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Ecology, Evidence, and Objectivity: In
Search of a Bias-Free Methodology

Gordon Brittan Jr. and Prasanta Sankar Bandyopadhyay*

Department of History and Philosophy, Montana State University, Bozeman, MT, United States

For at least the past 25 years or so, there has been a twofold sense of “crisis”

in ecology. One indication of this is the spate of articles and books calling for a

reformation of the discipline and bearing such titles as “The New Ecology.” On the

part of practitioners, the unease concerns its theories, concepts, and methods. On

the part of the general public, the unease concerns the perceived “bias” of its

results. This paper is an attempt by two philosophers of science to clarify one critical

methodological issue—hypothesis/model testing—and in the process to identify ways

to gird the objectivity of ecological claims. What is significant about our approach

is a distinction between the tasks appropriate to Bayesian Inference and Evidential

Statistics—confirming hypotheses on the one hand and measuring evidence for

models on the other. These two inferential paradigms are contrasted with the testing

methods long-dominant in the discipline—Fisher-Neyman-Pearson Significance Testing

and Popper Falsificationism—and a case made for a much greater use of Bayesian and

Evidentialist Methods. In particular, it is argued that Evidential Statistics, here in the form of

the likelihood ratios of competing predictive and explanatory multiple models avoids the

main forms of otherwise unsettling cognitive bias. It also provides a Darwinian alternative

to the “convergence” accounts of objectivity associated with the development of physics

which is more appropriate to ecology.

Keywords: bayesian inference, evidential statistics, significance testing, falsificationism, hypothetico-deductivism

INTRODUCTION

Twenty-five years ago, Shrader-Frechette and McCoy (1993) wrote that

On the whole, general ecological theory has, so far, been able to provide neither the largely descriptive,
scientific conclusions often necessary for conservation decisions, nor the normative basis for policy.

Judging by the titles of more recent textbooks, and despite an immense amount of very interesting
ecological research and theorizing carried out in the meantime, the situation appears basically
unchanged. These books bear such titles as Scientific Method for Ecological Research (Ford, 2000),
Ecological Understanding: The Nature of Theory and the Theory of Nature (Pickett et al., 2007) and
The New Ecology: Re-Thinking A Science for the Anthropocene (Schmitz, 2017). All are premised on
the complex claim that there is as yet little consensus on either the correct theoretical structures or
the proper experimental/inferential methods of the subject; the result is that ecological science has
not yet had the desired and necessary influence on policy formation and implementation.

Ford, for example, begins the final chapter of his book with a list of criticisms that he takes
seriously. After all, they provide the motives for developing what he takes to be a new and
improved approach.
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i) There has been a lack of progress in ecology.
ii) No general theory has emerged.
iii) Ecological concepts are inadequate.
iv) Ecologists fail to test their theories.

Picket, Kolesa, and Jones echo the discontent. In their view,
at least part of the problem stems from the fact that the
great growth of ecological information has occurred in ever-
more Balkanized sub-disciplines, each with its own assumptions,
concepts, methods, and hypotheses. Hence, the progress made
has been (in their word) “narrow,” focusing on specific scales
and levels of organization, and making communication between
sub-disciplinarians, not to mention with the general educated
public, increasingly difficult. There is no larger and consistent
picture on which to get a grip, no uniform set of methods to
employ, and (although they do not put it this way) no firm
basis on which to formulate, much less implement, coherent
public policies–in particular regarding the multi-scale impacts of
human actions on specific plant and animal populations. As with
these other authors, Schmitz tries to provide a new and more
implementable picture.

One source of the discontent both with and within ecology
is the relative absence of understanding the role and scope of
the methods used to test ecological hypotheses and models.
The authors of this paper have been invited to expand this
understanding by placing it in a larger philosophical perspective.

THE DEFORESTATION CONTROVERSY:

HYPOTHESIS, POLICY, AND LACK OF

TRUST

On October 3, 2018, the environment, development, and
agricultural heads of the United Nations issued a joint statement
declaring that

Forests are a major, requisite front of action in the global fight
against climate change – thanks to their unparalleled capacity to
absorb and store carbon. Stopping deforestation and restoring
damaged forests could provide up to 30% of the climate solution
(Da Silva et al., 2018).

