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Understanding how animal behavior can influence the susceptibility of endangered

hosts to emerging pathogens and using this knowledge to ameliorate negative

effects of infectious wildlife diseases is a promising avenue in conservation biology.

Chytridiomycosis, an emerging infectious disease caused by the fungal pathogen

Batrachochytrium dendrobatidis (Bd) in amphibians has led to the most spectacular

disease-borne loss of vertebrate biodiversity ever recorded in history. Unfortunately, the

methods of mitigation that are available today are only practical in captive populations,

and an effective method that could be applied in natural habitats without inflicting vast

collateral damage is lacking. We suggest here that the thermal tolerance mismatch

between Bd and its ectothermic hosts coupled with the thermoregulatory behavior

of amphibians could be exploited in mitigation interventions combating Bd infection

in situ. If microhabitats with elevated temperatures are made available in their natural

environment, individuals taking advantage of the possibility to reach their preferred body

temperature could critically lower their infection intensity or even clear the pathogen. We

provide a basis for studying this approach by reviewing the evidence that supports the

idea, describing how technical difficulties may be overcome, pointing out gaps in our

knowledge that need to be filled by future studies, and listing presumable benefits and

probable limitations of localized heating. The proposed approach has good potential to

become an effective in situ mitigation method that can be easily employed in a wide

taxonomic range of amphibians, especially in species that are warm-adapted, while

causing less collateral damage than any other method that is currently available. If so,

it may quickly become a widely applicable tool of biodiversity conservation and may

contribute to saving many amphibian populations and species from extinction in the

next few decades.
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INTRODUCTION

Emerging infectious diseases of wildlife pose a serious threat
to biodiversity. They can have large economic costs via spill-
over to livestock and, if zoonotic, they may also threaten human
health (Daszak et al., 2000). Chytridiomycosis is an emerging
infectious disease caused by the chytrid fungus Batrachochytrium
dendrobatidis (Bd) in amphibians, where it has already led
to the decline or extinction of hundreds of species (Skerratt
et al., 2007; Wake and Vredenburg, 2008; Lips, 2016; Scheele
et al., 2019). Chytridiomycosis continues to be one of the
largest conservation issues because it is still spreading, it is
highly virulent, and no widely applicable solution is in sight
(Woodhams et al., 2011; Scheele et al., 2014, 2019; Garner
et al., 2016). What makes this disease especially worrying is that
it affects amphibians, which have been declining for decades
and are already one of the most severely threatened vertebrate
groups today (Houlahan et al., 2000; Stuart et al., 2004; Wake
and Vredenburg, 2008), with 41% of species listed at least as
threatened (IUCN, 2016).

Several lineages of Bd have been described (O’Hanlon et al.,
2018), some of which have existed locally at least for decades
without causing mass mortalities, but one hypervirulent lineage,
BdGPL, has spread throughout the world in recent years and
caused extinctions across several continents (Farrer et al., 2011;
James et al., 2015; Lips, 2016; O’Hanlon et al., 2018; Scheele et al.,
2019). Spread is attributable to twomain factors: human activities
(especially transportation and animal husbandry; Weldon et al.,
2004; Garner et al., 2006; Scheele et al., 2019) and natural
processes (primarily via migrating animals, including non-
amphibians carrying the fungus; Vredenburg et al., 2010;
Garmyn et al., 2012; McMahon et al., 2013). When Bd arrives
to a new area, it can spread in a wave-like front, often leading
to local extinctions or resulting in sharp declines and leaving
just dwindling remnants of amphibian populations (Rachowicz
et al., 2005; Lips et al., 2008; Cheng et al., 2011). Moreover, due to
climate change, or the appearance of new, more virulent lineages,
Bd can also suddenly become devastating in locations where it
has previously not led to disease outbreaks (Bosch et al., 2007;
Rödder et al., 2010; Clare et al., 2016; Jenkinson et al., 2016;
Cohen et al., 2018). Furthermore, these two mechanisms leading
to mass mortalities in amphibians are not mutually exclusive and
may act in concert (Fisher et al., 2009; Rohr and Raffel, 2010;
Walker et al., 2010; Lips, 2016; Cohen et al., 2018, 2019).

Bd infects keratinous skin surfaces of amphibians (Berger
et al., 1998). In larval amphibians, Bd infection usually causes
only mild symptoms, including lethargy and poor swimming
performance resulting in somewhat lowered body mass, but
larval mortality due to chytridiomycosis is rare (Blaustein et al.,
2005; Garner et al., 2009; Hanlon et al., 2015). In metamorphs
and adults, clinical signs of the disease can include thickening
of the outermost skin layer, reddening, ulceration and excessive
shedding of the skin, lethargy and anorexia (Berger et al., 1998,
2005). Chytridiomycosis impairs breathing and osmoregulation,
facilitates co-infection by other infectious agents, may induce
immunopathology, and can ultimately lead to cardiac arrest
(Voyles et al., 2009; Campbell et al., 2012; Whitfield et al., 2013).

