β1, and their contour

lines are drawn at p = 0.05 and 0.95.

β1σ (Shimodaira, 2004). Therefore, by substituting (β0σ
−1,β1σ )

for (β0,β1) in (7), we obtain

BPσ 2 (R|y) ≃ 8̄(β0σ
−1 + β1σ ). (15)

For better illustrating how BPσ 2 depends on σ
2, we define

ψσ 2 (R|y) : = σ8̄−1(BPσ 2 (R|y)) ≃ β0 + β1σ
2. (16)

We can estimate β0 and β1 as regression coefficients by fitting the
linear model (16) in terms of σ 2 to the observed values of non-
parametric bootstrap probabilities (Figure 6). Interestingly, (10)
is rewritten as AU(R|y) ≃ 8̄(ψ−1(R|y)) by formally letting σ 2 =

−1 in the last expression of (16), meaning that AU corresponds
to n′ = −n. Although σ 2 should be positive in (15), we can think
of negative σ 2 in β0 + β1σ

2. See section 6.5 for details of model
fitting and extrapolation to negative σ 2.

4. SELECTIVE INFERENCE FOR THE
PROBLEM OF REGIONS

4.1. Approximately Unbiased Test for
Selective Inference
In order to argue selective inference for the problem of regions,
we have to specify the selection event. Let us consider a selective
region S ⊂ R

m+1 so that we perform the hypothesis testing only
when y ∈ S . Terada and Shimodaira (2017) considered a general
shape of S , but here we treat only two special cases of S = R

C

and S = R; see section 6.6. Our problem is formulated as follows.
Observing Y = y from the multivariate normal model (4), we

first check whether y ∈ R
C or y ∈ R. If y ∈ R

C and we are
interested in the null hypothesis H0 : µ ∈ R, then we may test it
against the alternative hypothesis H1 : µ ∈ R

C. If y ∈ R and we
are interested in the null hypothesis H0 : µ ∈ R

C, then we may
test it against the alternative hypothesisH1 : µ ∈ R. In this paper,
the former case (y ∈ R

C, and so β0 > 0) is called as outside mode,
and the latter case (y ∈ R, and so β0 ≤ 0) is called as inside mode.
We do not know which of the two modes of testing is performed
until we observe y.

Let us consider the outside mode by assuming that y ∈ R
C,

where β0 > 0. Recalling that p(z, c) = p(z)/8̄(c) in section 1, we
divide AU(R|y) by the selection probability to define a selective
inference p-value as

SI(R|y) : =
P(β0(Y) > β0 | µ = µ̂)

P(Y ∈ RC | µ = µ̂)
=

AU(R|y)

BP(RC|µ̂)
. (17)

From the definition, SI(R|y) ∈ (0, 1), because {Y | β0(Y) >
β0} ⊂ R

C for β0 > 0. This p-value is computed from (β0,β1) by

SI(R|y) ≃
8̄(β0 − β1)

8̄(−β1)
, (18)

where BP(RC|µ̂) = 8̄(−β1) is obtained by substituting (0,β1)
for (β0,β1) in (8). An intuitive justification of (18) is explained in
section 6.4.

For the outside mode of selective inference, p-values are
computed using formula (18). If SI(R|y) < α, then reject
H0 : µ ∈ R and accept H1 : µ ∈ R

C. This test procedure is
approximately unbiased, because it controls the selective type-I
error as

P
(

SI(R|Y) < α | Y ∈ R
C,µ ∈ ∂R

)

≃ α, (19)

and the rejection probability increases as µ moves away fromR,
while it decreases as µ moves intoR.

Now we consider the inside mode by assuming that y ∈ R,
where β0 ≤ 0. SI of RC is obtained from (17) by exchanging the
roles ofR andR

C.

SI(RC|y) =
AU(RC |y)

BP(R|µ̂)
≃
8̄(−β0 + β1)

8̄(β1)
. (20)

For the inside mode of selective inference, p-values are computed
using formula (20). If SI(RC|y) < α, then rejectH0 : µ ∈ R

C and
accept H1 : µ ∈ R. Unlike the non-selective p-value AU(RC|y),
SI(RC|y) < α is not equivalent to SI(R|y) > 1 − α, because
SI(R|y)+ SI(RC|y) 6= 1. For convenience, we define

SI′(R|y) : =

{

SI(R|y) y ∈ R
C

1− SI(RC|y) y ∈ R
(21)

so that SI′ > 1 − α implies SI(RC|y) < α. In our numerical
examples of Figure 5, Tables 1, 2, SI′ is simply denoted as SI. We
do not need to consider (21) for BP and AU, because BP′(R|y) =
BP(R|y) and AU′(R|y) = AU(R|y) from (8) and (12).
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FIGURE 6 | Multiscale bootstrap for (A) tree T1 and (B) edge E2. ψ
σ2

(R|y) is computed by the non-parametric bootstrap probabilities for several σ2 = n/n′ values,

then β0 and β1 are estimated as the intercept and the slope, respectively. See section 6.5 for details.

