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Long-term climate change has been an ever-present feature of the Earth, but in

ecology, it has, until recently, been largely ignored outside of paleoecological and

dendroecological studies. It is now difficult to ignore due to strong anthropogenic

drivers of change. However, standard ecological models and theory have always

assumed no long-term trends in the environment, limiting the ability to conceptualize a

natural world inescapably influenced by long-term change. Recent theory of asymptotic

environmentally determined trajectories (aedts) provides a way forward, but has not

previously considered the critical interactions between space and time that are of much

importance in understanding ecosystem responses to climate change. Here, this theory

is extended to spatial models including long-term environmental change, and is illustrated

with simple model examples. Regarding a population as fluid on a landscape allows

consideration of how the environment that the population actually experiences changes

with time. Here, it is shown that although the environment at any one locality may show

strong temporal trends, the environment experienced by a population as it moves around

a landscape need not have any strong trends. However, the experienced environment will

generally differ by being less favorable on average than without long-term global change.

These results suggest theoretical and empirical research programs on the characteristics

of landscapes, dispersal, and temporal change affecting the properties of experienced

environments. They imply moving away from local population and community thinking

to conceptualization and study of populations and communities on multiple spatial and

temporal scales. Many standard ecological methods and concepts may still apply to

populations tracked as they move on a landscape, while at the same time, understanding

is enriched by accounting for how dispersal processes and landscape complexity,

interacting with temporal change, affect those moving populations.

Keywords: non-stationary environment, aedt, landscape, scale transition theory, experienced environment,

climate change

INTRODUCTION

Ecological theory was originally developed using models in which the physical environment was
supposed to be reflected in the parameters of the model, which were assumed fixed (Scudo,
1984). Thus, the environment was assumed fixed too. Such models still dominate theory. Although
obviously missing a major feature of nature, namely the ever-changing nature of the environment,
these models nevertheless served a purpose in the development of some important concepts and
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hypotheses, such as the role of density-dependent processes in
population regulation (Murdoch, 1994), how species interactions
affect species coexistence (MacArthur, 1970; Tilman, 1982), and
how predator-prey interactions can be stabilized (May, 1974;
Murdoch et al., 2003).

The greater realism of models with time-varying parameters,
which represent fluctuations in the environment, was seen
as potentially informative in several different ways. First,
and for some researchers, the most urgent, was the belief
that environmental fluctuations invalidate the predictions
of constant-environment models focusing on equilibrium
predictions (Andrewartha and Birch, 1954; Hutchinson, 1961).
Second, was the belief that population fluctuations driven
by environmental fluctuations are a key component of any
serious description of population dynamics (Andrewartha and
Birch, 1954, 1984; Strong, 1986). Third, was the expectation
that environmental fluctuations would lead to new phenomena
not realized under constant conditions, for example, new
mechanisms of species coexistence (Hutchinson, 1961; Chesson,
1994). Fourth, was the desire to understand how ideas and
concepts developed under constant environmental conditions
extend or become modified when fluctuations in the physical
environment are accounted for Levins (1979), Abrams (1984);
and Chesson (1991, 2000b). These perspectives need not be
independent. For instance, new phenomena might be discovered
under fluctuating conditions that can be treated as extensions
of ideas developed under constant conditions. Now, ecology is
seeking to come to grips not just with fluctuating change, but
long-term directional change. These various perspectives are to
be cast once again on an expanded concept of environmental
change including not just short-term fluctuations, but also long-
term fluctuations and trends (Harsch et al., 2014; Chesson, 2017,
2018; Bowler et al., 2018).

Equilibrium, so prevalent in scientific analysis, has also
pervaded ecology and was key to early developments of theory
based on models in a constant environment (Scudo, 1984;
Cuddington, 2001). When fluctuating environments were added
to ecological analysis, the assumption typically made was
that environmental fluctuations are stationary, i.e., long-term
frequencies of events are stable (Ripa and Ives, 2003; Chesson,
2017). If this assumption were reasonable, predictions about
how often some event would occur in the long run, such as
the frequency of rainfall of a certain magnitude, could be made
reliably and would not change with time. They would be fixed
characteristics of the environment of a locality. The stationary
environment assumption often also predicts that population
fluctuations are stationary. Stationary fluctuations can be thought
of as statistical equilibrium. Statistical equilibrium, however,
does not describe environments in nature (Chesson, 2017). The
whole Earth is currently undergoing anthropogenically driven
climate change, but has it ever really been valid in ecology to
ignore long-term change (Davis, 1989; Jackson and Overpeck,
2000; Jackson, 2012)? Ecology became a science in the twentieth
century during a period of anthropogenically driven climate
change, although this fact was rarely ever considered (Davis,
1986). The long-term change that all our field studies have been
subject to, has in general been overlooked, with an equilibrium or

stationary perspective on everything. However, long-term change
is a consistent feature of environmental fluctuations on Earth
(McDowell et al., 1995; Jones et al., 1998), as paleoecologists and
dendroecologists have long recognized (Davis, 1994; Montoro
Girona et al., 2018). The Holocene for instance, shows change
on every time scale, and it is not particularly useful to model it
as stationary: long-term change needs to be considered (Jackson
and Blois, 2015; Marsicek et al., 2018; Navarro et al., 2018a).
Moreover, even short-term studies imply the importance of
changing environments on natural populations and communities
through the direct effects of weather on population change
(Huxman et al., 2013; Ignace et al., 2018; Navarro et al., 2018b),
and flow on effects to species interactions (Navarro et al., 2018b).

Given long-term change, the point equilibrium, the limit
cycle and stationary population fluctuations all fail as adequate
summaries of a population (Chesson, 2017). But there is
a replacement idea, the aedt (asymptotic environmentally
determined trajectory): instead of a fixed value that a
population approaches, or a stationary distribution of
fluctuations, a population process instead approaches a
limiting trajectory, designated N∗

t , characteristic of the non-
stationary environmental change and the biology of the system,
and independent of the initial values (Chesson, 2017, 2018).
It is reflective of limited history into the past. In this sense it
is distinct from the moving equilibrium of a population viz,
N∗
E(t), the equilibrium that would occur at any given time had

the environment remained constant at that particular value
indefinitely into the past. We can use the aedt to ask traditional
questions about population persistence, species coexistence,
and population regulation, but in the more realistic context
of long-term environmental change. However, so far studies
of the aedt have omitted one critical feature, a population’s
spatial structure.

Failure to consider spatial structure is a serious problem with
traditional population and community ecology (Andrewartha
and Birch, 1954; Ricklefs, 2008; Hart et al., 2017), which has a
strong focus on local populations and communities, i.e., systems
on very small areas of the Earth that are convenient to study
but are not necessarily natural population and community units,
because they are open to migration (Andrewartha and Birch,
1954). Moreover, the vast majority of theory and concepts in
ecology are based on closed populations for the very good reason
that attempts to explain a system generally focus on what can
be measured in that population (Chesson, 2000b). Dispersal into
and out of systems is often difficult to measure, and in any case,
if dispersal into a system turns out to have a major role, studies
done within the confines of the system are limited in their ability
to explain it, but that is clearly not an excuse for excluding
immigration and emigration (Ricklefs, 2008; Hart et al., 2017).