Several mechanisms of defenses against infectious agents exist
in amphibians. Individuals of many species excrete antimicrobial
peptides (AMPs) onto their skin and these have been shown to
depress Bd infection loads in vitro (Woodhams et al., 2007a;
Rollins-Smith, 2009). However, some species possessing AMPs
are highly susceptible to infection (e.g., Rollins-Smith et al., 2006,
2009), and many species lack AMPs completely (Conlon et al.,
2009). The adaptive immune system of amphibians may also
contribute to the suppression of chytridiomycosis, but results
are mixed in this respect as well (Rollins-Smith et al., 2009;
Ramsey et al., 2010; Stice and Briggs, 2010; Cashins et al.,
2013; McMahon et al., 2014). Individuals may adopt behavioral
patterns that prevent infection or lower pathogen burden (i.e.,
“behavioral fever”; Kluger, 1977; Sherman et al., 1991; Lefcort
and Blaustein, 1995; Sherman, 2008; Rakus et al., 2017), but
the number of studies reporting such behavioral alterations in
response to Bd has remained very limited (Murphy et al., 2011;
Karavlan and Venesky, 2016; but also see Han et al., 2008;
Sauer et al., 2018). Finally, some symbiotic bacteria inhabiting
amphibian skin produce antifungal metabolites that can hamper
colonization by Bd and reduce its growth (Harris et al., 2006,
2009a,b; Lam et al., 2010, 2011). However, symbionts are not
ubiquitous (Lam et al., 2010), their performance is environment-
dependent (Daskin et al., 2014), and they do not protect against
all Bd lineages (Antwis et al., 2015). Despite these variable
and sometimes powerful defenses, many amphibian populations
and species are threatened by chytridiomycosis and are likely
to persist only if we implement effective measures against this
deadly disease.

Several countermeasures to chytridiomycosis have been
proposed as a result of intense research focusing on the biology
of Bd, its interactions with amphibian hosts, and the factors
influencing infection probability and disease progression (for
reviews see Woodhams et al., 2011; Scheele et al., 2014; Garner
et al., 2016). These include the application of salt and antifungals
(Johnson et al., 2003; White, 2006; Pessier, 2008; Heard et al.,
2014; Woodward et al., 2014; Bosch et al., 2015; Stockwell et al.,
2015; Hudson et al., 2016; Geiger et al., 2017), the addition of
probiotics (Woodhams et al., 2007b; Harris et al., 2009a; Muletz
et al., 2012), immunization (Ramsey et al., 2010; McMahon et al.,
2014), selection for Bd-tolerance in captive-bred populations
(Garner et al., 2016), enhancement of the density of microscopic
aquatic predators of Bd zoospores (Buck et al., 2011; Searle
et al., 2013; Schmeller et al., 2014), general actions facilitating
population persistence and recovery (Muths et al., 2011; Shoo
et al., 2011; Heard et al., 2014), and elevating the temperature
in the environment of infected individuals (Woodhams et al.,
2003; Chatfield and Richards-Zawacki, 2011; Heard et al., 2014;
Scheele et al., 2015). Indeed, some of these approaches proved
to be highly effective when applied in captive populations.
However, because of high costs of maintaining populations
in captivity, only a few dozen species may be saved ex situ
(Zippel et al., 2011), so that mitigation approaches suitable
for treating infected amphibian populations in their natural
habitats are needed (Scheele et al., 2014; Garner et al., 2016).
Unfortunately, the methods listed above are in their current
form not yet suitable for in situ application. They are either
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associated with vast collateral damage to the environment, may
also harm amphibians, are impractical outside the laboratory, are
associated with immense costs, are simply not effective under
natural conditions, or their use cannot be permitted because of
nature conservation legislation (Scheele et al., 2014; Garner et al.,
2016). Consequently, a feasible mitigation strategy for lowering
the threat posed by chytridiomycosis in natural populations is
still lacking (Scheele et al., 2014, 2019; Garner et al., 2016).

Finding a suitable strategy for mitigation, including those
mentioned above, will require further intense research into
the basic ecology of the pathogen and of its interactions with
amphibian hosts, but may contribute to saving hundreds of
amphibian species from extinction. Our aim here is to draw
attention to a presumably effective, safely applicable and rather
simple method of in situ mitigation that conservation managers
may readily employ in the fight against chytridiomycosis. We
outline the basic idea, list evidence providing support for its
potential, describe how it could be realized technically, point
out knowledge gaps that need to be filled before its application,
list presumable benefits and probable limitations, and thereby
provide a basis for researching this promising approach.