All well and good. On the assumption (on which more later)
that climate change is (to a significant degree) human-induced,
and given that we have every reason to resist it, we need to stop
deforestation and restore damaged forests. The rational place to
begin is with a factual assessment of the situation. The immediate
problem is that “there are twomain data sources for tree loss, and
they are increasingly contradictory” (Pearce, 2008). One source
is the Global Forest Watch (GFW). Its data are compiled from
satellite images by the World Resources Institute. These data
indicate a decline in tree cover in 2017 of 72.6 million acres,
almost 50% more than in 2015. The other source of deforestation
data is the Global Forces Resource Assessment (FRA), which is
based on government inventories compiled by the UN Food and
Agricultural Organization. It estimates the annual loss at just 8.2
million acres, and adds that deforestation rates have declined

by more than 50% since 2008. In individual countries the data-
inconsistency is even more dramatic, the FRA showing forest
gains in the US, for instance, while the GFW indicates big losses.

In this case, the data-inconsistency can be explained in terms
of the types of data gathered—Landsat tree-cover images as
against government-designated land uses—employed by the two
organizations. More inclusive and sophisticated models are being
developed1. But it is not at all clear whether they will reinforce the
on-going attempt to protect intact forests or put the emphasis
on re-growing temporarily degraded areas. The correct policy
perspective depends, at least to an important extent, on the time-
scale chosen. Once-deforested areas in New England are now
overgrown with trees.

Even when there is a clear consensus among scientists about
both fact and policy, the general public is often slow to follow.
Yale Environment 3602 ran the headline, “AmericansWhoAccept
Climate Change Outnumber Those Who Don’t 5-1” on April 4,
2018, but a closer look at the survey numbers indicates that no
more than 58% believe that global warming is mostly caused by
human factors, and no more than 49% (2% less than in 2008)
are “extremely” or “very” sure that it is really happening. Again
according to the Yale survey, only 6% of the population believes
that anything much can be done to slow or reverse it.

ENTER PHILOSOPHY OF SCIENCE

There are, of course, many reasons for the discrepancy between
expert and popular opinion. Some of them are familiar—politics,
economics, spatial and temporal scales. But what runs through all
of them is distrust, sometimes of “science” generally, on religious
or other cultural grounds, more often of ecology or similarly
policy-connected disciplines. The main brief against them is that
their research is often “biased,” aligned in one way or another with
“liberal” or “environmentalist” agendas. In one word, ecology and
its brethren are not “objective,” and for that reason not to be taken
seriously. This is disturbing not only from a policy perspective,
but also because a good percentage of ecological research is
government-funded and depends on broad political support.

It is to be expected, then, that ecology textbooks would
concentrate as they tend to do on questions concerning
objectivity—how it is to be understood and obtained. Since the
hallmark of and the means by which it is ensured, at least in our
culture for the past several hundred years, has been the “scientific
method,” much of the discussion in these books quickly focuses
on it. The discussion of method, in turn, is deeply informed by
the philosophy of science3.

But can philosophical reflection aid ecologists in either their
methodology or their communication with the public? Our aim is
to answer the question affirmatively by focusing on the objectivity

1It is worth noting that neither the GFW nor FRA models is to this point sensitive

to changes in biodiversity or carbon uptake in the forests modeled, although both

factors enter into cause-of-warming considerations.
2Yale Environment 360 (2018, April 14). Americans Who Accept Climate Change

Outnumber Those Who Don’t 5 to 1.”
3If we can take the textbooks by Pickett et al., and Ford as representative. Of course,

a great many books on general ecology do not focus on methodological issues,

although they do underline the necessity of re-conceptualizing the subject.
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of the claims that ecologists make. Objectivity in turn has to do
with the methods by which these claims are tested. This is the
nub of the controversies surrounding ecology as regards both
its scientific status and reliable source of informed public policy.
It is also the way in which the indispensability of philosophical
reflection can best be demonstrated. A brief review of the testing
methods already in widespread practice should provide context,
and a distinction between the concepts of confirmation and
evidence add clarity.