Consideration of climate change reveals even greater
difficulties with a focus on local populations and communities.
Under the non-stationary environments required to consider
long-term environmental change, a place no longer has
an environment. It has instead past, present, and future
environments. These are potentially all idiosyncratic, suggesting
that the study of a local population on a limited time span
tells us little. Although the aedt allows us to extend the idea
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of equilibrium, the existence of the aedt does not guarantee
persistence of a local population. It might instead define the path
to extinction (Chesson, 2017). To seriously study population
persistence, it is critical to recognize a local population as a
part of a connected network on a landscape, as was recognized
long ago (Andrewartha and Birch, 1954). As a population
disperses over a spatially varying landscape, natural questions
arise. A population will experience an environment that is
the joint outcome of the locations that it occupies, and the
time in question. So we can ask, how does the experienced
environment differ between stationary and non-stationary
temporal variation? How do differences between different types
of temporal environmental variation interact with population
turnover, dispersal, and spatial environmental structure to give
population outcomes on a landscape?

Contemporary discussions of climate change often ask, Will
this population be able to persist at this locality under a changed
environment? Can it adapt fast enough to new climates? Can
it migrate fast enough to keep up with climate change? In this
manuscript, a different perspective is taken. Here, aedt theory is
extended to fluid populations, i.e., populations dispersing on a
landscape, as the global environment undergoes non-stationary
change interacting with landscape structure to produce complex
patterns of environmental change across the landscape. Under
this perspective, a population can persist on the landscape
though no place within it maintains the properties to sustain the
population over time. The questions become, When does long-
term persistence result from interactions between the complexity
of the landscape, the changing environment, dispersal, and
adaptation? How do we characterize a fluid population, and the
environment that the population experiences? Through dispersal,
can a fluid population experience a stationary environment
although the global environment is not stationary? How does
the quality of the experienced environment vary with the nature
of global environmental change, and what are consequences for
total population abundance and spatial extent?

The first task of this paper is the definition of the aedt for
fluid populations. Then the basic kinds of spatial models to
which aedt can be applied are introduced. Simple landscapes
with linear environmental gradients subject to linear global
environmental change are then shown to lead generally to
stationary experienced environments for a fluid population,
although the quality of the experienced environment, global
population abundance, and spatial distribution all suffer from
rapid global change. How generally to measure the experienced
environment onmore complex landscapes is then considered and
illustrated with a spatial Beverton-Holt model where the question
of approximate stationarity of the experienced environment is
investigated. Consideration of change in the spatial distribution
of a population shows that a process analogous to natural
selection leads to population built up in favorable locations
pulling a population around the landscape as the relative
favorabilities of the spatial locations change. These various
considerations lead to a road map for investigating models of
fluid populations to understand distributional change, the match
between the spatial distribution of a population and its most

favored locations, and the lag in distributional change as the
global environment changes.

POPULATIONS FLUID ON A LANDSCAPE:
A CONCEPTUAL FRAMEWORK

Study of a fluid population begins by conceptualizing it as defined
on a landscape, with local population densities,Nx,t , varying with
spatial location x and time t. The notation Nt means the vector
of densities across all locations at time t. Graphically, it defines
the profile or distribution of the population in space (Figure 1).
A traditional equilibrium approach might seek an equilibrium
spatial distribution, but the whole point here is to incorporate
long-term change in the environment on the landscape. Under
such circumstances, how can we characterize the change expected
in the distribution on the landscape? We begin by extending the
aedt concept to a fluid population.

The Aedt for a Fluid Population
In models,Nt is often assumed to have an initial value at time t =
0, but in aedt theory (Chesson, 2017, 2018), we are interested in
how much the current state Nt is affected by past states and past
environments. So the initial time must be a variable, s, for which
is defined the initial state Ns. The perspective of aedt theory is
that initial times and states have no counterpart in nature because
ecological systems come into existence by complex idiosyncratic
routes, with no specific times and states defining a beginning.
This means that serious statements made about them should be
independent of initial times and states. An aedt, if it exists, allows
such statements.

An aedt can exist in a backward sense, and a forward sense. In
the backward sense, N∗

t is an aedt of Nt if

lims→−∞Nt = N∗
t , (1)

for every initial fixed state Ns in some suitable set, and all t.
The idea is that the present becomes independent of the past. As
the initial time retreats into the past, the state at any given time
loses any dependence on the initial state, and therefore is simply
dependent on the rules for the dynamics of Nt , which reflect the
biology of the organisms and the environment they inhabit. The
“suitable set” of initial states in the definition might be simply all
non-extinct states, or something more restrictive, such as states
bounded away from 0 or ∞ as emerges in Box 1, and in non-
autonomous dynamics theory (Kloeden and Rasmussen, 2011).
Figure 1A illustrates convergence on an aedt in the backward
sense. Successively lower curves showNt for the same fixed value
of t = 0, but with s becoming progressively earlier in time. The
first curve (s = 0) is Ns, and the red curve on which they all
converge as s recedes into the distant past is the aedt, N∗

t .
In the forward sense, N∗

t is an aedt of Nt if

limt→∞Nt − N∗
t = 0, (2)

for every initial fixed state Ns in some suitable set, and all fixed s.
This case can be thought of as meaning that the future becomes
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FIGURE 1 | Convergence on the aedt for a one-dimensional landscape. Each curve represents a population distribution, Nx,t, as a function of spatial location, x, for a

given value of t, and a given starting time (initial time), s. (A) Backward convergence. The curves from top to bottom represent Nx,t for successively earlier times s, for

a fixed value of t, converging on the red curve, which is the aedt, N*
x,t, as s decreases toward –∞ (the distant past). (B) Population distributions, Nx,t, for two different

initial distributions, Nx,s (defined by different line types) with fixed s, but changing t. Successive curves to the right represent successive values of t. For large times, the

population distributions merge, showing convergence, and hence an aedt.

independent of the present. Figure 1B shows convergence of
two Nt trajectories on each other as time, t, progresses. The
initial time, s, is now fixed. The different trajectories, reflecting
different starting conditions, are given by different line styles, and
successive curves in the positive x direction are successive times.
As time progresses, the dashed and solid curve-sequences merge.
They have become the aedt. The non-stationarity of the system
is seen from the fact that the curves do not approach a limit as t
increases. Instead, they simply converge on each other. Note that
Figure 1A for backward convergence is from the identical model

(to be explained in Box 1) and so also represents a non-stationary
system, but as only one value of t is represented, behavior of the
model as t changes cannot be inferred from Figure 1A. Figure 1B
gives that information.

The importance of the aedt,N∗
t , is that it defines the trajectory

over time that the fluid population will follow if it has been in
existence sufficiently long, just as an equilibriummight define the
limiting state of the system in a constant environment model.
When an aedt exists, it is a critical characteristic defining the
long-term pattern of change as determined by the biology of
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the system and its changing environment. Without an aedt,
there may be unlimited possibilities for the pattern of long-term
change, and any statement about it would have to be qualified
by the assumed initial conditions. It is important to appreciate
also that the aedt, N∗

t , is distinct from the moving equilibrium,
N∗
E(t), which depends only on the present environmental state,

E(t), on the landscape, and has the property Nt+1 = Nt , if Nt

=N∗
E(t) (Chesson, 2017). The moving equilibrium is just the

ordinary equilibrium that may exist for the particular state of the
environment at time t. Although the moving equilibrium, may,
under some circumstances, define were the population is heading
at any particular time, as will be discussed further below, only if
the environment does not change over time couldNt be expected
to converge on N∗

E(t).