A SUGGESTION FOR FIGHTING BD IN SITU

We suggest exploiting the difference in the thermal optima and
maxima between Bd and its amphibian hosts in their natural
environment simply by providing opportunities for amphibians
to reach their preferred body temperature. According to in vitro
studies, the optimal temperature for Bd is around 20◦C, it grows
well below 24◦C, and its critical thermal maximum (CTmax)
is around 28◦C (Johnson et al., 2003; Piotrowski et al., 2004;
Stevenson et al., 2013; Cohen et al., 2017; Voyles et al., 2017;
also see Table 1). However, a global dataset on physiological
heat tolerance comprising relevant data on 91 amphibian species
suggests that the CTmax is higher than 32◦C in ca. 80% of
amphibian species and lower than 30◦C in just 7% (lower than
28◦C in just one species; see supplementary dataset in Sunday
et al. (2014a); also see Ultsch et al., 1999; Gutiérrez-Pesquera
et al., 2016). Importantly, CTmax strongly depends on age
(Sherman and Levitis, 2003; Turriago et al., 2015) and it is weakly
related to altitude and latitude while the phylogenetic footprint
is significant (Sunday et al., 2014a,b; Gutiérrez-Pesquera et al.,
2016). Nonetheless, exposure to temperatures of 28–30◦C for
a few days only will not be hazardous to a large number of
amphibian species, but caution needs to be applied in case of
cold-adapted species (see below). If the CTmax of the targeted
species, or at least of closely related species is known, it will be
possible to set wide enough safety margins on the temperatures to
be applied. Elevated temperatures can directly kill Bd zoospores
and cells encysted in amphibian skin and sporangia. In addition,
the immune function of amphibians and the antifungal activity
of symbiotic bacteria living on amphibian skin may also increase
toward higher temperatures (Raffel et al., 2006; Rollins-Smith
et al., 2011; Daskin et al., 2014), especially in warm-adapted-
species (Cohen et al., 2017, 2019; Sauer et al., 2018). These
mechanisms may act synergistically, lowering the need for

exposure of individuals to high temperatures for a prolonged
time period (Table 1). In cold-adapted species the effectiveness of
the immune system may decrease more quickly with increasing
temperature than the performance of Bd, resulting in relatively
low temperature optima for the hosts (Cohen et al., 2017,
2018, 2019; Sauer et al., 2018). Because these cold-adapted
species may not endure temperatures that surpass the CTmax of
Bd, applying elevated temperatures may be counterproductive
in their case. Consequently, it is important to first assess
temperature preferences and critical thermal maxima of the
species to be treated and thereafter apply heating, where the
applied temperature should ideally surpass the CTmax of Bd,
which is around 28◦C (Table 1). The use of ambient temperatures
elevated to 28–30◦C may thereafter be a safe and effective way
of treating amphibians infected by Bd (Berger et al., 2010;
Woodhams et al., 2011; Scheele et al., 2014).

Several lines of evidence provide ample support for the
potential of the in situ chytridiomycosis-mitigatory use of
elevated temperatures. A good number of studies report
successful clearing of Bd-infection or at least significant lowering
of infection prevalence and intensity in captive populations
after application of elevated temperatures (Table 1). In addition,
infection may be prevented in the first place by a warm
environment (e.g., Blooi et al., 2015). Also, theoretical models
and empirical studies on Bd-prevalence and infection load
revealed that both increase toward cooler areas and cooler
periods of the year in tropical as well as in temperate climate
zones (Retallick et al., 2004; Woodhams and Alford, 2005; Kriger
et al., 2007; Walker et al., 2010; Forrest and Schlaepfer, 2011;
Puschendorf et al., 2011; Fernández-Beaskoetxea et al., 2015;
Gabor et al., 2015). These patterns are in accord with reports
that in the tropics and subtropics, chytridiomycosis can have
devastating effects in cool areas, like highlands, but much less
so in warmer lowlands (e.g., Retallick et al., 2004; La Marca
et al., 2005; Lips et al., 2006, 2008; Pounds et al., 2006; Walker
et al., 2010; Rodríguez-Brenes et al., 2016), and during cool
winter months, but much less during warmer parts of the year
(Bradley et al., 2002; Berger et al., 2004). It is worth noting,
however, that while some species suffer extreme population
declines due to chytridiomycosis, others are little affected. This
variation in the susceptibility to chytridiomycosis may partly
be due to interspecific differences in the effectiveness of the
immune system. However, species-, population- and sex-specific
thermal profiles may also play a role: individuals that more
often experience temperatures higher than 25◦C are less likely
to carry Bd (Rowley and Alford, 2013; Stevenson et al., 2014).
Hence, elevating environmental temperatures beyond 25◦C or,
preferably, to 28–30◦C may help amphibians keep Bd-infection
intensities low or even clear the infection, and, thus, may be an
effective strategy of chytridiomycosis-mitigation (Berger et al.,
2010; Woodhams et al., 2011; Scheele et al., 2014).

If elevated temperatures are so effective in lowering Bd-
prevalence and -loads, why has this approach not been
applied so far in natural populations? A plausible explanation
may be the apparently vast energy demand. Heating up the
aquatic environment of larval amphibians to a high enough
temperature and also maintaining this temperature would
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TABLE 1 | The effectiveness of elevated environmental temperature applied against Bd as reported by experiments performed on laboratory cultures of the fungus

(in vitro studies) and on live and infected amphibians (in vivo experiments).