HYPOTHESIS-TESTING METHODS IN

ECOLOGY

Hypothetico-Deductive Testing
At present, inferential methods are routinely characterized
within one or another statistical framework. It was not always
thus. Discussions of theory-testing, at least among philosophers
interested in the subject, were dominated in the middle years of
the twentieth century by the so-called Hypothetico-Deductive or
H-D model. On this model, to test a hypothesis is, schematically,
to derive a statement, via initial and boundary conditions4,
describing an observation. If the derivation is carried out before
the observation is made, it is predicted; if detected or measured,
the hypothesis is confirmed. If the derivation is carried out after
the observation has been made, the hypothesis retrodicts and
explains it. The underlying point remains the same: to test a
theory is to derive statements describing observations or, ideally,
experimental results. If verified, belief that the theory is true
has to some indeterminate degree been justified. There were
several variations on the H-D model, for example Hempel’s
view (1965) that not the observational consequences but the
instantiations of empirical hypotheses justified or confirmed
belief in them, but the leading theme remained untouched,
that the credibility of scientific claims rested on successful
prediction/explanation and that prediction/explanation in turn
could be characterized by a simple deductive relationship
between hypotheses and observations or (to use a more bracing
and embracing term) data5.

A relatively early and interesting case for the H-D model as
a reliable way of testing wildlife, and by extension ecological,
hypotheses generally, was made by Romesburg (1981), although

4And if necessary, rules by which to translate theoretical terms in the hypotheses

so that they had observational content and application, usually in the form

of measurable quantities. These rules were often referred to as “operational

definitions.” That said, there is no commonly-accepted way in which to

characterize such “definitions.” Perhaps most often it is to provide quantitative

indices for the application of theoretical terms, means by which they may be

measured and thereby applied to observational or experimental data. It has proven

to be particularly difficult to operationalize theoretical terms in ecology—think

“ecosystem,” “niche,” and “diversity” (all of which have come to have normative

dimensions). One virtue of testing mathematical models is that they postpone the

problem; to test the model is simply to measure the quantities that it contains

and verify the data-distributions in which it issues. It can later be decided

how the model should, if desired, be integrated into a more explanatory and

policy-guiding theory.
5Elaboration of the H-D model included attempts to characterize “data” more

precisely as well, including the methods of their measurement and the errors

to which it would inevitably be subject, but nothing in what follows turns on

these attempts.

in doing so he departed from the Positivist original in a
significant way. On his account, wildlife science was dominated
into the 1980’s, although in his view wrongly, by the methods
of “induction” and “retroduction.” On Romesburg’s somewhat
non-standard use of the terms, the former involves correlating
variables, the amount of edge vegetation in fields, say, with
an index of game abundance; the greater the degree of
observed correlation, the more reliable the hypothesis linking
the variables. The latter (retroductive)method involves providing
an explanation of the observed linkages simply by providing a
generalization from which all of them can be derived.

According to Romesburg, the major difficulty with both
methods is that they are used to generate rather than to test
hypotheses. In his view, a subsidiary difficulty with the inductive
method is that it wrongly assimilates correlation to causation;
that two variables are usually, if not also invariably, conjoined
does not by itself demonstrate a direct (or directional) causal
connection between them6. A reliable hypothesis must in one
way or another explain the connection, it must provide a
reason for and not simply “fit” it. A subsidiary difficulty with
the retroductive method is that it is tied closely to the facts
that it is invoked to explain; it doesn’t provide a way of
ruling out incompatible hypotheses that explain all the same
facts. Although Romesburg doesn’t put it this way, one might
say that the inductive method leads to predictive but not
explanatory hypotheses, the retroductive method to explanatory
but not predictive hypotheses and that any adequate (“reliable”)
hypothesis must be both explanatory and predictive. It is only
if they satisfy both criteria that hypotheses are testable. In a
Positivist vocabulary, induction and retroduction are methods of
“discovery,” not “justification,” and discovery is methodologically
moot; for the most part, adequate hypotheses are invented,
products of insight and imagination. Justification alone has its
own logic7.