Population Models
To understand whether an aedt exists, and what its properties
are, we need a population model. There can be many different
formulations of spatially-dependent population dynamics,
depending on the modeling framework and the type of
organisms being studied. Terrestrial plants being sedentary,
are likely to have spatial structure right down to the smallest
scales (Pacala and Silander, 1985; Bolker and Pacala, 1999;
Freckleton and Watkinson, 2000). Every point in a landscape
is considered as unique. It is somewhat easier conceptually to
divide a landscape into patches occupied by multiple individuals
within which no spatial structure is recognized. In such models,
interactions take place between organisms that occupy a patch
at the same time, and patches are connected by movements
between them. Such models provide the key example.

Following the framework of Chesson (2000a) and Chesson
et al. (2005), a population on a patch x has per capita output
λx,t at time t, which corresponds to average individual fitness
on the patch. The population density on the patch is Nx,t . So,
the total output from the patch is λx,tNx,t , but the population
density on the patch is then subject to dispersal, with px,y being
the fraction of the population at y that ends up at x. It follows that
the population at location x at time t+ 1 is

Nx,t+1 =
∑

y
px,yλy,tNy,t . (3)

In general, λx,t is a function of the local environment, Ex,t , at
location x at time t, and the local population density, Nx,t , at
that location,

λx,t = G(Nx,t ,Ex,t). (4)

The environmentally-dependent parameters can be
multidimensional. One example, the Beverton-Holt model
(Bohner and Warth, 2007; Chesson, 2017), which is a
discrete-time version of logistic growth, can be written in
the form,

G(Nx,t ,Ex,t) =
Rx,t

1+ αx,tNx,t
. (5)

Here, Ex,t is a vector of the two variables, Rx,t and αx,t , where Rx,t
is the maximum multiplication rate (traditionally the maximum

“finite rate of increase,” which is achieved as the local population
approaches 0 density) and αx,t is the intraspecific competition
coefficient. In the non-spatial case, this model is known to have
an aedt under verymild conditions that simply ensure population
viability (Chesson, 2017, 2018). Figure 2 illustrates this model in
the spatial case under long-term environmental change.

An alternative to the general discrete-space model (3) is a
continuous space form. Then, the sum over y in Equation (3)
is replaced by an integral over y, with px,y, replaced by a kernel
kx,y, which is the probably density function for movement from
location y to location x. In this case, Equation (3) is replaced by

Nx,t+1 =

∫

y
kx,yλy,tNy,tdy. (6)

There is no difference in concept between Equations (3) and
(6). In both cases, individuals at each location y, measured as
Ny ,t multiply to λy ,t Ny ,t some of which disperse according to
px,y or kx ,y to location x. Totaling over y leads to the new
population Nx,t+1 at location x. Depending on the description
of the environment, this integral over the variable y can be just
one dimensional, two dimensional (as would be the case for most
terrestrial organisms) or three dimensional (potentially suitable
for some marine and atmospheric species). Figure 3, plots a
potential dispersal kernel kx,y for a one-dimensional habitat.

STATIONARITY OF THE EXPERIENCED
ENVIRONMENT UNDER GLOBAL CLIMATE
CHANGE

Spatial environmental gradients, such as elevational and
latitudinal gradients, commonly figure in discussions of climate
change because as the climate warms, suitable habitat for an
organism is expected to be found at higher elevations or latitudes
(Walther et al., 2002). In this section, we show that if the
spatial environmental gradient is linear and climate change
is linear in time, there can be a general expectation that a
population will move up the gradient simply through passive
demographic processes, and thereby maintain a stationary
experienced environment although the average experienced
environment is likely to be suboptimal.

Linear Environmental Gradients
Elevational and latitudinal environmental gradients might be
modeled in an additive form where

Ex,t = f (θt − δx), (7)

for some function f, not necessarily linear, global temperature θt
is the global temperature at time t, and δx is the adjustment to the
global temperature to give the actual temperature T = θt – δx at
location x and time t. A simple linear model, which of course is
at best an approximation, although commonly used (Berestycki
et al., 2009), has θt – δx = θ t – δx, where θ and δ are now
positive constants. The importance of this case is not realism,
but simplicity, which allows a complete solution, and suggests
hypotheses for more complex cases that will be considered below
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FIGURE 2 | Dynamics of a fluid population on a complex landscape. The figure shows the results of a particular simulation of the Beverton-Holt spatial model

(Equations 3–5). Each of the vertical lines in a panel shows the population density of a specific discrete local population. The horizontal plane shows the location in

terms of spatial environmental coordinates, δR,x and δS,x (see The experienced environment of the Beverton-Holt). In contrast to Figure 1, where locations are

continuous, here locations are discrete, and 100 of them are chosen at random at the beginning of the simulation. Each panel shows no more than 10 locations

because only a fraction of the locations have favorable environments for the population in any period of time. Results are averaged over 50 year periods and show the

population moving around the landscape as the climate changes. Simulation parameters, δR,x , θR,t, θS,t, and δS,x , are all independent normal with standard deviations

respectively 16, 1, 1, and 1, and means 0 except for θR,t which has sine wave variation in the mean with amplitude 2, and period 200 to create non-stationarity;

Rmax = Smax = 3; dispersal fraction δ = 0.1.

(“The experienced environment in complex settings”). In this
linear case, for a given time t, location x, and temperature T =

θ t – δx, we can determine the location that had that temperature
at time 0. That location is

x′ = −(θ/δ)t + x. (8)

This means that organisms that migrate θ /δ spatial units per unit
time in the positive x direction would see no change in climate.
On the other hand, migrating in the other direction by θ /δ spatial
units, per unit time, when the environment is not changing
temporally, means the organism would see the temperature
increasing by θ units per unit time. These observations show that
the presence of climate change in a model can be equivalent to

a model with no climate change, but dispersal biased across an
environmental gradient. In terms of Figure 3, the blue curve,
which gives unbiased dispersal, is replaced by the green curve
which is biased to the left. There the kernel, kx,y, takes the form
k(x – y), where k is a function of x – y, and thus has the same
shape for every location y. The green curve is the kernel k(x – y
+ θ /δ), which represents a bias in dispersal up the temperature
gradient in one unit of time by an amount equivalent to one unit
of temporal change in the temperature. This equivalence of biased
dispersal and climate change sets the stage for stationarity of the
experienced environment.

To see how this equivalence of climate change and
environmentally-biased dispersal works out in a model, we
introduce the environmental variable ε = –T/δ, which is just
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FIGURE 3 | Dispersal shift under linear environmental gradients. The blue

curve is a dispersal kernel kx ,y for a model showing no directional bias, and no

shape change as the location y is changed. Hence, kx ,y can be simply

expressed as k(x – y), i.e., simply as a function of the spatial displacement of x

from y. Under linear climate change according to the local temperature model

θt – δx = θ t – δx, global temperature change is equivalent to biased dispersal

to the left (increasing temperatures on that landscape) equal to θ/δ,

transforming the blue kernel into the green kernel.

temperature converted to equivalent spatial units, and therefore
ε = x – (θ /δ)t. At t = 0, ε is simply the spatial location x.
So this means that the environment is measured here in terms
of environment at specific locations at time 0. Reciprocally, at
time t, the location with environment ε is x = ε + (θ /δ)t. If
we now define Mε,t to be the population density experiencing
environment ε at time t, it follows that

Mε,t = Nε+(θ/δ)t,t . (9)

Importantly, the environmentally indexed population density,
Mε,t, changes over time in a time-independent way as if there
were no climate change, but simply biased dispersal. To see how
this works out in the model defined by Equation (6), with the
kernel k(x – y), local fitness, λx,t , in the form G(Nx,t , Ex,t) with
here Ex,t = f (θ t – δx), then

