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As the world’s population grows, global food production will need to increase. While food

production efficiency has increased in recent decades through pathogen control, climate

change poses new challenges in crop protection against pathogens. Understanding the

natural geographical distribution and dispersal likelihood of fungal plant pathogens is

essential for forecasting disease plant spread. Here we used cultivation-independent

techniques to identify fungal plant pathogens in 1,289 near-surface dust samples

collected across the United States. We found that overall fungal pathogen community

composition is more related to environmental conditions (in particular soil pH,

precipitation and frost) than to agricultural hosts and practices. We also delimited five

susceptibility geographical areas in the United States where different sets of pathogens

tend to occur.
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INTRODUCTION

As our global population continues to grow, the demand for food will also increase with the
concomitant needs to optimize crop yield and minimize crop loss to plant diseases (Gilland,
2002; Parry et al., 2004; Savary et al., 2019). It is estimated that yield losses to plant diseases
represent∼12% of total crop production worldwide (Reeleder, 2003). Developed areas that practice
intensive agriculture based on irrigation, fertilization and monoculture invest increasing amounts
of economic resources into crop protection. For example, in the United States alone, where
pesticides are applied at a cost of $11.2 billion per year, crop losses to plant disease equal $9.1 billion
a year (Agrios, 2005). The prevalence and severity of outbreaks caused by virulent fungal plant
pathogens have increased during the past two decades and are recognized as emergent threats to
food security worldwide (Fisher et al., 2012; Santini et al., 2013). Additionally, modern agricultural
expansion based on a limited genetic diversity of crops increases the risks of global disease spread
(Brown and Hovmøller, 2002). Thus, it is of utmost importance to understand the geographical
distribution of fungal plant pathogens.

The geographical distributions of fungal plant pathogens are impacted by crop management,
climatic, biotic and other environmental factors, as well as their host distribution and susceptibility
levels (Borer et al., 2016). For example, local plant community structure and diversity may
support different levels of plant pathogen diversity by favoring specialist or generalist pathogens,
or decreasing the density of susceptible hosts (Bever et al., 2015). Overall, individual fungal
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species show strong spatial patterns reflecting an array of
environmental adaptations and dispersal limitations (Reich et al.,
1997; Peay et al., 2012; Barberán et al., 2015). Fungal spores are
disseminated in dust by air currents from meters to hundreds of
kilometers depending on air turbulence, velocity, UV radiation,
and desiccation tolerance until they are deposited or washed
out by rain (Aylor, 2003). While fungal dispersion over short
distances is common (Peay et al., 2010), fungal spores can be
transported thousands of kilometers by humans, plants, and
animals (via seeds and feathers), or by high wind events, such
as hurricanes (Golan and Pringle, 2017). There are numerous
historical examples of long-distance spread of plant pathogenic
fungi (Aylor, 1986). For example, Cryphonectria parasitica, the
causative agent of chestnut blight, was accidentally introduced
from Japan to North America in the early twentieth century, and
by the 1920s had devastated chestnut trees across the eastern
United States (Milgroom and Lipari, 1995). Although fungal
spores are generally short-lived and susceptible to UV radiation
and desiccation (Aylor, 2003), there are some reported cases of
long-distance dispersal via “wind highways” (Smith et al., 2013).
For example, the pathogen causing coffee leaf rust (Hemileia
vastatrix) was probably wind-dispersed from Africa to Brazil in
the 1970s (Bowden et al., 1971). Another example is the dispersal
via African dust plumes of the causal agent of the aspergillosis
(Aspergillus sydowii) in Caribbean coral reefs (Shinn et al., 2000).
The ability to track the long-distance dispersal and continental-
scale geographical distribution of fungal pathogens is essential
for forecasting disease plant spread and for establishing effective
quarantine measures (Brown and Hovmøller, 2002; Schmale
and Ross, 2015). However, because the geographic range of
fungal pathogens is typically documented as a function of disease
incidence, there is little information on the natural distribution
and likelihood of dispersal across spatial scales for most plant
pathogens. Such information would ultimately assist farmers
and practitioners with decisions about fungicide use, sanitation,
and quarantine.