The distinction between discovery and justification is
classically Positivist, Romesburg’s distinction between prediction
and explanation8 is not. On the original H-D model, prediction
and explanation are asymmetrical only with respect to the time,
before or after the fact, when the derivation of an observational

6They may be linked by a common cause or confounded with another variable,

for example.
7Saint-Mont (2018) has recently made an up-dated and well-informed case for the

“inductive” (data-first) approach to testing. On the assumption that samples test

generalizations about populations, the law of large numbers guarantees that the

distance between them shrinks quickly as the sample increases in size, and “the true

distribution comes into focus almost inevitably” (p. 686). Saint-Mont’s perspective

contrasts sharply with the hypothesis/model-first approach of the other accounts

of testing we will consider (although he includes elements of these accounts in his

own; the implication is correct, both models and data are involved inferentially,

in this respect like the analysis of ecosystems, trophic cascade from the top

down, nutrient supply from the bottom up). Although it is in certain respects

problematic, he implicitly blurs Romesburg’s line between causation/explanation

and correlation, ignores problems associated with (random) sampling, and shares

the questionable “true-model” aim of testing with other statistical paradigms. For

all of its sophistication, Saint-Mont’s view of testing represents a return to a form

of Positivism on which the role of theoretical concepts in science/ecology is at best

unclear and predictive success is the sole criterion of evaluation.
8Or his corollary distinction between correlation and causation.
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consequence is carried out9. Romesburg’s case for restricting
the model to explanatory, which is to say causal, hypotheses
(although he does not frame it as a restriction) rests on the close
connection he posited between wildlife science and public policy;
it is only when “cause-effect relationships among variables are
found [that] control [of outcomes] is possible” (p. 304).

The difficulties with the structural identity of prediction and
explanation aside, a number of criticisms were later made of
the H-D model (or better: account) of theory-testing. Three
of these criticisms proved to be of special significance, not
only because they undermined the H-D account, but more
importantly because they led to alternative and very fruitful
testing accounts. The first criticism was that the H-D account
is no more than qualitative. It provides necessary and sufficient
conditions for the truth of “D confirms H,” but without a rule
for determining the degree to which it is able to do so. This is
troubling. An adequate account of confirmation should capture
the universally-held belief that some hypotheses are (perhaps
much) better supported by the available data than others, and
be able to measure the difference. The second criticism of the
H-D account was that while it indicates a logical relationship,
usually entailment, between hypothesis and data, it does not
specify an inverse relationship, neither entailment nor any other,
between data and hypothesis, no way, so to speak, to retrace
the bottoms-up route. The third main criticism was that the
H-D account is, without further modification and amendment,
restricted to non-statistical hypotheses, typically illustrated by
universal generalizations of the form “All A are B.” That is, from
a simple statistical hypothesis of the form “Pr(B|A) = r” it does
not follow logically that a description of A entails a description of
B. In fact, it doesn’t follow that the probability of an instance of B
given an instance of A is equal to r. In such cases, the relationship
between hypothesis and data must be inductive and characterized
in probabilistic terms.

One way to lump all three of these criticisms together is to say
that the hypothetico-deductive account had some serious gaps in
it. The option was to fill the gaps and in the process reconfigure
the structure of scientific testing. Several alternative and gap-
filling accounts have been proposed. The first is deductive in
character, the three others are statistical.

Falsification and Corroboration
The first alternative was set out by Popper in his classic The
Logic of Scientific Discovery (Popper, 1934/1959). His approach

9Romesburg’s article, though written almost 40 years ago, still makes good reading,

not only because of an extended (and mathematically-sophisticated) description

of how Errington’s constant threshold-of-security hypothesis (“For a given area

and species, the number of animals surviving fall to spring can be no greater

than a threshold value. This threshold accounts for all forms of natural mortality,

barring catastrophic weather events, and is constant from year to year”) is

to be reconstructed/tested on the H-D model, but also because of his careful

attention to the details of evaluating the observational consequences (for the

most part statistical) of the hypothesis, the vagaries of “general-purpose data” not

collected under controlled conditions, and the necessity of cost/benefit analyses of

experiments before they are actually initiated. For Errington’s classic study (later

modified to include a variable threshold), see Errington (1945).