Nx,t+1 =

∫

y
k(x− y)G

(

Ny,t , f (θ t − δy)
)

Ny,tdy. (10)

To transform this equation to define the dynamics of Mε,t , we
just make the substitutions ε + (θ /δ)(t+1) for x, and ε′ + (θ /δ)t
for y because then x has environment ε at time t+1 and y has
environment ε′ at time t. Then Equation (10) becomes

Mε,t+1 =

∫

w
k(ε − ε′ + θ/δ)G

(

Mε′ ,t , f (0− δε′)
)

Mε′ ,tdε
′. (11)

In contrast to Equation (10), in Equation (11) the dynamics of
the population have no time dependence, because Ex,t = f (θ t
– δx) has been replaced by Eε′ ,t = f (0 − δε′), which does not
depend on time. However, the dispersal kernel, k(x – y), has been

replaced by k
(

ε − ε′ + θ/δ
)

. Thus, the M process is equivalent
to the N process, but with dispersal biased in the direction
of increasing temperatures in space, and no temporal change
in the environment. The M process tracks the population in
environmental coordinates, and relative to these environmental
coordinates, the dynamics of population density are not time
dependent. Although illustrated here for an integral projection
model, the argument is a very general one showing how linear
temporal change can be equivalent to biased dispersal on a linear
spatial environmental gradient. Note, however, that this outcome
does not mean that the experienced environment is stationary.
For that the vector Mt of Mε ,t values, for all ε, would have
to converge on a stationary process with time. For example,
Mt might converge on an equilibrium, which is equivalent to
the original process Nt having an aedt. We next illustrate this
outcome for a simple spatial logistic model.

A simple analytically tractable version of Equation (10)
converts it the differential equation model

∂N

∂t
= g(Nx,t ,Ex,t)Nx,t + dp

∂N

∂x
, (12)

where g(Nx,t , Ex,t) is the usual continuous-time per capita growth
rate rather than the discrete-timemultiplication rateG(Nx,t , Ex,t).
The dispersal kernel in Equation (12) is very simple: at any instant
of time, an individual moves with probability p, or stays put. If
it moves, the rate of movement is d spatial units per unit time
in the negative x direction. Although greatly oversimplified, this
model leads to an explicit solution. Box 1 presents the solution
of this model in the case where g(Nx,t ,Ex,t)is given by the logistic
equation, defining the conditions for aedt to exist as a changing
spatial population distribution on a landscape, as illustrated
in Figure 1.

The specific logistic model solved in Box 1 has
competition coefficient that changes in space according to
a quadratic equation

g(Nx,t ,Ex,t) = r − α1(x− θ t)2Nx,t . (18)

In terms of the usual way of writing logistic competition as g(N)
= r(1 – N/K), with intrinsic rate of increase r and carrying
capacity, K, we see have K = r/α1(x – θ t)2. Thus, the most
environmentally favorable place on the landscape at time t is x
= θ t, where intraspecific competition becomes zero, but this best
location shifts with time. Box 1, gives the full solution, and the
aedt. Converting the aedt to the ε spatial scale, which represents
the population distribution relative to the environment, not
relative to fixed spatial locations, the aedt, M∗

ε , is given by
the formula

M∗
ε =

r

α1

[

(

ε +
dp+ θ

r

)2

+

(

dp+ θ

r

)2
]−1

. (19)

Note that this curve, M∗
ε as a function of ε, does not depend on

time. Expressed in climate coordinates, in fact the distribution of
the population on the landscape does not change with time when
the aedt has been reached, which means that the experienced
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BOX 1 | Non-stationary logistic model with directional dispersal

on landscape.

Equation (12) becomes a non-stationary logistic landscape model when

g(Nx,t,Ex,t ) takes the form

g(Nx,t,Ex,t ) = r(x − θ t)− α(x − θ t)Nx,t, (13)

with r being any continuous function, α being a positive continuous function,

and θ being the rate at which the physical environmental conditions change

with time. The function r defines the maximum growth rate, as a function of

the environment, and α defines the intraspecific competition coefficient also

as a function of the environment. The environment here is simply measured

in spatial units, as x – θ t (δ = 1), and this formula means that after one unit of

time, the conditions at location x match what they had been at location x –

θ . With this formulation, standard solution methods (Miersemann, 2012) give

Nx,t =







(

1/Nx+dp(t−s),s

)

e−
∫ t
s r(x−θu+dp[t−u])du

+
∫ t
s α(x − θu+ dp[t− u])e−

∫ t
u r(x−θq+dp[t−q])dqdu







−1

. (14)

Note that here the initial distribution on the landscape, Nx,s, is fixed

independently of s, i.e., does not vary with s even though the notation is

suggestive of it. This system has both forward and backward asymptotic

environmentally determined trajectories (aedts), which are identical when the

first line in Equation (14) vanishes both as t → ∞, and as s → –∞. The

limits are taken separately, i.e., with the other time (either s or t) fixed. These

outcomes occur when Nx,s is bounded above zero and the integral of r

converges to ∞ as either integration limit becomes infinite. Then, the aedt

is given by the equation,

N∗
x,t =

{

∫ t

−∞
α(x − θu+ dp[t− u])e−

∫ t
u r(x−θq+dp[t−q])dqdu

}−1

. (15)

A simple example uses a quadratic form for environmental dependence, with

r being a positive constant, and α(x – θ t) = α1(x – θ t)2, where here on the

right α1 is just a constant multiplier of the square.

This special form of the differential equation solves as

Nx,t =














e−r(t−s)/Nx−dp(t−s),s +
α1
r

[

(

x − θ t+
dp+θ
r

)2
+

(

dp+θ
r

)2
]

−
α1
r

[

(

x − θ t+
[

dp+θ
r

]

[t− s]
)2

+
(

dp+θ
r

)2
]

e−r(t−s)















−1

,
(16)

which is the basis of the plots in Figure 1. Letting t – s → ∞, leads to

the aedt,

N∗
x,t =

{

α1

r

[

(

x − θ t+
dp+ θ

r

)2

+

(

dp+ θ

r

)2
]}−1

. (17)

environment in this case is not merely stationary, but constant, in
fact an equilibrium. This curve is plotted in Figure 4 along with
the aedt for the case of no climate change. Under climate change,
the population retains a unimodal distribution on the landscape.
Although the distribution is fixed relative to temperature, the
geographic positions corresponding to each temperature (each
value of ε) are in fact moving to larger x values, i.e., higher
elevations or latitudes. This movement relative to x is shown
in Figure 1B.

Although the climate is stationary in the aedt, climate change
naturally still has an effect according to formula (19) as illustrated
in Figure 4. The rate of change of global temperature with time
is θ , and the mode of the distribution is – (dp + θ)/r in ε

coordinates, or (dp + θ)/r directly in temperature units (ε =

–T with δ = 1). Thus, we see that the mode is unsurprisingly
at higher temperatures under climate change, but the additional
temperature at the population mode, θ /r, decreases with the
maximum per capita growth rate, r, of a local population. This
fact reflects the importance of buildup of the population in
favorable locations for it to track climate, an issue that we
will return to in more complex settings. The spread of the
population relative to climate is also (dp + θ)/r, meaning that
faster climate change relative to population growth spreads the
population out in climate space. Finally, the total population on
the landscape, obtained by integrating Equation (19) from –∞
to ∞, is proportional to r/(dp + θ), and thus decreases with the
rapidity of climate change.