Type of experiment Treatment Effectiveness References

In vitro 28 or 29◦C for 14 days lowered Bd-growth at 28◦C, no growth at 29◦C Longcore et al., 1999

In vitro 32◦C for 4 days OR 37◦C for 4 h Bd wipeout in 100% of cultures Johnson et al., 2003

In vitro 30◦C for 8 days Bd wipeout in 50% of cultures Piotrowski et al., 2004

In vitro 26,5◦C for 8 days no zoospore release Woodhams et al., 2008

In vitro 33◦C for 1 h daily lowered Bd growth Daskin et al., 2011

In vitro 23, 25, 26, 27, or 28◦C for 14 days lowered Bd growth beyond 26◦C Stevenson et al., 2013

In vitro 26, 27, or 28◦C constantly no Bd-growth beyond 28◦C Cohen et al., 2017

In vitro 26◦C for 4 h daily lowered Bd growth Greenspan et al., 2017a

In vitro 26, 27, or 28◦C constantly lowered Bd-growth at 27◦C, no growth at 28◦C Voyles et al., 2017

In vivo 37◦C for 8 h on two consecutive days clearance of Bd from 100% of juvenile frogs Woodhams et al., 2003

In vivo 27◦C for 98 days clearance of Bd from 50% of juvenile frogs Berger et al., 2004

In vivo 32◦C for 5 days clearance of Bd from 100% of adult frogs Retallick and Miera, 2007

In vivo 17 or 22◦C constantly enhanced survival of juvenile frogs (from 5 to 50%)

at 22◦C

Andre et al., 2008

In vivo 26◦C for 42 days reduced growth of Bd on adult frogs Ribas et al., 2009

In vivo 17 or 23◦C constantly enhanced survival of adult frogs (from 7 to 81%) at

23◦C, at exposure to low zoospore density

Bustamante et al., 2010

In vivo 30◦C for 10 days clearance of Bd from 96% of adult frogs Chatfield and Richards-Zawacki,

2011

In vivo 26◦C for 5 days OR 30◦C for 8 + 8 + 43 h clearance of Bd from 63 to 88% of tadpoles Geiger et al., 2011

In vivo temperature increased from 15 to 18◦C doubling of time to death in juvenile toads Murphy et al., 2011

In vivo 30◦C for 12 h + 35◦C for 24 h ineffective in clearing Bd from adult frogs Woodhams et al., 2012

In vivo 30◦C for 11 days clearance of Bd from 100% of adult frogs McMahon et al., 2014

In vivo 22, 26, or 28◦C constantly growth of Bd ceases at around 28◦C in adult frogs Cohen et al., 2017

In vivo 29◦C for 4 h/day clearance of Bd after 68 days from adult frogs Greenspan et al., 2017a

In vivo 20, 23, or 26◦C for ca. 90 days Bd load at 23 and 26◦C one order of magnitude

lower than at 20◦C in adult frogs

Sonn et al., 2017

In vivo 26◦C for 63 days lowered Bd load and elevated survival in adult frogs Robak and Richards-Zawacki,

2018

Please note that the effectiveness was usually assessed in in vivo studies using qPCR, which may underestimate the effect of the thermal treatment on Bd cells because DNA extracted

from dead cells may still be intact enough to amplify, resulting in false positives.

require a power input that can realistically not be provided
in the wild in water bodies exceeding just a few m3 in
size (ca. 12 kWh necessary for each m3 of water just to
increase the temperature by 10◦C; calculated as W(kWh) =
{

V
(

l
)

× c(kJ/kg◦C)× 1T (◦C) /3600
}

, where V is the water
volume, c is the specific heat of water, 1T is the change in
temperature). In the terrestrial environment of adults, on the
other hand, animals live dispersed, so that heating up their
entire habitat is obviously absolutely impossible. Decreasing
canopy cover around ponds and streams may lead to elevated
temperatures and thereby provide sufficiently warm thermal
refuges in many environments (Raffel et al., 2010; Geiger et al.,
2011; Heard et al., 2014), but the approach of felling or pruning
trees and shrubs may often not be an acceptable measure due
to the collateral damage inflicted, especially so in protected
areas, and removal of shading vegetation may simply not elevate
temperatures to a sufficient extent in many others.

The obstacle of a vast energy demand can, however, be
circumvented in many amphibians, especially in pond-breeding
species, by applying localized heating: amphibians may be

provided with localities where they can reach their preferred
body temperatures also during times and at places where this
would otherwise be impossible. It is not necessary to heat up
the entire water body, its immediate surroundings or large
areas that cover the terrestrial habitat, because if individuals
are provided with warm spots, they will use these thanks to
their inherent warmth-searching drive (e.g., Heath, 1975;Wilbur,
1980; Dupré and Petranka, 1985). Larvae, juveniles and adults
of anuran amphibians are known to select warm areas in their
natural habitat (e.g., shallow areas of ponds and sun-lit spots
on land) and generally select temperatures between 26 and
30◦C (Wells, 2007), while urodelans prefer somewhat lower
temperatures ranging from 18 to 26◦C, depending on species
and on developmental stage (e.g., Licht and Brown, 1967; Heath,
1975; Hutchison and Hill, 1976; Dupré and Petranka, 1985;
Fontenot and Lutterschmidt, 2011). Because of their fossorial life
history, thermal preferences in caecilians (Gymnophiona) are not
well-understood, but Bd has also not been detected in this group
yet. Consequently, individuals of many anuran species are likely
to readily occupy areas with artificially elevated temperatures.
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FIGURE 1 | Appliances that may be used for the realization of localized