4.2. Shortcut Computation of SI
We can compute SI from BP and AU. This will be useful for
reanalyzing the results of previously published researches. Let us
write BP = BP(R|y) and AU = AU(R|y). From (7) and (10),
we have

β0 =
1
2

(

8̄−1(BP)+ 8̄−1(AU)
)

β1 =
1
2

(

8̄−1(BP)− 8̄−1(AU)
)

.

We can compute SI from β0 and β1 by (18) or (20). More directly,
we may compute

SI(R|y) =
AU

8̄
{

1
2

(

8̄−1(AU)− 8̄−1(BP)
)}

SI(RC|y) =
1− AU

8̄
{

1
2

(

8̄−1(BP)− 8̄−1(AU)
)} .

4.3. Revisiting the Phylogenetic Inference
In this section, the analytical procedure outlined in section 2
is used to determine relationships among human, mouse, and
rabbit. The question is: Which of mouse or human is closer
to rabbit? The traditional view (Novacek, 1992) is actually
supporting E6, the clade of rabbit and mouse, which is consistent
with T4, T5, and T7. Based on molecular analysis, Graur et al.
(1996) strongly suggested that rabbit is closer to human than
mouse, thus supporting E2, which is consistent with T1, T2,
and T3. However, Halanych (1998) criticized it by pointing
out that E2 is an artifact caused by the long branch attraction
(LBA) betweenmouse and opossum. In addition, Shimodaira and
Hasegawa (1999) and Shimodaira (2002) suggested that T7 is not
rejected by multiplicity adjusted tests. Shimodaira and Hasegawa
(2005) showed that T7 becomes theML tree by resolving the LBA
using a larger dataset with more taxa. Although T1 is the ML tree
based on the dataset with fewer taxa, T7 is presumably the true

tree as indicated by later researches. With these observations in
mind, we retrospectively interpret p-values in Tables 1, 2.

The results are shown below for the two test modes
(inside and outside) as defined in section 4.1. The extent of
multiplicity and selection bias depends on the number of regions
under consideration, thus these numbers are considered for
interpreting the results. The numbers of regions related to trees
and edges are summarized in Table 3; see section 6.7 for details.

In inside mode, the null hypothesis H0 : µ ∈ R
C
i is tested

against the alternative hypothesis H1 : µ ∈ Ri for y ∈ Ri (i.e.,
β0 ≤ 0). This applies to the regions for T1, E1, E2, and E3, and
they are supported by the data in the sense mentioned in the last
paragraph of section 2.WhenH0 is rejected by a test procedure, it
is claimed thatRi is significantly supported by the data, indicating
H1 holds true. For convenience, the null hypothesisH0 is said like
E1 is not true, and the alternative hypothesis H1 is said like E1 is
true; then rejection of H0 implies that E1 is true. This procedure
looks unusual, but makes sense when bothRi andR

C
i are regions

with nonzero volume. Note that selection bias can be very large
in the sense that Kselect/Kall ≈ 0 for many taxa, and non-selective
tests may lead to many false positives because Ktrue/Kall ≈ 1.
Therefore selective inference should be used in inside mode.

In outside mode, the null hypothesis H0 : µ ∈ Ri is tested
against the alternative hypothesis H1 : µ ∈ R

C
i for y ∈ R

C
i

(i.e., β0 > 0). This applies to the regions for T2, ..., T105, and
E4, ..., E25, and they are not supported by the data. When H0

is rejected by a test procedure, it is claimed that Ri is rejected.

TABLE 3 | The number of regions for trees and edges. The number of taxa

is N = 6.

Inside mode Outside mode

Tree Edge Tree Edge

Kselect 1 3 104 22

Ktrue 104 22 1 3

Kall 105 25 105 25
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For convenience, the null hypothesis is said like T9 is true, and
the alternative hypothesis is said like T9 is not true; rejection
of H0 implies that T9 is not true. This is more or less a typical
test procedure. Note that selection bias is minor in the sense that
Kselect/Kall ≈ 1 for many taxa, and non-selective tests may result
in few false positives because Ktrue/Kall ≈ 0. Therefore selective
inference is not much beneficial in outside mode.