This specific example also provides a good illustration of
the difference between the aedt and the moving equilibrium.
The dashed curve in Figure 4 giving the equilibrium of the
population distribution indexed by the environment,Mε,t , when
there is no temporal change in the environment, is the same
for each fixed level of the global temperature. Thus, it gives the
moving equilibrium population distribution too. Like the aedt,
the moving equilibrium indexed by the environment is not time-
dependent in this case of linear environmental gradients, but is
quite different from the aedt, which is given by the red curve
of Figure 4.

Although being more complex, and not leading to explicit
solutions, Berestycki et al. (2009) show how these general
ideas can be realized in models with dispersal represented by
diffusion, which is more realistic than the simple flow in one
direction specified by the overall rate dp given here. Berestycki
et al. (2009) also address the critical question of viability of
the population under climate change. In the case where the
population might not be able to persist at all in some habitats
without dispersal from other areas, climate change that is too
rapid may outstrip dispersal, and lead to extinction. Moreover,
questions of adaptations to changed conditions naturally become
part of the development (Berestycki and Rossi, 2008, 2009; Alfaro
et al., 2017).

These models all have the environment changing linearly
both in space and time, and have the advantage of leading to
clear outcomes. They show that the population can come to
equilibrium relative to the environmental gradient, although
the gradient itself moves relative to geographical coordinates.
But this means that the environment experienced by the
population is at equilibrium, which is a very special case of
a stationary environment, i.e., one with no temporal change
at all. Note that the environment still varies spatially over the
range occupied by the population, but does not change with
time. One generalization introduces periodic temporal variation,
to accommodate seasonality (Berestycki and Rossi, 2009), and
then leads to a seasonally varying, but otherwise constant
environment experienced by the population. These experienced
environments are not the same as the environments experienced
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FIGURE 4 | The climate-coordinate aedt for the simple partial differential equation model, with and without climate change. The curves shows the aedt population

distribution, M*
ε , with respect to the climate coordinates ε, with (red) and without (black dashed) climate change. These curves are equilibria when expressed in these

coordinates, and thus indicate that the experienced environment is stationary even with climate change. Note that with climate change, population size is lower and

peaks further to the left of the most favorable location, ε = 0. Parameters, θ = 0.5 with climate change, 0 without; dp = 1, r = 1, α = 0.1.

without climate change, for as we have seen, they mean
that a population may be located suboptimally relative to the
environmental gradient, potentially having a smaller population
size, and may go extinct. Nevertheless, the temporal stationarity
of the experienced environment makes it easy to characterize.
Moreover, it provides temporally consistent selection pressures,
andmeans that reasoning about populations relative to stationary
environmental conditions retains validity while at the same time
adding the extra considerations of the need to follow a population
around a landscape, and understand dispersal and population
growth processes affecting its movements. The question now is
whether such results extend in any suitable sense to more realistic
more complex settings, i.e., those not reliant on linear gradients.

THE EXPERIENCED ENVIRONMENT IN
COMPLEX SETTINGS

The first task for more complex settings is to define the
environment experienced by the population. The physical
complexity of landscapes in nature (Alderman and Hinsley,
2007) means that as the climate changes, patterns of physical
environmental variation will not merely shift in space as
they do in the linear environmental gradients consider above,
but will, in general, change in complex ways as a complex
topography interacts with regional climate to give local climates.
Scale transition theory suggests an approach to understanding
experienced environments (Chesson et al., 2005). The theory
can be applied to any description of spatial locations, whether
as discrete patches, points in an artificial discrete space, or
as continuous space, but it is easiest to understand for the
discrete-patch definition of a landscape, and thus the population
dynamical formulation, Equation (3). The first concept to

consider is relative density, νx (ν is Greek nu), which is the local
density, Nx, on a patch divided by the regional density:

νx = Nx/N. (20)

As suggested by the notation, the regional density, N, is
equivalent to the spatial average density, at least relative to the
total area of the habitat patches (Chesson et al., 2005). In general
that means

N =

k
∑

x=1

pxNx, (21)

where px is the fraction of the total habitat area taken up by patch
x. In most accounts of scale transition theory, the patches are
assumed to be of equal size, meaning that px = 1/k, where k is
the total number of habitat patches, but a more general approach
is being taken here as more suitable for empirical studies. Indeed,
as defined here, the experienced environment can be calculated
empirically given the right data.

Having defined the relative density, we can now define the
average environment experienced by the population, which needs
to be distinguished from the spatial average on the landscape. We
can define

E
ν
=

k
∑

x=1

pxvxEx, (22)

which is in fact the average environment over individuals in
the population. For example, if there are two sorts of patch of
equal area and frequency, but 20% of the population lives in
patches with Ex = 1, and 80% in patches with Ex = 2, then
E

ν
= 0.2 × 1 + 0.8 × 2 = 1.8, whereas the ordinary spatial
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average, E =
∑k

x=1 pxEx, equals 0.5 × 1 + 0.5 × 2 = 1.5.
The average experienced environment naturally changes as the
population moves around on the landscape, and of course as the
climate on landscape changes. But these two effects could cancel
each other out, as in fact they do in the situation above of linear
spatial and temporal environmental change.

Naturally, the experienced variance can be defined, as

varν(E) =
k

∑

x=1

pxνx
(

Ex − E
ν)2

. (23)

Other moments can be defined in the analogous ways, and of
course Ex is in general multidimensional as it has been in the all
the examples above. Most important, an experienced probably
distribution of the environment can be defined by specifying
the experienced probability Pν(A) as the probability that an
individual randomly chosen from the population experiences
environmental states in the set A. The formula for Pν(A) is then

Pν(A) =
k

∑

x=1

pxνxIA (Ex), (24)

where IA (Ex) is given the value 1 if Ex is in A, and is 0 otherwise.
For example, if A is the set “the average annual soil temperature
over the year is between 25C and 30C,” then Pν(A) gives the
total fraction of the individuals on the landscape experiencing
these conditions. All moments, probabilities and other quantities
concerning the experienced environment can then be defined
in terms of this experienced probability distribution. With
a continuous environmental variable, a probability density
function would normally define the distribution. Then a
probability like (24) would be an area under this probability
density function, i.e., the integral over A of this probability
density. Figure 4, which gives population density, M∗

ε , as a
function of environment, ε, can be used to illustrate experienced
environmental distributions as probability densities. Integrating
M∗

ε over ε gives the total population size, M∗
total, and then the

experienced environmental probability density function is simply
f ν(ε) = M∗

ε/M∗
total. Integrating f ν(ε) over any specific range

of ε values gives the fraction of the population experiencing
environmental conditions in that range. Thus, the curves in
Figure 4 are proportional to the probability density functions for
the experienced environment.

In Figure 4, the experienced environments have approached
equilibrium, but differ greatly with and without long-term
climate change. More generally and realistically, the experienced
environmental distribution Pν will fluctuate over time, but we can
ask whether these fluctuations are stationary, or approximately
so, and how these fluctuations are affected by long-term climate
change. The very simplest thing to do is to examine the
experienced mean environment (22), which we do next with
the Beverton-Holt model. More generally one could ask if the
variance (23) of the experienced environment, other moments,
and indeed the probabilities (24) show stationary fluctuations
over time, and how they differ with and without long-term
climate change.