was striking both in its ease of application and intuitive appeal10:
Re-construe the H-D account in such a way that there are no
gaps to fill. In Popper’s view, this is fortunate since there is
no way in which they can be filled coherently in any case. His
point of departure was the fact that while a hypothesis can
never be “confirmed,” it can be falsified. The point is purely
logical. No number of confirming instances, no matter how
great, can ever guarantee that a universal generalization is true.
Yet a single disconfirming consequence will show, other things
being equal, that the generalization is false in a deductively
straightforward way. It doesn’t follow from the fact that any
number of swans are white that all swans are, but it does
follow from the fact that there is a black swan11 that the
generalization concerning them is false. Moreover, in the case
of falsification there are no gaps to fill, no new relationship
between data and hypothesis to be discovered or invented, no
need to add probabilistic operators and rules governing them to
our traditional methods. The rule of modus ponens—if p then q
and∼q, therefore∼p–by itself suffices as the “logic,” not so much
of justification (for there is no such thing according to Popper) as
of scientific discovery.

Popper reinforces his proposal by way of a reflection on actual
scientific practice. Scientists do not keep repeating the same
experiments in the attempt to pile up confirming consequences of
a hypothesis (although they do attempt to diversify the conditions
with respect to which these consequences are derived). Once
an experiment has been performed, and replicated by others,
they move on to other ways in which to test the hypothesis.
But, Popper contends, to (really) test a hypothesis is to find
new ways to falsify it, other kinds of data. Since no hypothesis
can ever be established as true, the best one can say of a
particular hypothesis is that it has survived a number of tests,
the more varied and severe the better. A hypothesis which
has so survived is said to be corroborated, i.e., has not been
shown to be false. In science as in the biotic community,
the fittest survive. The idea that biotic communities are self-
regulating, that there is “a balance in nature,” is an old,
indeed ancient, ecological truism. Yet it has been shown over
the last 30 years or so that the assumptions on which such
equilibrium rests do not hold generally12. This is, at least
according to the conventional wisdom, what characterizes the
scientific mind: never to accept some truth as given, but to
question it constantly.

10Indeed, it is difficult to overstate the impact of Popper’s account on the

methodology of practicing scientists, among which ecologists. Thus, the bio-

scientists Cassey and Blackburn (2006): “It is widely agreed that modern scientific

inference relies on the vulnerability to refutation of its general theories, which

have the characteristic quality of being both general and falsifiable.” Indeed, there

are more references in the index to Ford’s book to Popper than to anyone else,

philosopher or scientist. Neither Ford nor Picket et al., discuss either Bayesianism

or Evidentialism, although Pickett et al.’s, discussion of “pairwise alternative

hypothesis testing” and the reference in it to Platt (1964) include elements

of the latter.
11The stunning Cygnus atratus discovered in 1790 by Latham.
12See Botkin (1990). For Schmitz (2017), the “New Ecology” rests principally on

a rejection of the twin classic theses that ecosystems are (relatively) self-regulating

and isolated (from each other and, as objects of study, from human intervention).

Frontiers in Ecology and Evolution | www.frontiersin.org 4 October 2019 | Volume 7 | Article 399

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brittan and Bandyopadhyay Ecology, Evidence, and Objectivity

Popper is right to stress the “testing” intuition13. But whatever
logical advantage a program of principled falsification enjoys
is no more than apparent. The French physicist, philosopher,
and historian of science, Duhem (1962) was perhaps the first to
emphasize that hypotheses are never tested in isolation, but only
in conjunction with other hypotheses and appropriate initial and
boundary conditions14. A negative result does not by itself show
which of these hypotheses or conditions is false. To put it another
way, the logical asymmetry to which Popper draws attention is
matched by another: a confirming prediction confirms all of the
hypotheses and conditions from which it follows; a falsifying
observation does not similarly falsify all of the hypotheses and
conditions from which it follows15.

Finally, the Popperian methodology shares an important
difficulty with H-D accounts generally. Both are premised on
the assumption that hypotheses take the form of universal
conditionals. But it is often the case, perhaps almost always
in ecology, that hypotheses have a probabilistic or statistical
form. We have already referred to the difficulty in deducing
observational consequences from such hypotheses. The
falsifiability criterion is similarly tailored to “All A are B”
examples. It cannot deal effectively with the multi-factor multi-
causal hypotheses typical of ecology. All of this said, it must be
added at once that Popper’s methodology has not itself been
“falsified.” A great deal of valuable research has been carried out
by ecologists in attempts to follow Popper’s guidelines (albeit
substituting “rejection” for falsification properly so-called, as is
necessarily the case when hypotheses do not take the form of
universal conditionals)16.