In addition to p-values for some trees and edges, estimated
geometric quantities are also shown in the tables. We confirm
that the sign of β0 is estimated correctly for all the trees and edges.
The estimated β1 values are all positive, indicating the regions are
convex. This is not surprising, because the regions are expressed
as intersections of half spaces at least locally (Figure 3B).

Now p-values are examined in insidemode. (T1, E3) BP, AU, SI
are all p ≤ 0.95. This indicates that T1 and E3 are not significantly
supported. There are nothing claimed to be definite. (E1) BP,
AU, SI are all p > 0.95, indicating E1 is significantly supported.
Since E1 is associated with the best 15 trees T1, ..., T15, some of
them are significantly better than the rest of trees T16, ..., T105.
Significance for edges is common in phylogenetics as well as in
hierarchical clustering (Suzuki and Shimodaira, 2006). (E2) The
results split for this presumably wrong edge. AU > 0.95 suggests
E2 is significantly supported, whereas BP, SI ≤ 0.95 are not
significant. AU tends to violate the selective type-I error, leading
to false positives or overconfidence in wrong trees/edges, whereas
SI is approximately unbiased for the selected hypothesis. This
overconfidence is explained by the inequality AU > SI (meant
SI′ here) for y ∈ R, which is obtained by comparing (12) and
(20). Therefore SI is preferable to AU in inside mode. BP is safer
than AU in the sense that BP < AU for β1 > 0, but BP is not
guaranteed for controlling type-I error in a frequentist sense. The
two inequalities (SI, BP < AU) are verified as relative positions of
the contour lines at p = 0.95 in Figure 5. The three p-values can
be very different from each other for large β1.

Next p-values are examined in outside mode. (T2, E4, E6) BP,
AU, SI are all p ≥ 0.05. They are not rejected, and there
are nothing claimed to be definite. (T8, T9, ..., T105, E9,...,
E25) BP, AU, SI are all p < 0.05. These trees and edges are
rejected. (T7, E8) The results split for these presumably true
tree and edge. BP < 0.05 suggests T7 and E8 are rejected,
whereas AU, SI ≥ 0.05 are not significant. AU is approximately
unbiased for controlling the type-I error when H0 is specified
in advance (Shimodaira, 2002). Since BP < AU for β1 > 0,
BP violates the type-I error, which results in overconfidence in
non-rejected wrong trees. Therefore BP should be avoided in
outside mode. Inequality AU < SI can be shown for y ∈ R

C by
comparing (10) and (18). Since the null hypothesis H0 : µ ∈ R

is chosen after looking at y ∈ R
C, AU is not approximately

unbiased for controlling the selective type-I error, whereas SI
adjusts this selection bias. The two inequalities (BP < AU < SI)
are verified as relative positions of the contour lines at p = 0.05
in Figure 5. AU and SI behave similarly (Note: Kselect/Kall ≈ 1),
while BP is very different from AU and SI for large β1. It is
arguable which of AU and SI is appropriate: AU is preferable
to SI in tree selection (Ktrue = 1), because the multiplicity
of testing is controlled as FWER = P(reject any true null) =

P(AU(Rtrue tree|Y) < α | µ ∈ Rtrue tree) ≤ α. The FWER is

multiplied by Ktrue ≥ 1 for edge selection, and SI does not fix
it either. For testing edges in outside mode, AU may be used for
screening purpose with a small α value such as α/Ktrue.

5. CONCLUSION

We have developed a new method for computing selective
inference p-values from multiscale bootstrap probabilities, and
applied this new method to phylogenetics. It is demonstrated
through theory and a real-data analysis that selective inference
p-values are in particular useful for testing selected edges (i.e.,
clades or clusters of species) to claim that they are supported
significantly if p > 1 − α. On the other hand, the previously
proposed non-selective version of approximately unbiased p-
values are still useful for testing candidate trees to claim that they
are rejected if p < α. Although we focused on phylogenetics,
our general theory of selective inference may be applied to other
model selection problems, or more general selection problems.