The Experienced Environment of the
Beverton-Holt Spatial Model
For the Beverton-Holt model on a landscape (Equations 3–5), we
use two orthogonal environmental response variables, Rx,t and
Sx,t , defined as functions of the environment at location x and
time t. The variable Rx,t is the maximum multiplication rate of
the local population at x as represented in the Beverton-Holt
formula (5). The variable Sx,t is the local resource supply, with the
assumption being that the intraspecific competition coefficient,
αx,t , of formula (5) is the ratio Rx,t/Sx,t , in essence, per capita
demand over supply.

These environmental response variables are defined as
functions of global climate variables θR,t and θS,t , and spatial
variables δR,x and δS,x, according to the same kind of additive
model (7) as used before

Rx,t = Rmax exp{−½(θR,t − δR,x)
2} (25)

and

Sx,t = Smax exp{−½(θS,t − δS,x)
2}. (26)

Thus, the variables θR,t – δR,x and θS,t – δS,x give the actual value of
an environmental variable, such as temperature at location x for
time t, and these are then translated into population responses
by Equations (25) and (26). Note that these curves are unimodal
(proportional to Gaussian curves), and so are maximized for
θR,t – δR,x = 0 and θS,t – δS,x= 0, respectively, defining
optimal conditions for the local population. In simulations of
this model, the underlying environmental variables θR,t , δR,x,
θS,t, and δS,x were generated as independent Gaussian variables,
with a sinusoidal trend in the mean added to θR,t to make
it non-stationary. The idea was not to create and defend a
realistic model for some species and landscape in nature, but
instead to create a model illustration of the key ideas. Figure 2
illustrates how the population moves around a two-dimensional
environmental landscape defined by the axes δR,x and δS,x, i.e.,
the environments that would occur in space if there were no
temporal change.

Dispersal was treated very simply as local retention with
widespread dispersal according to the formula,

px,y =

{

δ
k
, x 6= y

1− δ + δ
k
, x = y.

(27)

Thus, in each unit of time, a fraction δ of the population leaves
any given site y to settle at random across all sites, including the
site y. Though hardly the most realistic form of dispersal, it serves
the purpose of simplicity of illustration, both here and later.
Figure 5 shows the results of simulating this model giving the
experienced mean environments as measured by R

ν
and S

ν
which

are then compared with spatial average environments R and
S and the environments at the best locations under stationary
conditions (Rbest and Sbest). The first 100 years are stationary as a
baseline, and after that, sinusoidal temporal variation begins in
θR,t showing how the population is pulled around in different
directions. The behaviors of Rbest and Sbest reveal the non-
stationary conditions that apply at fixed locations, in this case
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FIGURE 5 | Experienced environments in the Beverton-Holt model. Each of the curves is a plot of a statistic calculated on the landscape for the Beverton-Holt spatial

model under climate change. The first 100 years in each case is a stationary initial period after which there is sine wave variation in θR,t with a period of 200 years.

(Continued)
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FIGURE 5 | In all panels, blue plots are mean experienced environments [R
ν
and S

ν
, formula (22) of the text]. The green dashed plots follow the environment of a

particular locality. This locality is chosen as the one that gives the highest average value of the variable (R or S) during the stationary phase. Black plots are mean

landscape environments unadjusted for the presence of the population (R and S). All parameters as for Figure 2, except for the migration fraction δ, which varies

according to the panel. (A,B) δ = 0.1; (C,D) δ = 0.01; (E,F) δ = 0.0001. Each simulation uses the same environmental sequence.

the ones that give the highest values on average, respectively for
R and S, during the stationary phase. The non-stationarity of
Rbest is clearly evident in the simulations, and naturally it does
not remain the best location during the non-stationary phase.
Natural Sbest does not show non-stationary as θS,t was simulated
as stationary.

Simplest is the graph of R
ν

as a function of time for
different levels of dispersal. The first message is that R

ν
is

always higher than R, and often substantially so. On this
landscape R remains substantially <1 reflecting the fact that
the population has specific habitats within the landscape: it
cannot just live anywhere. Second, the clear non-stationarity
of Rbest is only to a small extent reflected by R

ν
. Thus, the

experienced mean environment, as judged by R
ν
, is very close

to stationarity. The results for Sx,t give much less pronounced
patterns, at least partly due to the lower underlying spatial
variance and the absence of non-stationary change in this
quantity. However, it is notable that S

ν
actually shows some non-

stationarity despite the fact that there is none in the underlying
temporal environmental variable, θS,t . This outcome is likely
due to dominance of Rx,t in driving the patterns in λx,t , and
hence, as explained below, where the population is to be found.
Because Rx,t and Sx,t are statistically independent, S

ν
dips down to

S indicating little to no influence of Sx,t on where the population
is distributed when Rx,t pulls the population strongly in a
particular direction.

Comparing the graphs with different levels of dispersal, no
major differences in stationarity of the experienced mean R (R

ν
)

are evident, but with high dispersal this experienced mean is low
relative to the best location on the landscape under stationarity.
This result is understandable from the fact that high dispersal,
which is completely passive here, sends a substantial fraction
of the population to unfavorable locations. On the other hand,
very low dispersal gives R

ν
values that are quite high both in

the stationary and non-stationary phases, but gives a greater
degree of non-stationarity in R

ν
. Intermediate dispersal gives

experienced R environments very close to stationary in the non-
stationary global change period, while also giving relatively high
average values of R

ν
, suggesting that non-stationarity globally

has not greatly affected the population, at least as regards to its
experienced R environment.

These results are just simple illustrations of questions and the
sorts of answers that might emerge, and are in no way intended
as a final analysis of a given situation either in reality or of
a model. They raise the question, however, of why we might
expect stationarity to emerge even though the environmental
gradients are now highly non-linear. Scale transition theory,
combined with aedt theory suggests an answer, which we
consider next.

UNDERSTANDING THE DYNAMICS OF
EXPERIENCED ENVIRONMENTS
GENERALLY

Experienced environments change because the available
environments on a landscape, change, organisms disperse
across the landscape, and reproduce and survive at rates
dependent on their local environments. Here we attempt to
disentangle this issue to arrive at an understanding of the
general circumstances when experienced environments might
show stationary fluctuations over time. We first consider how
differences between local environments drive population shifts
in the direction of the moving equilibrium (Demographic
drivers of distributional change). We then show that under
low dispersal, moving equilibria have relatively predictable
properties making it possible to identify when the experienced
environments predicted from these equilibria might have
stationary or approximately stationary temporal dynamics (The
moving equilibrium under low dispersal). Finally, we develop the
relationship between the moving equilibrium and the aedt, which
then provides an indication of the reliability of predictions from
the moving equilibrium for the actual experienced environment
of the population (Using the moving equilibrium to draw
conclusions about the aedt).