Using nearly 1,300 near-surface dust samples collected across
the United States, we explored the geographical distribution
of putative fungal plant pathogens detected by cultivation-
independent methods and analyzed using a combination of
machine learning tools. Our goals were to understand: (1)
the impact of environmental and agricultural factors on the
composition of fungal plant pathogen communities, and (2)
the potential of delimiting geographical regions based on the
presence or absence of fungal plant pathogens in dust. This
information can be used to inform regional to continental-scale
epidemiology and to predict the future effects of climate change
on potential plant pathogen distributions.

MATERIALS AND METHODS

Dust Samples, Molecular Analyses, and
Sequence Processing
The data used in this study were collected through a
citizen science project called Wild Life of Our Homes
(yourwildlife.org) from March 2012 to May 2013. Volunteers
across the United States sampled the upper door trim of

the outside surface of an exterior home door using sterile
swabs. Door trims served as a passive collector of near-
surface dust since outside door frames are rarely cleaned.
1,289 dust samples were PCR amplified targeting the first
nuclear ribosomal internal transcribed spacer region (ITS1)
using the ITS1-F (GTGCCAGCMGCCGCGGTAA) and ITS2
(GCTGCGTTCTTCATCGATGC) fungal-specific primer pair
(Schoch et al., 2012). Amplicons were sequenced on an Illumina
MiSeq platform. Sequences were clustered at 97% similarity
using UPARSE (Edgar, 2013) to generate a community table of
phylotypes by sample. Taxonomic classification was determined
using the Ribosomal Database Project (RDP) naïve Bayesian
classifier (Wang et al., 2007) against the UNITE database
(Abarenkov et al., 2010). We used FUNGuild to identify putative
fungal plant pathogens (Nguyen et al., 2016) and confirmed the
taxonomic assignment using BLAST against the NCBI nucleotide
database (Altschul et al., 1997). Although we used state-of-the-
art methods for sequence processing, taxonomic, and functional
assignment, we acknowledge the limitations of ITS amplicon
short reads for classifying fungi (Nilsson et al., 2019). For
example, not all members of a given species are necessarily
pathogenic as closely related taxa can have both pathogenic and
non-pathogenic lifestyles (Rodriguez et al., 2009). Thus, we refer
to these taxa as “putative fungal plant pathogens” as we recognize
that identifying pathogens based on ITS gene sequence similarity
alone is not sufficient to definitely determine whether a given
fungus is, indeed, a fungal plant pathogen. Full details describing
the molecular methods and sequence processing can be found in
Barberán et al. (2015). The data used for this study are associated
with NCBI BioProject PRJNA280363 and are publicly accessible
at http://dx.doi.org/10.6084/m9.figshare.1270900.

Sample Characterization
Latitude and longitude coordinates were generated from home
addresses. These coordinates were then used to acquire
georeferenced variables for each household (mean annual
temperature, mean annual precipitation, days of frost per
year, elevation, soil pH, dust production, plant diversity, net
primary productivity, and human population) from the British
Atmospheric Data Center (http://badc.nerc.ac.uk), the NASA
Earth Observations (http://neo.sci.gsfc.nasa.gov), the NASA
Socioeconomic Data and Applications Center (http://sedac.
ciesin.columbia.edu) and the World Soil Information (http://
www.isric.org) as described in Barberán et al. (2015). We used
the United States Department of Agriculture (USDA) statistics
service (www.nass.usda.gov) to obtain county level information
on crop production (apples, barley, berries, bulbs, cherries,
citrus, corn, cotton, cucumbers, floriculture, grapes, beans, hay,
legumes, lettuce, melons, oats, olives, peanuts, peaches, pears,
peppers, potatoes, pumpkins, rice, rye, sorghum, soybean, sugar
beets, tobacco, tomatoes, tree nuts, vegetables, and wheat) as
well as economic- and production-related variables (total animal
stock, chemicals used, fertilizers used, machinery used, tractors
used, total crop economic yield, grain storage capacity). These
estimates are developed from data collected through sample
surveys conducted each year and the census of agriculture
conducted every 5 years.
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Data Analysis
We used variation partitioning (Peres-Neto et al., 2006) to
understand the overall association between fungal plant pathogen
community composition (using the Bray-Curtis distance metric)
and explanatory variables (environmental, agricultural or the
shared effect of both).