6. REMARKS

6.1. Bootstrap Resampling of
Log-Likelihoods
Non-parametric bootstrap is often time consuming for
recomputing the maximum likelihood (ML) estimates for
bootstrap replicates. Kishino et al. (1990) considered the
resampling of estimated log-likelihoods (RELL) method for
reducing the computation. Let Xn = (x1, . . . , xn) be the dataset
of sample size n, where xt is the site-pattern of amino acids
at site t for t = 1, . . . , n. By resampling xt from Xn with
replacement, we obtain a bootstrap replicate X ∗

n′ = (x∗1 , . . . , x
∗
n′ )

of sample size n′. Although n′ = n for the ordinary bootstrap,
we will use several n′ > 0 values for the multiscale bootstrap.
The parametric model of probability distribution for tree Ti
is pi(x; θ i) for i = 1, . . . , 105, and the log-likelihood function
is ℓi(θ i;Xn) =

∑n
t=1 log pi(xt; θ i). Computation of the ML

estimate θ̂ i = argmaxθ i
ℓi(θ i;Xn) is time consuming, so we

do not recalculate θ̂
∗

i = argmaxθ i
ℓi(θ i;X

∗
n′ ) for bootstrap

replicates. Define the site-wise log-likelihood at site t for tree
Ti as

ξti = log pi(xt; θ̂ i), t = 1, . . . , n, i = 1, . . . , 105, (22)

so that the log-likelihood value for tree Ti is written as

ℓi(θ̂ i;Xn) =
∑n

t=1 ξti. The bootstrap replicate of the log-
likelihood value is approximated as

ℓi(θ̂
∗

i ;X
∗
n′ ) ≈ ℓi(θ̂ i;X

∗
n′ ) =

n
∑

t=1

w∗
t ξti, (23)

where w∗
t is the number of times xt appears in X

∗
n′ . The accuracy

of this approximation as well as the higher-order term is given

in Equations (4) and (5) of Shimodaira (2001). Once ℓi(θ̂
∗

i ;X
∗
n′ ),

i = 1, . . . , 105, are computed by (23), its ML tree is Tî∗ with

î∗ = argmaxi=1,...,105 ℓi(θ̂
∗

i ;X
∗
n′ ).
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The non-parametric bootstrap probability of tree Ti is
obtained as follows. We generate B bootstrap replicates X∗b

n′ ,

b = 1, . . . ,B. In this paper, we used B = 105. For each X∗b
n′ ,

the ML tree Tî∗b is computed by the method described above.
Then we count the frequency that Ti becomes the ML tree in the
B replicates. The non-parametric bootstrap probability of tree Ti
is computed by

BP(Ti, n′) = #{î∗b = i, b = 1, . . . ,B}/B. (24)

The non-parametric bootstrap probability of a edge is computed
by summing BP(Ti, n′) over the associated trees.

An example of the transformation Y∗ = f n(X
∗
n′ ) mentioned

in section 3.4 is

Y∗ = V−1/2
n L∗n′ , (25)

where L∗n′ = (1/n′)(ℓ∗1 , . . . , ℓ
∗
105)

T with ℓ∗i = ℓi(θ̂
∗

i ;X
∗
n′ ) and Vn

is the variance matrix of L∗n. According to the approximation (23)
and the central limit theorem, (13) holds well for sufficiently large
n and n′ with m = 104 and σ 2 = n/n′. It also follows from the
above argument that var(ℓ∗i − ℓ∗j ) ≈ (n′/n)‖ξ i − ξ j‖

2, and thus

the variance of log-likelihood difference is

var
(

ℓi(θ̂ i;Xn)− ℓj(θ̂ j;Xn)
)

≈ ‖ξ i − ξ j‖
2, (26)

which gives another insight into the visualization of section 6.2,
where the variance can be interpreted as the divergence between
the two models; see Equation (27). This approximation holds

well when the two predictive distributions pi(x; θ̂ i), pj(x; θ̂ j)
are not very close to each other. When they are close to
each other, however, the higher-order term ignored in (26)
becomes dominant, and there is a difficulty for deriving the
limiting distribution of the log-likelihood difference in the model
selection test (Shimodaira, 1997; Schennach andWilhelm, 2017).