In brief, problems with Popper do not show that all of the
research done in his name is either misguided or without value.
They do prompt us to look for other accounts of hypothesis
testing that avoid failures in Popper’s own. It is in any case a
mistake to fix on one method as uniquely satisfactory. Different
testing methods are appropriate as different types of research
questions are asked.

Error-Statistical and Significance Testing
Significance or error-statistical testing in fact pre-dated the H-D
model, both as regards its initial formalization and its widespread
acceptance among ecologists. The latter undoubtedly had to do
with the fact that ecological generalizations, even those taken as
lawlike, are for the most part statistical in character. It involves
a procedure not unlike Popper’s. That is, it provides a way

13Up to a point. There are notable examples of non-falsifiable zero-force principles

that play an indispensable role, the First Law of Motion in Newtonian mechanics,

the Hardy-Weinberg Law in ecology.
14See Houston (2014) for a case study in ecology of the ways in which “the logic of

every hypothesis is based on the underlying assumptions.”
15Popper (1974, p. 1035) recognized the difficulty. Yet he does not resolve it beyond

leaving it to “the scientific instinct of the investigator,” as did Duhem himself. See

also The Logic of Scientific Discovery, p. 76n. It is also always possible in principle

to re-interpret the allegedly falsifying data. See Kidwell and Holland (2002) for

a taphonomic/stratigraphic re-interpretation of the fossil record on which it is

consistent with classical evolutionary theory (and not, as Darwin himself was

worried, a straightforward falsification of it).
16An especially interesting ecological example is the study of individualist and

community-unit concepts carried out by Shipley and Keddy (1987).

of rejecting (not falsifying) hypotheses and at least indirectly
provides support for their alternatives. Variants on this testing
theme are associated with Fisher, Neyman, and Pearson. Since it
is so well-known among ecologists, to the extent that significance
testing is virtually synonymous with “statistical testing,” and even
“testing” tout court, there is no need for much detail. It suffices to
point out in a very broad way why it is inadequate, and then to
discuss briefly its recent redeployment by the philosopher Mayo
(1996; 2018) and Mayo and Spanos (2010).

On its Fisher variant, the viability of a hypothesis is probed
by comparing an observed result with the distribution of results
predicted by the hypothesis. That is, any hypothesis (typically
described as “null”) is rejected if an observed result (and results
more deviant) would be predicted by the hypothesis with a low
probability (P-value). Commonly, a result is judged “significant,
if it is of such a magnitude that it would have been produced
by chance not more frequently than once in twenty trials. This is
an arbitrary, but convenient, level of significance for the practical
investigator” (Fisher, 1929, p. 191), viz., no more than 5% of
the time. On the other hand, if results as or more deviant than
the observed results would be predicted more than 5% of the
time, the proper “Fisherian” conclusion is not to accept the
hypothesis, but to recognize a failure to reject the hypothesis. The
obvious problem is that any number of otherwise incompatible
hypotheses in the same area of research could predict the results
and in this very general sense be confirmed17. The Fisher singular
hypothesis account is too weak to discriminate them.

On the Neyman-Pearson variant18, “the only valid reason
for rejecting a statistical hypothesis is that some alternative
hypothesis explains the observed result with a greater degree of
probability” (Pearson, 1938). One of the hypotheses compared
is invariably in practice if not also in theory “null,” and
the commonly accepted significance level continues to be
conventionally set at 0.05, however arbitrary the number. In
essence, an NP test is a Fisherian test of the null hypothesis using
a test statistic designed to maximally differentiate between the
two hypotheses. Usually, this statistic is the likelihood ratio for
the two models or its logarithm.