heating: (a) heat mat, (b) infrared heat lamp, as employed also for mammals in

zoos (San Diego Zoo in this case), and (c) submersible heater [prototype: (1)

skirting preventing heat dissipation via conductance; (2) insulation; (3)

aquarium heaters fixed to bottom of appliance; (4) bottom with holes allowing

amphibian larvae to enter warm spot; (5) swimmers under the upper edge

stabilizing appliance and keeping it afloat; (6) electric cables; and (7)

suspension facilitating in-pond placement of appliance].

If individuals can assess their Bd-infection status and use
warmer locations when necessary (i.e., behavioral fever; Murphy
et al., 2011; Karavlan and Venesky, 2016), the effectiveness of
localized heating may further be enhanced. Breeding adults,
aquatic larvae and newly metamorphosed individuals could be
targeted relatively easily in most species, because they occur
aggregated both in time and space. Also, amphibians contract
Bd during these water-dependent events or life stages, and
the disease most often leads to mass-mortality shortly after
metamorphosis (Van Rooij et al., 2015). Hence, lowering disease
transmission rates and infection loads in larvae, metamorphs and
reproducing adults using localized heating is likely possible in
many species, and this is a plausible objective for any in situ
chytridiomycosis mitigation method.

The technical realization of localized heating is simple in
theory. In the terrestrial environment artificial shelters built
around thermostat-controlled heat mats (e.g., 20 × 20 cm,
consuming 10W) or infrared heat lamps (e.g., effectively lit area
of 0.1 m2 at a consumption of 100W), as applied by terrarists
and home gardeners, may be used (Figure 1). Heated terrestrial
shelters may be dispersed around breeding ponds to target adults
and freshly metamorphosed individuals leaving the water. In the
aquatic environment, submersible aquarium heaters can be used
to locally elevate water temperature. Heat dissipation through
convection poses a problem here, but this can be overcome
using an insulated skirting around heaters, which helps contain
the warm water, but allows amphibians to enter from below
(e.g., submersible heaters consuming just 500W are sufficient

to elevate the water temperature by 15◦C in a 20 cm deep layer
over a semi-isolated area of 0.5 m2; Figure 1). As the power
source, a landline is most convenient, but a power generator, a
solar power system or their combination may also be suitable
for supplying heaters (ca. 100 heated terrestrial shelters or 2
submersible heaters/kW). The requirements these devices have
to meet are the ability to heat up their immediate environment
and amphibians therein to temperatures between 28 and 30◦C,
to be portable and usable also in remote areas, to have relatively
low power needs, to be cost-effective, be easy and safe to run also
by non-academic personnel, and, importantly, to be attractive to
amphibians. Solutions for several technical issues will have to be
found, including the prevention of dehydration of amphibians
using terrestrial warm spots, keeping individuals away from
hot surfaces of heaters while still allowing efficient heat uptake,
keeping predators away from amphibians aggregating on warm
spots, or constructing funnel-trap-like one-way entrances for
species or life-stages that would not use the provided warm
spots for long enough voluntarily, but would endure these
temperatures without damage. Finally, different climates and
habitat types may require or allow for the use of different
appliances. Consequently, the theoretical and technical expertise
of electro technicians and energy engineers is likely to prove
helpful during development and optimization, but none of these
technical difficulties appear unsolvable.

KNOWLEDGE GAPS THAT NEED TO
BE FILLED

Intensive research over the last two decades delivered detailed
insights into several aspects of the biology of Bd and its
interaction with amphibian hosts, but there have remained
several important knowledge gaps that would first need to be
filled before localized heating can be applied in situ routinely.
One field where we lack sufficiently detailed information regards
the combination of treatment duration and the temperature
necessary to lower infection loads or clear Bd completely
(for basic characteristics of the thermal ecology of Bd and
of its interaction with amphibian hosts see Table 1). For the
treatment of captive populations, where elevated temperatures
can be provided for long periods without difficulty and
immediate surveillance is possible, it may be sufficient to
evaluate a combination of temperature and exposure time—
which experimentation reveals will clear Bd from a treated
population—then apply that preventively or in case infection
is suspected. However, for the in situ application of localized
heating, where the energy available for heating is likely limited
and the direct observation of treated individuals will often not
be possible, we need to know rather exactly the combinations
of minimum treatment temperatures and exposure durations
that effectively lower infection loads of Bd, or, preferably, lead
to its complete clearance. In parallel, behavior of amphibians at
various life-stages in relation to the use of warm spots will have
to be studied to assess if individuals would voluntarily use warm
areas for long enough (e.g., Sauer et al., 2018), or if repeated
but short stays in warm spots may sufficiently lower Bd burdens
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(Greenspan et al., 2017a). This is necessary for deciding if heated
areas can be designed so that animals can come and go at their
will, or if they have to have funnel-trap-like one-way entrances
to keep animals inside for long enough. In the latter scenario,
conservation officers or scientists would need to manage the
process, but this would create the opportunity to mark treated
animals and follow up on their future, thereby obtaining reliable
estimates on the efficiency of the applied in situ treatment.