6.2. Visualization of Probability Models
For representing the probability distribution of tree Ti, we define
ξ i : = (ξ1i, . . . , ξni)

T ∈ R
n from (22) for i = 1, . . . , 15. The

idea behind the visualization of Figure 3 is that locations of ξ i in

R
n will represent locations of pi(x; θ̂ i) in the space of probability

distributions. Let DKL(pi‖pj) be the Kullback-Leibler divergence
between the two distributions. For sufficiently small (1/n)‖ξ i −
ξ j‖

2, the squared distance in R
n approximates n times Jeffreys

divergence

‖ξ i−ξ j‖
2 ≈ n×

(

DKL(pi(x; θ̂ i)‖pj(x; θ̂ j))+DKL(pj(x; θ̂ j)‖pi(x; θ̂ i)
)

(27)
for non-nested models (Shimodaira, 2001, section 6). When a
model p0 is nested in pi, it becomes ‖ξ i − ξ 0‖

2 ≈ 2n ×

DKL(pi(x; θ̂ i)‖p0(x; θ̂0)) ≈ 2 × (ℓi(θ̂ i;Xn) − ℓ0(θ̂0;Xn)). We
explain three different visualizations of Figure 7. There are only
minor differences between the plots, and the visualization is not
sensitive to the details.

For dimensionality reduction, we have to specify the origin
c ∈ R

n and consider vectors ai : = ξ i−c. A naive choice would be

the average c =
∑15

i=1 ξ i/15. By applying PCA without centering
and scaling (e.g., prcomp with option center=FALSE,

scale=FALSE in R) to the matrix (a1, . . . , a15), we obtain the
visualization of ξ i as the axes (red arrows) of biplot in Figure 7A.

For computing the “data point” X in Figure 3, we need more
models. Let tree T106 be the star topology with no internal
branch (completely unresolved tree), and T107, . . . , T131 be
partially resolved tree topologies with only one internal branch
corresponding to E1, . . . , E25, whereas T1, . . . , T105 are fully
resolved trees (bifurcating trees). Then define ηi : = ξ 106+i,
i = 0, . . . , 25. Now we take c = η0 for computing ai =

ξ i − η0 and bi = ηi − η0. There is hierarchy of models: η0
is the submodel nested in all the other models, and η1, η2, η3,
for example, are submodels of ξ 1 (T1 includes E1, E2, E3).
By combining these non-nested models, we can reconstruct a
comprehensive model in which all the other models are nested
as submodels (Shimodaira, 2001, Equation 10 in section 5). The
idea is analogous to reconstructing the full model y = β1x1 +
· · · + β25x25 + ǫ of multiple regression from submodels y =

β1x1 + ǫ, . . . , y = β25x25 + ǫ. Thus we call it as “full model”
in this paper, and the ML estimate of the full model is indicated
as the data point X; it is also said “super model” in Shimodaira
and Hasegawa (2005). Let B = (b1, . . . , b25) ∈ R

n×25 and
d = (‖b1‖

2, . . . , ‖b25‖
2)T ∈ R

25, then the vector for the full
model is computed approximately by

aX = B(BTB)−1d. (28)

For the visualization of the best 15 trees, we may use only
b1, . . . , b11, because they include E1 and two more edges from
E2, . . . ,E11. In Figures 3, 7B, we actually modified the above
computation slightly so that the star topology T106 is replaced
by T107, the partially resolved tree corresponding to E1 (T107 is
also said star topology by treating clade (23) as a leaf of the tree),
and the 10 partially resolved trees for E2, . . . , E11 are replaced by
those for (E1,E2), . . . , (E1,E11), respectively; the origin becomes
the maximal model nested in all the 15 trees, and X becomes
the minimal full model containing all the 15 trees. Just before
applying PCA in Figure 7B, a1, . . . , a15 are projected to the space
orthogonal to aX , so that the plot becomes the “top-view” of
Figure 3A with aX being at the origin.

In Figure 7C, we attempted a even simpler computation
without using ML estimates for partially resolved trees. We used
B = (a1, . . . , a15) and d = (‖a1‖

2, . . . , ‖a15‖
2)T , and taking the

largest 10 singular values for computing the inverse in (28). The
orthogonal projection to aX is applied before PCA.

6.3. Asymptotic Theory of Smooth Surfaces
For expressing the shape of the regionR ⊂ R

m+1, we use a local
coordinate system (u, v) ∈ R

m+1 with u ∈ R
m, v ∈ R. In a

neighborhood of y, the region is expressed as

R = {(u, v) | v ≤ −h(u), u ∈ R
m}, (29)

where h is a smooth function; see Shimodaira (2008) for the
theory of non-smooth surfaces. The boundary surface ∂R is
expressed as v = −h(u), u ∈ R

m. We can choose the coordinates
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FIGURE 7 | Three versions the visualization of probability distributions for the best 15 trees drawn using different sets of models. (A) Only the 15 bifurcating trees. (B)