Demographic Drivers of Distributional
Change
For mean experienced environments, for example as measured
by R

ν
, to show stationary fluctuations over time despite global

non-stationarity, population movements on the landscape must
somehow cancel out the non-stationary fluctuations. Population
movements can be understood in terms of the dynamics or
relative density, νx, which, from Equation (3), can be written as

νx,t+1 =
∑

y
pxyρy,tνy,t , (28)

where

ρx,t =
λx,t

λ̃t
, and λ̃t =

∑

x
pxνx,tλx,t . (29)

Note that ρx,t is relative fitness: the local fitness λx,t compared
with population average fitness λ̃t , which defines landscape-level
population change according to scale transition theory (Chesson
et al., 2005):

Nt+1 = λ̃tNt . (30)

Although, formula (28) is not particularly revealing in this
general form, specializing it to widespread dispersal with local
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retention (formulae (27), as used in the simulations), gives the
interpretable form

νx,t+1 = (1− δ)ρx,tνx,t + δ. (31)

Here, we see that local relative density increases in proportion
to local relative fitness, and thus local density build-up increases
with relative fitness, analogous to natural selection of phenotypes,
except here it is selection of sites, x, by demography. In this
analogy, the dispersing fraction, δ, functions like a mutation rate.
If this dispersing faction is high, population build up at favorable
sites will be slow and limited, but if the dispersing fraction is low,
the fraction retained at a site, 1 – δ, will be high and will promote
strong buildup of the population in favorable locations. Note that
here dispersal is purely passive, and the gain in relative density
is due to high reproduction and survival in favorable sites, not
habitat selection or directed dispersal into them.

An indication of howmuch build-up would occur in favorable
locations is given by the equilibrium that Equation (31) implies if
in fact the environment did not change over time, but were always
at the value applying at time t. This equilibrium is the following
very sharply increasing function of relative fitness

ν∗E(x,t) =
δ

1− (1− δ)ρ∗
E(x,t)

, (32)

where the variables are here indexed by E(x,t) signifying that it
the moving equilibrium. At the equilibrium, λ̃ = 1, which means
that ρ∗

E(x,t)= λ∗
E(x,t), the value of λx,t at the moving equilibrium,

and thus a function of the current environmental conditions.
With the Beverton-Holt spatial model, λx,t can be written as

λx,t =
Rs,t

1+
(

Rs,t/Ss,t
)

vx,tNt

, (33)

which is an increasing function of both Rx,t and Sx,t , but a
decreasing function of νx,t , a relationship that applies also at the
equilibrium. It thus follows from Equation (32) that ν∗

E(x,t) will be
maximized at the location where either Rx,t or Sx,t is maximized
if the other parameter does not vary in space. These locations x
are, respectively, where δR,x most closely matches θR,t or δS,x most
closely matches θS,t . In this way, the moving equilibrium is pulled
around the landscape by temporal change. In the simulations
discussed above, the strong non-stationarity and greater variation
in Rx,t did not lead to a appreciably non-stationary R

ν
. Instead,

S
ν
was notably non-stationary. The explanation seems to be that

the population was pulled around the landscape by themaximum
in Rx,t leading to approximately experienced stationarity in Rx,t .
Strong effects of Rx,t periodically eliminated any sensitivity of the
distribution of the population to Sx,t . This effect, along with the
statistical independence of Rx,t and Sx,t , explains why S

ν
would

drop to S, the ordinary spatial average, as seen in the simulations.
Despite the success of the reasoning above in accounting for

the patterns in the simulation, it is important to keep inmind that
(32) is the moving equilibrium, and would not ever actually be
realized with temporal environmental change. Instead, it merely
indicates where Equation (31) would drive the relative densities if

BOX 2 | The aedt in terms of the moving equilibrium.

According to aedt theory (Chesson, 2017), the aedt N∗
t (in vector notation as

explained above) can be written in terms of the moving equilibrium N∗
E(t)

(in

vector notation) according to the formula

N∗
t =

t−1
∑

u=−∞





t−1
∏

v=u+1

Jv



 (I− Ju)N
∗
E(u), (35)

where here Ju is the average of the Jacobian matrix (Caswell, 2001) for

the landscape model (3) evaluated between N∗
u and N∗

E(u)
. As explained in

Chesson (2017), this equation reduces just to a geometric series in simple

cases, and is approximately that if Ju is approximately a constant positive

matrix with eigenvalues <1. In general, the formula (35) can be regarded

as a generalization of a geometric series, which defines N∗
t as a generalized

moving average of the moving equilibrium N∗
E(t)

. It would thus represent

a fading memory of past environmental conditions. However, for Equation

(35) to make sense, i.e., for the infinite series to converge, the Jacobian

product must converge to 0. In rare instances when this Jacobian is not

time-dependent (Chesson, 2017), this sum would converge if the maximum

absolute value of its eigenvalues is <1, which is of course the condition for

linear stability of the moving equilibrium. In the more usual case of a time-

dependent Jacobian, there is no simple necessary and sufficient condition. A

simple conservative sufficient condition is that the product of an appropriate

matrix norm of the Ju converge to 0 (Bhatia, 1997). One such suitable norm

is the singular value norm, which equals the square root of the maximum

eigenvalue of J′uJu (Bhatia, 1997), where the prime means transpose. So

rather than consider the maximum eigenvalue of Ju, it is something a little

different, viz, the square root of the maximum eigenvalue of a square of the

matrix Ju.

in fact the environment remained constant over time at the values
applying at time t. Despite this fact, Equation (32) is an important
piece in the puzzle. It shows how, at least under widespread
dispersal with local retention, the equilibrium relative density can
be written directly as function of the environment, and how it
changes with time. Equations (28) and (30) can be shown to have
a unique globally stable joint equilibrium under the Beverton-
Holt model provided all parts of the landscape are accessible over
time by dispersal from any other part (Kirkland et al., 2006).
Under slow temporal environmental change, this equilibrium
will therefore determine how the population is pulled around
the landscape. Making the assumption that dispersal is low
allows equilibrium, along with stability of the equilibrium, and
its implications, to be assessed in other models (Karlin and
McGregor, 1972).

The Moving Equilibrium Under Low
Dispersal
To solve the low dispersal case, we must step back to
consideration of the equilibrium absolute densities,N∗

E(x,t). These
can be expressed in terms of equilibrium relative densities, and
landscape equilibrium density, N

∗
E(t), as

N∗
E(x,t) = N

∗
E(t)ν

∗
E(x,t). (34)

Note that in all cases, these equilibria the moving equilibrium.
Important questions are whether we would expect these
equilibria to exist and be stable beyond the Beverton and Holt
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model solved by Kirkland et al. (2006). According to Karlin
and McGregor (1972), if a stable equilibrium would exist in the
absence of dispersal, then the joint connected system would have
a stable equilibrium provided the magnitude of dispersal were
not too high. In that case also, the equilibrium N∗

E(x,t) defined
by Equation (34) would exist and would be approximately equal
to the equilibrium at location x in the absence of dispersal.
In general, however, locations where the population would be
extinct in the absence of dispersal would nevertheless have a small
positive value for N∗

E(x,t).
Note that the equilibrium N∗

E(x,t) in the absence of dispersal
is simply a function of the environmental conditions at time
t in location x. This means that the corresponding moving
equilibrium for the experienced environment is determined
simply by the frequency distribution of environmental conditions
on the landscape. Thus, if the same sorts of environment
conditions continue to exist on the landscape and in the
same frequencies, despite climate change, then the moving
equilibrium experienced environment would in fact be constant.
This is exactly what we see with linear environmental
gradients. However, there is nothing to prevent such an
outcome with complex non-linear gradients, although the
relative positions of the various environment states on the
landscape would not remain constant, and a more likely
outcome is that the frequency distribution of environmental
conditions would only be approximately constant. Moreover,
the more general question is stationarity or approximate
stationarity of the experienced environment for the moving
equilibrium, which would require approximate stationarity
of the frequency distribution of environmental states on
the landscape.