Temperatures that are effective against Bd are relatively low,
so that treatment of amphibians with elevated temperatures
is considered a safe approach, and has been used in captive
populations. Nonetheless, knowing the basics of the thermal
ecology of the species to be treated is important because exposure
to temperatures around 30◦C during the entire larval period
can already lower survival and growth rate of tadpoles and
metamorphs of some species (Harkey and Semlitsch, 1988;
Bellakhal et al., 2014; Goldstein et al., 2017). This knowledge can,
however, be obtained by applying simple tests of heat tolerance
(e.g., assessment of CTmax by observing the temperature at
which muscular coordination becomes disorganized; Hutchison,
1961; Huang et al., 2006; McCann et al., 2014; Greenspan
et al., 2017b). Elevated temperatures may nonetheless also cause
sublethal damage in treated individuals, which have remained
largely ignored so far. High temperatures experienced during
gametogenesis and gamete maturation have been proposed to
impair gamete quality in adult amphibians (Woodhams et al.,
2012), but we know of no report documenting such an effect
at temperatures around 30◦C. Even if remaining below CTmax,
environmental temperatures maintained at around 28–32◦C for
several weeks or during the entire larval period can lead to
lowered growth and development rates (Angilletta and Dunham,
2003; Bellakhal et al., 2014; Carreira et al., 2016; Goldstein
et al., 2017; Phuge, 2017), potentially depressing fitness of treated
individuals (Smith, 1987; Semlitsch et al., 1988; Berven, 1990;
Altwegg and Reyer, 2003; Schmidt et al., 2012). Also, even brief
exposure to 30◦C can increase stress hormone levels in adult
frogs (Juráni et al., 1973; Narayan and Hero, 2014). However,
within pessimal temperature limits, growth rate and overall
physiological performance is positively related to temperature
in ectotherms (Angilletta and Dunham, 2003; Carreira et al.,
2016), and exposure to mildly elevated temperatures applied for
a few days only is unlikely to lead to intolerable decreases in
fitness even in species with a relatively low CTmax. Whether
temporally limited exposure to mildly elevated temperatures can
have significant negative fitness-effects remains to be assessed.

Elevated temperatures experienced during the sensitive period
of larval development can lead to sex reversal in amphibians
and only a handful of studies have so far investigated this
phenomenon in amphibians (Chardard et al., 2004; Eggert, 2004;
Nakamura, 2009). These studies report sex reversal to rarely
occur with an effectiveness of 100% and only if environmental
temperatures exceeding 28–32◦C are maintained for weeks
(Hsü et al., 1971; Dournon et al., 1984, 1990; Wallace et al.,
1999; Wallace and Wallace, 2000; Chardard et al., 2004; Sakata
et al., 2005; Phuge, 2017). Also, sex-reversed individuals may
be infertile in some cases but fertile in others (Dournon et al.,
1984; Wallace et al., 1999) and the sex-biasing effect may depend
strongly on the timing of exposure to elevated temperatures

[Muto, 1961 reviewed in Chardard et al. (2004), Wallace et al.
(1999) and Sakata et al. (2005)]. Further, temporal variation
in temperature may disrupt the sex-reversing effect of heating
(Neuwald and Valenzuela, 2011), while the Bd-clearing effect
may be upheld (Woodhams et al., 2003; Stevenson et al.,
2014; Greenspan et al., 2017a). As sex reversal in amphibians
(generally masculinization) is likely caused by lowered estrogen
synthesis paralleled by elevated androgen and testosterone
synthesis (Nakamura, 2009; Kitano et al., 2012), sex reversal
could also be avoided by treating individuals with estrogen
during heating, as shown in medaka (Kitano et al., 2012).
However, the scarcity of reports makes it difficult to draw
general conclusions (Chardard et al., 2004). Hence, for a safe
application of elevated temperatures, it has to be determined
if the temperature necessary to lower Bd-burden in infected
animals may affect life history traits negatively, lead to lowered
fertilization success, to compromised offspring viability, or to
high rates of sex reversal. It should also be assessed whether
these malign effects may be prevented by allowing temporary
fluctuations in body temperature of treated animals, by hormonal
balancing or by careful selection of the timing of thermal
treatment outside the sensitive developmental window.