15 bifurcating trees + 10 partially resolved trees + 1 star topology. This is the same plot as Figure 3B. (C) 15 bifurcating trees + 1 star topology. Note that (B,C) are

superimposed, since their plots are almost indistinguishable.

so that y = (0,β0) (i.e., u = (0, . . . , 0) and v = β0), and
h(0) = 0, ∂h/∂ui|0 = 0, i = 1, . . . ,m. The projection now
becomes the origin µ̂ = (0, 0), and the signed distance is β0. The
mean curvature of surface ∂R at µ̂ is now defined as

β1 =
1

2

m
∑

i=1

∂2h(u)

∂ui∂ui

∣

∣

∣

∣

0

, (30)

which is interpreted as the trace of the hessian matrix of h.
When R is convex at least locally in the neighborhood, all the
eigenvalues of the hessian are non-negative, leading to β1 ≥ 0,
whereas concave R leads to β1 ≤ 0. In particular, β1 = 0 when
∂R is flat (i.e., h(u) ≡ 0).

Since the transformation y = f n(Xn) depends on
n, the shape of the region R actually depends on n,
although the dependency is implicit in the notation.
As n goes larger, the standard deviation of estimates,
in general, reduces at the rate n−1/2. For keeping the
variance constant in (4), we actually magnifying the space
by the factor n1/2, meaning that the boundary surface
∂R approaches flat as n → ∞. More specifically, the
magnitude of mean curvature is of order β1 = Op(n

−1/2).
The magnitude of ∂3h/∂ui∂uj∂uk and higher order
derivatives is Op(n

−1), and we ignore these terms in our
asymptotic theory. For keeping µ = O(1) in (4), we also
consider the setting of “local alternatives,” meaning that the
parameter values approach a origin on the boundary at the
rate n−1/2.

6.4. Bridging the Problem of Regions to the
Z-Test
Here we explain the problem of regions in terms of the z-
test by bridging the multivariate problem of section 3 to the
1-dimensional case of section 1.

Ideal p-values are uniformly distributed over p ∈ (0, 1) when
the null hypothesis holds. In fact, AU(R|Y) ∼ U(0, 1) for
µ ∈ ∂R as indicated in (11). The statistic AU(R|Y) may be
called pivotal in the sense that the distribution does not change
when µ ∈ ∂R moves on the surface. Here we ignore the
error of Op(n

−1), and consider only the second order asymptotic
accuracy. From (10), we can write AU(R|Y) ≃ 8̄(β0(Y) −
β1(Y)), where the notation such as β0(Y) and β1(Y) indicates the
dependency on Y . Since β1(Y) ≃ β1(y) = β1, we treat β1(Y) as
a constant. Now we get the normal pivotal quantity (Efron, 1985)
as 8̄−1(AU(R|Y)) = β0(Y) − β1 ∼ N(0, 1) for µ ∈ ∂R. More
generally, it becomes

β0(Y)− β1 ∼ N(β0(µ), 1), µ ∈ R
m+1. (31)

Let us look at the z-test in section 1, and consider substitutions:

Z = β0(Y)− β1, θ = β0(µ), c = −β1. (32)

The 1-dimensional model (1) is now equivalent to (31). The null
hypothesis is also equivalent: θ ≤ 0 ⇔ β0(µ) ≤ 0 ⇔ µ ∈ R.
We can easily verify that AU corresponds to p(z), because p(z) =
8̄(z) = 8̄(β0(y) − β1) ≃ AU(R|y), which is expected from the
way we obtained (31) above. Furthermore, we can derive SI from
p(z, c). First verify that the selection event is equivalent: Z > c ⇔
β0(Y)− β1 > −β1 ⇔ β0(Y) > 0 ⇔ Y ∈ R

C. Finally, we obtain
SI as p(z, c) = p(z)/8̄(c) ≃ 8̄(β0(y)− β1)/8̄(−β1) ≃ SI(R|y).

6.5. Model Fitting in Multiscale Bootstrap
We have used thirteen σ 2 values from 1/9 to 9 (equally spaced in
log-scale). This range is relatively large, and we observe a slight
deviation from the linear model β0+β1σ

2 in Figure 6. Therefore
we fit other models to the observed values ofψσ 2 as implemented
in scaleboot package (Shimodaira, 2008). For example, poly.k

model is
∑k−1

i=0 βiσ
2i, and sing.3 model is β0 + β1σ

2(1+ β2(σ −

1))−1. In Figure 6A, poly.3 is the best model according to AIC
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(Akaike, 1974). In Figure 6B, poly.2, poly.3, and sing.3 are
combined by model averaging with Akaike weights. Then β0 and
β1 are estimated from the tangent line to the fitted curve of ψσ 2
at σ 2 = 1. In Figure 6, the tangent line is drawn as red line for
extrapolating ψσ 2 to σ 2 = −1. Shimodaira (2008) and Terada
and Shimodaira (2017) considered the Taylor expansion of ψσ 2
at σ 2 = 1 as a generalization of the tangent line for improving
the accuracy of AU and SI.