After gaining a better understanding of overall fungal plant
pathogen community patterns, we investigated the explanatory
power of individual variables using an extension of random
forest analysis called gradient forest analysis (Ellis et al., 2012).
Random forest is an ensemble of regression trees that randomly
selects a subset of the data and partitions this subset based
on the most strongly associated predictor. At each node, a
random subset of the total number of predictors is considered
for partitioning. At the end, the final tree prediction is given
by the average value of the data within each branch of the
tree (Breiman, 2001). Gradient forest analysis is an extension
of random forest for multiple response variables (in our study,
abundance of fungal plant pathogens). A function is built
for each response variable, in this case each species of plant
pathogen, and then an aggregate function is created for all
species correcting for biases with correlated explanatory variables
(i.e., conditional importance) (Strobl et al., 2008). This analysis
provides information on the overall importance of each predictor
across all the response variables and compositional turnover
functions for each predictor.

Next, we investigated how the presence or absence of fungal
plant pathogens in dust could be used to delimit distinct
geographical areas across the United States. We applied Latent
Dirichlet Allocation (LDA) to the putative fungal plant pathogen
presence/absence data (Valle et al., 2018). LDA is a probabilistic
model that reduces complex assemblages into sets of distinct
component partitions based on groups of species that tend to
co-occur. In the LDA model, each dust sample has an associated
vector of probabilities which describes the membership to each
partition. Similarly, each partition is characterized by a vector
of probabilities which describes the association of each species
with that particular partition. When fitting LDA, we set the
maximum number of partitions to 20 and identified five main
partitions after eliminating partitions that were very uncommon.
This analysis allows us to demarcate susceptibility areas where
different sets of fungal plant pathogens tend to occur.

All statistical analyses were carried out in the R environment
(www.r-project.org/) using the vegan (https://cran.r-project.
org/web/packages/vegan), gradientForest (http://gradientforest.
r-forge.r-project.org/), and Rlda (https://cran.r-project.org/web/
packages/Rlda/) packages. Interactive maps depicting the spatial
distribution of the most abundant putative fungal plant
pathogens in dust were generated using Tableau (www.tableau.
com) and can be publicly accessed at http://dx.doi.org/10.6084/
m9.figshare.1270900.

RESULTS

From more than 50,000 total fungal phylotypes (1,400 fungal
phylotypes per sample on average), we identified a total of 386
different species of putative fungal plant pathogens across all

1,289 dust samples. The average number of different putative
fungal plant pathogens (i.e., richness) per outdoor dust sample
was 45, and the average relative abundance of total fungal
pathogens per sample was 21.5% (Figures 1A,B, respectively).
The most abundant species of fungal plant pathogens in dust
were identified as Cladosporium sphaerospermum, Alternaria
alternata, Aureobasidium pullulans, and Epicoccum nigrum
(Figure 1C).

Explaining Geographical Fungal Plant
Pathogen Patterns in Dust
Variation partitioning provided the overall explanatory power
between the three broad categories of environmental (mainly
climate and soil), agricultural (mainly potential hosts and
practices), and the shared effect of environmental and
agricultural explanatory variables. Environmental variables
alone explained 12% of the variation in community composition
of putative fungal plant pathogens in dust, followed by the shared
explanatory power of environmental and agricultural variables
(7%), and finally agricultural variables alone (3%) (Figure 2A).

We explored the specific explanatory power for each
variable using gradient forest analysis. Overall, environmental
variables accounted formore explanatory power than agricultural
variables (Figure 2B). The most important environmental
variables were soil pH, mean annual precipitation, and
number of days of frost per year (Supplementary Figure 1).
Although less important than these environmental variables,
the most important agricultural variables were corn production,
machinery used, and volume of grain storage (Figure 2B).

Delimiting Susceptibility Areas Based on
the Presence of Fungal Plant Pathogens
in Dust
After Latent Dirichlet Allocation (LDA) analysis, five
geographical partitions were identified based on the presence
or absence of putative fungal plant pathogens in outdoor
dust across the USA (Figure 3 and see http://dx.doi.org/10.
6084/m9.figshare.1270900 for individual distribution maps
of the most abundant pathogens). The Eastern partition
was characterized by the presence of Alternaria alternata,
Cladosporium sphaerospermum, Mycosphaerella punctiformis
(=Ramularia endophylla), Aureobasidium pullulans and
Monographella cucumerina (=Plectosphaerella cucumerina),
among others. The Northern partition area was dominated
by Geastrumia polystigmatis, Teratosphaeria capensis
(=Neodevriesia capensis), Coniothyrium sidae, Harknessia
capensis, and Microdiplodia miyakei. The species that best
described the Western geographical area were Coniothyrium
multiporum (=Neoconiothyrium multiporum), Collybia cirrhata
(=Collybia cookei), Taphrina wiesneri, Valsa malicola, and
Phoma exigua (=Boeremia exigua). The Northwestern Coastal
area was characterized by Mycosphaerella ulmi, Laurobasidium
hachijoense, Valsa ceratosperma (=Cytospora ceratosperma),
Cylindrocladiella hahajimaensis, and Mycosphaerella latebrosa.
The Southern central partition was defined by the presence of
Taphrina dearnessii, Chalara holubovae, Setosphaeria turcica
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FIGURE 1 | Number of different putative fungal plant pathogens (richness) in individual dust samples (mean = 45) (A). Abundance of putative fungal plant pathogens