The immune function of amphibians and the antibacterial
and antifungal activity of their skin microbiome are generally
assumed to be highest around 28–30◦C (Raffel et al., 2006;
Rollins-Smith et al., 2011; Paull et al., 2012; Daskin et al.,
2014), while optimal temperatures may depend both on the
species of amphibians and skin bacteria. However, elevated
temperatures may also promote the replication of microparasites,
such as Ranaviruses ((Echaubard et al., 2014; Price et al., 2019);
but also see Rojas et al., 2005; Allender et al., 2013) or the
growth, reproduction and infection intensity of macroparasites
(Mouritsen, 2002; Thieltges and Rick, 2006; Studer et al.,
2010; Tinsley et al., 2011; but also see Kluger, 1992; Lafferty,
2009). Relevant tests investigating whether exposure to elevated
temperatures—as would be the case at warm spots—enhance the
susceptibility of individuals to pathogens and parasites are scarce
and contradictory (e.g., Rojas et al., 2005; Allender et al., 2013;
Cohen et al., 2017; Price et al., 2019), and do not yet allow general
conclusions. Studies on the effects of elevated temperature on
disease progression in individuals co-infected with Bd and
additional pathogens (especially thermophilic Ranaviruses) and
parasites are lacking completely, and would be needed urgently.
Also, the risk of infection can be positively related to density
(Briggs et al., 2010), so that by using warm spots that are
attractive to amphibians, individuals may suffer an elevated risk
of contracting the disease at the resulting aggregations. However,
it appears that disease transmission rates will likely be lowered
in heated microhabitats (Blooi et al., 2015). Nonetheless, the net
outcome of elevated temperature and high density as resulting
from localized heating remains to be investigated.

BENEFITS AND LIMITATIONS

There are multiple benefits of using localized heating in situ
against chytridiomycosis. It will presumably be effective also
under natural conditions and is likely to pose no danger to
amphibians because temperatures can be set with a wide enough
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safety margin (Sunday et al., 2014b). Also, localized heating
will cause practically no collateral damage to the environment
because it operates by only slightly elevating environmental
temperatures in small spatial fractions of the habitat while leaving
the microbiome, flora and fauna of the surrounding environment
practically unaffected. Most importantly, however, as opposed to
the ex situ approach, in case of localized heating applied in situ,
individuals will come into contact with the pathogen and will
be cured, often repeatedly, so that they may become immunized
(Ramsey et al., 2010; McMahon et al., 2014; but also see Tobler
and Schmidt, 2010; Hudson et al., 2016). Populations treated
in situ may adapt to Bd-presence via altered life history traits
(Palomar et al., 2016), by the spread of certain MHC class II
alleles (Savage and Zamudio, 2011, 2016; Bataille et al., 2015), or
by producing more potent skin secretions (Voyles et al., 2018),
providing effective defenses against lethal chytridiomycosis.
Consequently, via these mechanisms and by preserving enough
genetic variation and maintaining infected populations for a
sufficiently long time period for microevolutionary changes to
occur, in situ mitigation using localized heating may often
allow for effective adaptation to Bd presence, making long-term
mitigation interventions obsolete. Based on preliminary studies
we estimate that the re-usable equipment (including 25 heated
refugia, 5 immersible heaters and a power generator) necessary
to provide enough warm spots for treating amphibians in and
around a small pond of 1 ha will cost ca. 4,000 e. Consumables
(mainly petrol for running the power generator) for one season
will amount to another 4,000 e, but this cost may be significantly
lowered if electricity is available. Finally, transportation and
personnel costs have to be added. The relatively low total costs of
buying and running the equipment and a good transportability
will allow for its application basically anywhere.

Nonetheless, there are also limitations to the application of
localized heating. Species whose CTmax is similar to that of Bd
may avoid locations of high temperatures and will not profit from
this mitigation approach (Nowakowski et al., 2016). Individuals
of other species exhibiting a high enough CTmax, but a preferred
body temperature that is lower than the upper bound of the
optimal temperature range of Bd, would also not spend enough
time voluntarily at areas with elevated temperatures. Funnel-
trap-like, one-way entrances of heating appliances, coupled
with attentive monitoring by personnel, may provide effective
solutions. In very cold habitats, where the temperature stays
below what is optimal for Bd (i.e., below ca. 12◦C; Piotrowski
et al., 2004; Stevenson et al., 2013), heating may be impractical
because of a high energy demand and because heaters may
be unable to create high enough temperatures homogeneously
within appliances, thereby increasing the reproductive rate and
pathogenicity of the fungus locally (Pounds et al., 2006; Bosch
et al., 2007). If environmental temperatures are high enough
(higher than ca. 12◦C), both heated terrestrial shelters and
submersible heaters can provide homogeneous warmth within
appliances. However, the heat dissipating from them is not
measurable 1 cm away from their walls, leading to essentially
no temperature gradient around appliances. This has, however,
the consequence that in cold habitats the heated areas may
differ too much from the surroundings, so that they may be

avoided by cold-habituated amphibians. Importantly, elevated
temperatures may enhance replication rates and the spread of
Ranaviruses, a group of globally emerging pathogens causing
epidemics andmass-mortalities in fishes, amphibians and reptiles
(Brunner et al., 2015; Duffus et al., 2015). Although results of
the few existing studies are contradictory (Rojas et al., 2005;
Allender et al., 2013; Echaubard et al., 2014; Price et al., 2019),
a pre-screening for the presence of Ranaviruses is necessary
before the application of localized heating, and in populations
co-existing with a Ranavirus the application of localized heating
can currently not be recommended. Finally, financing the
necessary appliances, their transport to the target locations and
the personnel running the equipment will be possible in many
replicates, but an en masse employment of the proposed method
will still remain limited by costs and logistics.