In the implementation of CONSEL (Shimodaira and
Hasegawa, 2001) and pvclust (Suzuki and Shimodaira, 2006),
we use a narrower range of σ 2 values (ten σ−2 values: 0.5, 0.6,
. . . , 1.4). Only the linear model β0 + β1σ

2 is fitted there. The
estimated β0 and β1 should be very close to those estimated from
the tangent line described above. An advantage of using wider
range of σ 2 in scaleboot is that the standard error of β0 and β1
will become smaller.

6.6. General Formula of Selective Inference
Let H,S ⊂ R

m+1 be regions for the null hypothesis and the
selection event, respectively. We would like to test the null
hypothesis H0 : µ ∈ H against the alternative H1 : µ ∈ H

C

conditioned on the selection event y ∈ S . We have considered
the outside mode H = R,S = R

C in (18) and the inside mode
H = R

C,S = R in (20). For a general case of H,S , Terada
and Shimodaira (2017) gave a formula of approximately unbiased
p-value of selective inference as

SI(H|S , y) =
8̄(βH0 − βH1 )

8̄(βS0 + βH0 − βH1 )
, (33)

where geometric quantities β0,β1 are defined for the regions
H,S . We assumed that H and S

C are expressed as (29), and two
surfaces ∂H, ∂S are nearly parallel to each other with tangent
planes differing onlyOp(n

−1/2). The last assumption always holds
for (18), because ∂H = ∂R and ∂S = ∂RC are identical and of
course parallel to each other.

Here we explain why we have considered the special case of
S = H

C for phylogenetic inference. First, we suppose that the
selection event satisfies S ⊂ H

C, because a reasonable test would
not reject H0 unless y ∈ H

C. Note that y ∈ S ⊂ H
C implies

0 ≤ −βS0 ≤ βH0 . Therefore, βH0 + βS0 ≥ 0 leads to

SI(H|S , y) ≥ SI(H|y), (34)

where SI(H|y) : = SI(H|HC, y) is obtained from (33) by letting
βH0 + βS0 = 0 for S = H

C. The p-value SI(H|S , y) becomes
smaller as S grows, and S = H

C gives the smallest p-value,
leading to the most powerful selective test. Therefore the choice
S = H

C is preferable to any other choice of selection event
satisfying S ⊂ H

C. This kind of property is mentioned in Fithian
et al. (2014) as the monotonicity of selective error in the context
of “data curving.”

Let us see how these two p-values differ for the case of E2 by
specifying H = R

C
E2 and S = RT1. In this case, the two surfaces

∂H, ∂S may not be very parallel to each other, thus violating the
assumption of SI(H|S , y), so we only intend to show the potential
difference between the two p-values. The geometric quantities are

βH0 = −βE20 = 1.59, βH1 = −βE21 = −0.12, βS0 = βT10 =

−0.41; the p-values are calculated usingmore decimal places than
shown. SI of E2 conditioned on selecting T1 is

SI(H|S , y) =
8̄(1.59+ 0.12)

8̄(−0.41+ 1.59+ 0.21)
= 0.448,

and it is very different from SI of E2 conditioned on selecting E2

SI(H|y) =
8̄(1.59+ 0.12)

8̄(0.12)
= 0.097,

where SI′(RC
E2|y) = 1 − SI(RC

E2|y) = 0.903 is shown in Table 2.
As you see, SI(H|y) is easier to reject H0 than SI(H|S , y).