Using the Moving Equilibrium to Draw
Conclusions About the aedt
The results so far allow us to identify at least some general
conditions under which the experienced environment of the
moving equilibrium would be approximately stationary. These
need to be extended to the aedt before they are conclusions
about the experienced environment of the population in the long
run. Box 2 develops the relationship between the aedt and the
moving equilibrium. Although complex, these results show that
the aedt can be similar to a moving time average of the moving
equilibrium with most weight placed on the most recent times. A
complication, however, is that the weights defining this moving
average are not constant in general but change with time too.
Regardless, these results show that the aedt, N∗

t , has a fading
memory of past environments, with the memory fading more
quickly the stronger the stability of the moving equilibrium. In
particular, strong stabilizing density dependence means a short
memory. One particular consequence is that if the environment
shows only slow change temporally, N∗

t will be close to the
moving equilibrium, N∗

E(t). Then, if the moving equilibrium
gives an approximately stationary experienced environment, so
will the aedt. Moreover, the moving time average of stationary
process is also a stationary process, which would at first suggest
that N∗

t would give an approximately stationary experienced
environment wheneverN∗

E(t) does. However, the weights defining

N∗
t similar to a moving average of N∗

E(t) change with time
too, complicating the picture. On the other hand, there is
a reasonable expectation that these weights will change with
time in an approximately stationary manner whenever N∗

E(t)
gives a stationary experienced environment. The upshot is
that N∗

t would give an approximately stationary experienced
environment whenever N∗

E(t) does. Further work is needed to
confirm this conjecture.

DISCUSSION

The non-stationarity of the physical environment over time is
a challenge to ecology so accustomed to thinking about nature
in terms of equilibria (Cuddington, 2001; Rohde, 2006). A
parallel challenge is the complexity of the environment spatially
(Hart et al., 2017). Although, most empirical studies have been
traditionally conducted on local scales, dissatisfaction with the
understanding gained, and recognition that local scales can
be dominated by migration and dispersal, have been forcing
serious rethinking (Ricklefs, 2008; Hart et al., 2017). The key
idea developed here is that the first problem can be resolved
by combining it with the second. The key observation is that a
population fluid on a landscape can experience approximately
a stationary environment as it moves about the landscape even
though the environment at any locality is far from stationary.

Here and elsewhere, (Berestycki and Rossi, 2009; Berestycki
et al., 2009), exact stationarity of the experienced environment
was only shown to occur in the case of a linearly changing spatial
environment that combines additively with a linearly changing
temporal environment to produce the local environment. Then
the environment at a given time and location can be equivalent
to the environment at a previous time but a different location, a
certain distance away. Dispersal to that locationwithout temporal
environmental change thus produces an equivalent outcome. In
parlance of dynamical systems theory (Kloeden and Rasmussen,
2011), a non-autonomous system, in which the parameters are
time dependent, can be converted into an equivalent autonomous
system with no such time dependence of the parameters by
the addition of biased dispersal. More realistically, the temporal
environmental change might be approximated as a stationary
process with a linear trend added (Berestycki and Rossi, 2009).
The linear trend could then be equivalent to biased dispersal
creating an equivalent system in stationary environment.

The case of a linear trend (Berestycki and Rossi, 2009;
Berestycki et al., 2009) is very special, but there is reason
to believe that the stationary outcome observed then can be
generalized, at least approximately, to more complex temporal
change on spatially complex landscapes, as sketched here. There
are several components to this. First, favorable locations need
to remain present on the landscape, even though they move
around, and further the frequencies of environment states at
those moving favorable locations need to fluctuate in a stationary
manner over time. This means that the equilibria that would
occur locally in space, if environment remained fixed, and if there
were no dispersal, would indeed define a stationary distribution
of experienced environmental states. Second, having some, but
not too much dispersal, defines an equilibrium for the landscape,
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N∗
E(t), that inherits the stability properties of the local equilibria.

Third, if the temporal trends in the environment are not too
great, favorable locations can remain favorable long enough for a
population to build up, a process that can work even with passive
dispersal. This process was shown above to be analogous to
natural selection of phenotypes, but here phenotypes are replaced
by spatial locations. Thus, favorable locations are selected rather
than favorable phenotypes. Finally, aedt theory shows that if
the system has an aedt, the distribution on the landscape may
be similar to a moving average over the past to the present of
the moving equilibrium, N∗

E(t), on the landscape. Under these
circumstances it is possible for the aedt to give a stationary
experienced environment if the moving equilibrium does. There
is much work to be done, however, to confirm and define the
limits on these ideas.

These ideas applied complex landscapes were merely
illustrated here with limited simulations of a Beverton-Holt
model, but they suggest research programs to understand
the properties of landscapes, temporal change and biological
processes influencing the outcome. Only very simple dispersal
was considered in which a fraction of a local population is
dispersed at random on the landscape. In this case, the actual
spatial configuration of the landscape patches does not matter.
Only their environmental states do. Under more localized
dispersal, how rapidly the environment changes in space
is sure to matter too. Moreover, of the two environmental
components considered, only one, R, varied in a non-stationary
way. Although the mean experienced environment for R was
approximately stationary, that for S was not, even though S was
in fact stationary on the landscape. This outcome suggests the
capacity for different components of the environment to interact,
with some dominating over others and altering their patterns in
experienced environments.

Having an approximately stationary experienced environment
means that much thinking about populations and communities
on local scales for stationary environments is potentially
transferable to fluid populations and communities with non-
stationary environmental variation. However, it also means
paying more attention to the role of dispersal processes, the
complexity of landscapes, the nature of temporal environmental
change, and their interactions. Not only do these issues affect
whether experienced environments will be roughly stationary,
but they also affect what those experienced environments are like,
for example, simply their overall quality.

Missing from the development here was any significant
consideration of the role of adaptation. The population
parameters as a function of the environment were here assumed
fixed, but most serious discussions of climate change naturally
consider adaptation (Davis and Shaw, 2001; Davis et al.,
2005; Norberg et al., 2012; Urban et al., 2016). Significantly,

critical work on linear environmental change (Alfaro et al.,
2017) already points the way forward. Natural selection might
also select for dispersal ability under non-stationary change
(Weiss-Lehman et al., 2017) further modifying experienced
environmental distributions.

Although the focus here has been on single species, it is
clear that some aspects extend just as well to communities.
Transforming linear temporal change to biased dispersal without
temporal change applies equally to communities as to single
populations, provided there is just a single environmental
variable. However, realistic variation on complex landscapes
must inevitably magnify the effects of interactions between
environmental variables evident here even in a single-species
case. Differential responses to the environment (Spear et al., 1994;
Tingley et al., 2012), dispersal abilities, and population turnover
rates (Davis, 1986) may well-enhance the differences between
species, greatly affecting the outcomes of their interactions
when considered in the long-run (Bolker and Pacala, 1999).
There is great potential for rich new understanding of
communities focused on these various implications of long-term
environmental change.

Science is at the beginning of enormous challenges of ecology
under changing environments (Urban et al., 2016). Although
the focus here has been simply on climate change, land use
change has perhaps been the most pronounced effect so far of
the Anthropocene (Tingley et al., 2013). Habitat destruction and
habitat fragmentation alter the basic landscape structure and
dispersal processes that are central to the effects of climate change
as discussed here. For some organisms, landscape change might
be regarded as simply another form of environmental change
fitting within this framework. Although the ability to transform a
new situation to old one, which has been explored here, might
be applicable in some cases, at the present time there is no
substitute for multiple and diverse approaches. Yet, as is shown
here and elsewhere, answers to new problems may well-reside in
old problems examined in a new light (Bolker and Pacala, 1999).
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