in dust samples (mean = 0.215) (B). Means represented as vertical lines for (A,B). Relative abundance of the most abundant species of fungal plant pathogens in

dust samples (C). Note that the y-axis in (C) is square root scale.

FIGURE 2 | Variance partitioning results showing the explanatory power of environmental (black) and agricultural (white) variables in relation to fungal plant pathogen

community composition in dust samples (A). Gradient forest analysis results showing the overall importance of individual variables on fungal plant pathogen

community composition (B).

(=Exserohilum turcicum), Mycosphaerella populicola, and
Athelia bombacina.

DISCUSSION

By analyzing the fungal DNA recovered from dust samples, we
were able to document the large-scale geographical patterns of
fungal plant pathogens. On average, 21.5% of the total fungi
community in dust was taxonomically assigned to a fungal plant
pathogen. This is in agreement with a previous study that found
that fungal plant pathogens account for 5–27% of the total
culturable population in African dust (Kellogg et al., 2004). The
most abundant and widespread fungal plant pathogens in settled
dust across the US were ubiquitous, opportunistic, airborne, and
stress-adaptable species such as Cladosporium sphaerospermum,

Alternaria alternate, and Aureobasidium pullulans (Gonzalez-
Martin et al., 2014). However, we acknowledge that passively
collected dust alone might not recover the complete diversity of
fungal plant pathogen inocula as different sampler types differ
in their collection potential (Chen et al., 2018). Cladosporium
sphaerospermum is a cosmopolitan saprotroph and secondary
colonizer of dead or dying plant tissue that frequently dwells
in nutrient poor environments like dust (Zalar et al., 2007).
This airborne fungus produces melanin that serves as a

protective mechanism against UV radiation (Ng et al., 2012),
and thus, might enable its long-distance dispersal and survival

in dust. Alternaria alternata is an opportunistic pathogen on
numerous plant hosts that causes leaf spots, rots, and blights
(Akimitsu et al., 2003). Both Alternaria and Cladosporium
spores can induce allergies, the incidence and prevalence of
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which is on the rise (Rook, 2013). Aureobasidium pullulans
is a black, ubiquitous, and extremely stress-tolerant fungus
found in different environments such as the surface of plant
leaves (i.e., phyllosphere), polluted waters, hypersaline habitats,
and indoor dust (Gostinčar, 2011). These specific examples
show the pervasiveness of fungal plant pathogens in dust, and
are in concordance with previous reports showing that plant
pathogenic fungi in dust samples are frequently dominated by
the ubiquitous genera Aspergillus, Cladosporium, Alternaria, and
Penicillium (Gonzalez-Martin et al., 2014).

Although there exists a long history of research on
atmospheric fungal transport in dust (Wolf, 1943; Gorbushina
et al., 2007), changes in intense agricultural practices, climate
and land-use change, and global atmospheric systems have
recently affected the amount of dust present in the atmosphere
and transportation patterns (Gonzalez-Martin et al., 2014).

Thus, understanding large-scale distributional patterns of fungal
pathogens in dust is important not just for potential aid
in mitigating crop infection and yield loss, but also for
predicting disease in natural plant communities. Soilborne
and dust-dispersed pathogens play a critical role in shaping
plant community diversity and composition because they are
able to mediate plant species’ coexistence through trade-offs
between competitive ability and pathogen defense (Mordecai,
2011; Bever et al., 2015). Here we showed that overall fungal
pathogen community composition in dust is more strongly
linked to environmental conditions (in particular soil pH,
precipitation, and frost) than to potential agricultural hosts
and agricultural practices. This means that to understand
environmental transmission of pathogens in dust, we should
focus on the ecological processes not only within the plant
but also outside the plant (Shaw and Osborne, 2011). This

FIGURE 3 | Map showing the results of the Latent Dirichlet Allocation (LDA) model. Size represents the probability of each dust sample being associated with a

particular partition. Color represents the geographical partition: Northern (orange), Eastern (blue), Southern (purple), Western (red), and West Coast (green).