The NP approach differs from Fisher’s view in a second respect
as well. The Fisherian test has an inductive and rather open-
ended character. The Fisherian P-value is just something for the
scientist to think about when trying to come to grips with nature.
The NP test on the other hand is set up to be a clear-cut decision
procedure. A critical level (designated α) for the P-value of the
null hypothesis is set a priori, with the result that you either
accept the null hypothesis or accept the alternative. An artifact
of the black or white nature of NP testing is that small differences
in the data can make large differences in inference. While in a
properly interpreted Fisherian test, the difference between a P-
value of 0.051 and 0.049 makes very little difference, in a properly
interpreted NP test, if the critical level has been set to 0.05, this
small difference makes a great deal of inferential difference.

17See Anderson et al. (2000). See also Läärä (2009).
18Which might more accurately be called Neyman-Pearson or NP

hypothesis testing.
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NP analysts realize that their procedure makes mistakes.
Neymann and Pearson distinguished two types of errors: Type I
(rejecting a true null hypothesis) and Type II (accepting a false
null hypothesis). They console themselves with the belief that
they can both measure and control the rate of errors. In fact the
magnitude of those error rates is the sole measure of the validity
of NP test inferences.

A cryptic consequence of NP test construction now emerges.
The calculation of error rates is tightly bound to the assumption
that one or the other alternative is true. If the data are generated
by some process other than one of the two alternative hypotheses,
the calculation of error rates may be deeply disrupted (see Dennis
et al., 2019, for a detailed analysis of this problem).

Thus, while the inference from Fisherian tests may be too
weak, the inference from NP tests may be too strong. As pointed
out by Chatfield (1995), analyzing the wrong models is likely to
be the greatest source of error in statistical analysis. Further errors
are often made, in part because many ecological hypotheses lack
measurable power and precision, in part because of the number
and complexity of the variables to be taken into account in
the case of field observations. The result, or so outsiders often
agree, is a widespread lack of confidence in significance testing
generally19. On both variants, it is too easy to attribute biological
to mere statistical significance.

Mayo attempts to bolster confidence in error-statistical testing
by imposing Popper-like severity constraints on it. However,
there are at least two ways her account differs from Popper’s.
First, hers is probabilistic, his deductive. Second, she wants to “go
smaller” and focus on testing individual statistical hypotheses; his
focus is on testing “global theories” like Newton’s and Einstein’s.
On Mayo’s account, an adequately stringent test combines weak
and strong severity principles. The weak principle has two key
features. One is that a severe test is such that the probability is low
that the test procedure would pass a hypothesis subjected to it if
the hypothesis were false. The other feature is that the probability
that the data agree with the alternative hypothesis is very low.
On the strong severity principle, data provide good evidence for
a hypothesis if it passes the severe test procedure, that is, is in
agreement with the data. Like Popper, Mayo emphasizes that the
more severe the test, the greater its probative value. She also
shares with him the assumption that hypotheses may be tested
individually, in a non-comparative context (or rather, that the test
is always with respect to a hypothesis and its negation). But this
assumption introduces the potential for bias, not simply by way
of adding auxiliaries to it so as to square the hypothesis with the
data once errors have been detected in it, but also by leaving out
of account that other hypothesesmight be better supported (more
severely tested) by the same data. To alleviate this problem, Mayo

19A lack exacerbated by widespread inability to replicate results published in

peer-reviewed articles. It is troubling without further explanation that (a) there

is a growing number of P values per ecology article published (since “the more

P values, the higher the odds that any given result will be significant even if

it’s just the result of chance”) and (b) “the reported value of the coefficient of

determination, R2, has been falling steadily (suggesting a decrease in the marginal

explanatory power of ecology).” See Low-Décarie et al. (2014), and for the first

embedded quotation (Stokstad, 2014). Murtaugh (2014), among others, defends

the traditional use of P values by ecologists, but on mathematical grounds.

and Spanos (2004) advocate “misspecification testing,” but this
only helps for misspecifications that can be conceived of.

Bayesian Inference
A third and increasingly influential option to the H-D model has
been to fill the gaps in it by providing an inverse characterization
of the way in which data directly confirm or otherwise support
hypotheses. It does so by supplementing deductive logic with
the full resources of probability theory and is known as
Bayesian Inference.