Eradicating Bd from entire geographic regions using localized
heating, or, indeed, any mitigation method will often not be
possible (Garner et al., 2016). It may, however, be suitable for
the preservation of the most valuable populations. Also, it is
an encouraging conclusion of previous studies that we do not
have to eliminate Bd to prevent mass mortalities and extinctions
due to chytridiomycosis (Briggs et al., 2010; Tobler et al.,
2012; Schmeller et al., 2014; Hudson et al., 2016). For example,
Vredenburg et al. (2010) observed in three North-American
frog metapopulations that mass mortality only commenced once
infection intensities passed a threshold. Experimental laboratory-
based studies confirm that many amphibians do not show
clinical signs and mortalities as long as infection intensities
remain low (e.g., Carey et al., 2006; Cheng et al., 2011). Also,
amphibian populations where the local climate allows individuals
to elevate their body temperatures at least temporarily above
the CTmax of Bd, and can thereby lower infection intensities,
have been shown to maintain their population sizes even at high
Bd prevalence (Riley et al., 2013; Rowley and Alford, 2013).
Consequently, suppressing infection intensities and thereby
ensuring the survival of amphibian populations in the presence of
Bd may represent an effective, and usually the only viable in situ
mitigation strategy (Garner et al., 2016).

Besides fighting Bd, localized heating may also be applied
against other emerging infectious diseases caused by agents
whose CTmax is lower than that of their hosts. For example,
Batrachochytrium salamandrivorans (Bsal), a sister species of Bd
that causes disease in urodelan amphibians (Martel et al., 2014)
and has recently led to severe population declines in European
newts and salamanders (Spitzen-van der Sluijs et al., 2013, 2016;
Stegen et al., 2017), grows best at temperatures between 10 and
15◦C and its CTmax is around 25–26◦C (Martel et al., 2013; Blooi
et al., 2015; Laking et al., 2017; Beukema et al., 2018). Although
these decisive temperatures are lower in Bsal than in Bd, the
preferred temperatures and CTmax of urodeles are in general
also lower than those of most anurans, so that localized heating
may not work for clearing Bsal from many cold-preferring
urodeles just by the effect of elevated temperatures. Nonetheless,
it may very well be effective as a supportive mitigation action in
many salamander and newt species, because even mildly elevated
temperatures (i.e., 20◦C) may decisively limit the growth of Bsal
(Martel et al., 2013; Blooi et al., 2015). Also, exogenous heat
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introduced into water bodies used by urodelans for reproduction
accumulates via convection at the water-air interface, where Bsal
cysts float out of reach for most aquatic predators (Stegen et al.,
2017). If Bsal cysts exhibit similarly low CTmax as non-encysted
cells, the application of localized heating may, as a beneficial side-
effect, also critically reduce densities of these otherwise resistant
and infective life-stages of Bsal.

SUMMARY

Widely deployable and effective measures of Bd-mitigation
are urgently needed for averting the ongoing biodiversity
crisis caused by chytridiomycosis. After an epizootic caused
by Bd lead to sharp declines in previously stable amphibian
metapopulations, a slow recovery may occur in some species
(Newell et al., 2013; Knapp et al., 2016; Scheele et al., 2017;
Voyles et al., 2018), but many others will be extinct. Also,
new Bd strains, other infections or invasive alien predators
may arrive, anthropogenic pollution, or simply chance events
may cause the weakened amphibian populations to disappear
(Murray et al., 2009; Puschendorf et al., 2011). We suggest a
method that could be used far more easily and more widely
while causing less collateral damage than any method which has
been suggested so far for in situ Bd-mitigation. It is unlikely
that one single method will solve the conservation problem
posed by Bd (Garner et al., 2016), and research into other
methods that have proven to be successful in captive populations
and that are being tested and optimized for application in the
field are urgently needed. Nonetheless, localized heating will
likely prove to be a highly valuable approach, especially in
the case of disease outbreaks and when the most threatened
species or populations are to be saved. If mortality rates due to
chytridiomycosis are suppressed by the application of localized
heating, genetic variability may be retained in populations that
selection can act upon: alleles promoting resistance or tolerance

to Bd may not disappear during severe genetic bottlenecks and
may spread so that prolonged mitigation may become obsolete.
We do not propose that by researching and applying localized
heating it will become possible to eradicate Bd from entire
regions or save all extant amphibian species from extinction due
to chytridiomycosis, but suggest that this method has a good
potential for significantly contributing to the preservation of
hundreds of populations and dozens of species that are likely
to go extinct unless we find and employ an effective mitigation
strategy against this deadly disease.
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