6.7. Number of Regions for Phylogenetic
Inference
The regions Ri, i = 1, . . . ,Kall correspond to trees or edges. In
inside and outside modes, the number of total regions is Kall =

105 for trees and Kall = 25 for edges when the number of taxa
is N = 6. For general N ≥ 3, they grow rapidly as Kall =

(2N − 5)!/(2N−3(N − 3)!) for trees and Kall = 2N−1 − (N + 1)
for edges. Next consider the number of selected regions Kselect. In
inside mode, regions with y ∈ Ri are selected, and the number is
counted as Kselect = 1 for trees and Kselect = N−3 = 3 for edges.
In outside mode, regions with y 6∈ Ri are selected, and thus the
number is Kall minus that for inside mode; Kselect = Kall − 1 =

104 for trees and Kselect = Kall − (N − 3) = 22 for edges. Finally,
consider the number of true null hypotheses, denoted as Ktrue.
The null hypothesis holds true when µ 6∈ Ri in inside mode
and µ ∈ Ri in outside mode, and thus Ktrue is the same as the
number of regions with y 6∈ Ri in inside mode and y ∈ Ri in
outside mode (These numbers do not depend on the value of y
by ignoring the case of y ∈ ∂Ri). Therefore, Ktrue = Kall −Kselect

for both cases.

6.8. Selective Inference of Lasso
Regression
Selective inference is considered for the variable selection of
regression analysis. Here, we deal with prostate cancer data
(Stamey et al., 1989) in which we predict the level of prostate-
specific antigen (PSA) from clinical measures. The dataset is
available in the R package ElemStatLearn (Halvorsen, 2015).
We consider a linear model to the log of PSA (lpsa), with 8
predictors such as the log prostate weight (lweight), age, and
so on. All the variables are standardized to have zero mean and
unit variance.

The goal is to provide the valid selective inference for
the partial regression coefficients of the selected variables by
lasso (Tibshirani, 1996). Let n and p be the number of
observations and the number of predictors. M̂ is the set of
selected variables, and ŝ represents the signs of the selected
regression coefficients. We suppose that regression responses
are distributed as Y ∼ N(µ, τ 2In) where µ ∈ R

n and τ >

0. Let ei be the ith residual. Resampling the scaled residuals
σ ei (i = 1, . . . , n) with several values of scale σ 2, we can
apply the multiscale bootstrap method described in section 4
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for the selective inference in the regression problem. Here,
we note that the target of the inference is the true partial
regression coefficients:

β = (XTX)−1XTµ,

where X ∈ R
n×p is the design matrix. We compute four

types of intervals with confidence level 1 − α = 0.95

for selected variable j. [L
ordinary
j ,U

ordinary
j ] is the non-selective

confidence interval obtained via t-distribution. [Lmodel
j ,Umodel

j ]

is the selective confidence interval under the selected model
proposed by Lee et al. (2016) and Tibshirani et al. (2016),
which is computed by fixedLassoInf with type="full"
in R package selectiveInference (Tibshirani et al., 2017). By
extending the method of [Lmodel

j ,Umodel
j ], we also computed

[Lvariablej ,Uvariable
j ], which is the selective confidence interval

under the selection event that variable j is selected. These three
confidence intervals are exact, in the sense that

P
(

βj ∈ [L
ordinary
j ,U

ordinary
j ]

)

= 1− α,

P
(

βj ∈ [Lmodel
j ,Umodel

j ] | M̂, ŝ
)

= 1− α,

P
(

βj ∈ [Lvariablej ,Uvariable
j ] | j ∈ M̂, ŝj

)

= 1− α.

Note that the selection event of variable j, i.e., {j ∈ M̂, ŝj}
can be represented as a union of polyhedra on R

n, and thus,
according to the polyhedral lemma (Lee et al., 2016; Tibshirani
et al., 2016), we can compute a valid confidence interval
[Lvariablej ,Uvariable

j ]. However, this computation is prohibitive for

p > 10, because all the possible combinations of models
with variable j are considered. Therefore, we compute its
approximation [L̂variablej , Ûvariable

j ] by the multiscale bootstrap

method of section 4 with much faster computation even for
larger p.

We set λ = 10 as the penalty parameter of lasso, and the
following model and signs were selected:

M̂ = {lcavol,lweight,lbph,svi,pgg45},

ŝ = (+,+,+,+,+).

The confidence intervals are shown in Figure 1. For adjusting the
selection bias, the three confidence intervals of selective inference
are longer than the ordinary confidence interval. Comparing
[Lmodel

j ,Umodel
j ] and [Lvariablej ,Uvariable

j ], the latter is shorter, and

would be preferable. This is because the selection event of the
latter is less restrictive as {M̂, ŝ} ⊆ {j ∈ M̂, ŝj}; see section 6.6
for the reason why larger selection event is better. Finally, we
verify that [L̂variablej , Ûvariable

j ] approximates [Lvariablej ,Uvariable
j ]

very well.
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