FIGURE 4 | Map of the probability to be associated with the Northern partition (A). Relative abundance of Epicoccum nigrum in dust samples (B). County-level corn

production data from the United States Department of Agriculture (USDA) (C). Map of the probability to be associated with the Southern partition (D). Relative

abundance of Ascochyta hordei in dust samples (E). County-level barley production data from the United States Department of Agriculture (USDA) (F).
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is corroborated by population dynamics models that stress
the importance of the pathogen’s growth in the non-host
environment on disease amplification (Thrall et al., 1997).
Besides these environmental effects, mathematical models show
how the mismatch between the dispersal of both plants and
pathogens might be modulating the strength of plant-soil
feedbacks (Revilla et al., 2013). These ideas and conceptual
framework call for a holistic understanding of the natural history
of fungal plant pathogen communities in order to better prevent
agricultural losses due to pathogens.

To date most plant disease models have focused on specific
populations rather than plant pathogen community-level data
(Schmale and Ross, 2015; Borer et al., 2016). Usually, these
predictive models map positive occurrences of disease and
then relate this information to measurements of environmental
factors and host occurrence (Aylor, 2003). For example, the
detailed process-based quantitative potato late blight pathogen
(Phytophthora infestans) disease forecast model estimates severity
as a function of weather (Hijmans et al., 2000). Another example
is the aerial transport model of soybean rust (Phakopsora
pachyrhizi) from South America to the United States (Isard
et al., 2005). Our results do not discount the importance
of host occurrence and agricultural practices in predicting
specific disease outbreaks or susceptibility, particularly for crops
under traditional farming practices, like monoculture and/or
high plant density of the same physiological and phenological
features, which allow for rapid pathogen coevolution (Savary
et al., 2019). As predicted by some of the analytical models,
these practices may lead to larger outbreaks, faster crop
resistance, and yield instability (Shipton, 1977). While crop
diversity and pathogen adaptation play important roles in
yield amounts, both production methods and environmental
variability certainly contribute to annual variations in crop losses
(Scholthof, 2007). Baseline information on the community-level
distribution of pathogens in dust might be able to forecast how
changes in climate and agricultural practices might result in
future outbreaks.

By linking the geographical distribution of multiple plant
pathogens across the United States, we were able to delimit
five different areas of susceptibility influenced by different sets
of fungal pathogens. For example, although Epicoccum nigrum
has a global spread, its geographical distribution in dust was
closely linked to the Northern partition (Figures 4A,B). This
saprophytic fungus is commonly found in dust and grows in
cereals and corn (see Figure 4C for the distribution of corn
production across the US). Stemphylium solani the causal agent
for gray leaf spot in tomatoes has been reported all over
the world (Cedeño and Carrero, 1997). However, our results

based on molecular signatures in dust suggest that its area of
influence in the US is mainly restricted to California. A similar
Northwest Coast and California delimited distribution was
observed in the widespread saprophytic species Cladosporium
tenuissimum (maps can be publicly accessed at http://dx.doi.
org/10.6084/m9.figshare.1270900), although this fungus has been
isolated specially in tropical areas (Batta, 2004). However, we
acknowledge that this study represents a simple snapshot of the
fungal plant pathogen inocula in settled dust and these patterns
might not reflect seasonal dynamics (Chen et al., 2018). We
found some other cases of pathogen geographical distributions
completelymismatched that of their potential hosts. For example,
Ascochyta hordei map aligns closely to the Southern partition
(Figures 4D,E), however its main crop host, barley (Sprague
and Johnson, 1950), is primarily in northern border states
(Figure 4F). Similarly, other studies have found that potato
blight (Phytophthora infestans) occurs wherever potato is grown,
but is problematic in a substantially smaller geographic area
(Hijmans et al., 2000). This illustrates how some fungi have
the potential to reside on a wide range of non-crop plant
species as pathogens or saprotrophs (Rai and Agarkar, 2016),
and how the natural distribution of fungal plant pathogens
is not solely dependent on environment or crops, but there
is a combination of factors delimiting their biogeography and
potential dispersal.
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