The first gap in the H-D model is the absence of any way of
determining both the means by which and the extent to which
data confirm a hypothesis. The gap is filled by Bayes Theorem,
so-named after its eighteenth century originator. The Theorem
is easily derived from the axioms of probability theory together
with a definition of conditional probability. The probabilities
within it are interpreted as measures of belief. It states that if
the probability of the data is not equal to zero, the posterior
probability of the hypothesis is equal to its prior probability,
i.e., the willingness of particular agents to bet that it is true,
before new or additional data bearing on it have been gathered,
multiplied by the probability of the data given the hypothesis
divided by the “expectedness” of the data, i.e., the marginal
probability of the data averaged over the hypothesis and its
alternatives. More compactly,

• Pr(H|D)= [Pr(H)× Pr(D|H)]/Pr(D).

On the Bayesian account, to confirm (disconfirm) a hypothesis is
just to raise (lower) its prior probability, viz.,

• D confirm H just in case Pr(H|D) > Pr(H)20.

This measure of confirmation is qualitative. There are alternative
ways to measure the degree to which a hypothesis is confirmed,
but a common metric is in terms of the difference between the
prior and posterior probabilities, Pr(H|D) – Pr(H). Whether the
degree is “high” or “low” depends on the particular confirmation
measure chosen, the implicit standards of disciplinary scientific
communities, and the research purposes of the investigator.

It follows as an immediate corollary of the Bayesian
account of confirmation that it applies to probabilistic
or statistical hypotheses as much as it does to universal
conditionals, thus filling a second gap left open by the H-D and
falsification accounts.

The third “gap,” if such it can be called, left open by the H-
D and its falsification variant is that they provide no way on
the basis of which to choose hypotheses to put to experimental
test. For traditional H-D theorists, they have no particular
advance rationale, for Popper they are merely “conjectures” on
an individual scientist’s part, the bolder the better. But as Aaron
Ellison, one of a rather small number of ecologists in the 1980’s
to urge adoption of Bayesian methods, puts it (Ellison, 1986),

We rarely, if ever, test all possible hypotheses, and most
of us use substantial prior knowledge about the behavior

20Which might also be put in terms of the relevance of the data to the belief thatH

is true. I.e., If Pr(H|D)= Pr(H) then the data D are irrelevant re belief adjustment.
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of a system in designing our experiments. Unlike classical
frequentist statistical practice, Bayesian inference requires the
investigator to state assumptions explicitly and use pre-existing
information quantitatively to define the prior distribution or
hypothesis (p. 1041).

In what are sometimes referred to as “empirical” or “standard”
applications of Bayes Theorem, the prior probability
distributions are estimated on the basis of observed
relative frequencies in the data. In non-standard cases, the
distributions are a function of the ecologist’s previously acquired
beliefs (including hunches and intuitions) about the object
of investigation.

The fourth and final gap, very much underscored by Ellison,
is that Bayesian inference lends itself in a uniquely transparent
way to adaptive management and environmental decision-
making. On the one hand, just as Bayesian agents begin, as
most of us in fact (and rather unconsciously) do, with an
initial probability distribution over plausible hypotheses and
expected outcomes, up-dating and re-adjusting the distribution
as data accumulate, continually learning from experience21, so
too (ideally) adaptive land and wildlife managers treat decisions
as hypotheses to be tested, choosing them where possible on
the basis of past experience, and modifying them as necessary
in the light of the observed outcomes to which they lead. To
manage adaptively is to learn from experience, to acknowledge
the inevitability of uncertainty is to be open to policy changes
as additional data are brought to bear on policies already
in place. That the degree of uncertainty with which initial
decisions are made can be measured and then re-evaluated
as time goes by, moreover, reassures the public that policy
shifts are never arbitrary or capricious, and nearly always open
to revision.

On the other hand, the usual decision-protocols routinely use
Bayes Theorem to calculate optimal courses of action on the
basis of the probability of outcomes and their respective utilities.
A rational agent—manager, politician, or citizen—chooses the
course of action that maximizes the product of the (posterior)
probability of its outcome and its expected utility. This is as
should be expected. We act rationally in such a way as to
maximize our desires (utilities) given that we have particular
beliefs (probabilities) concerning the future, at least insofar as our
actions are intentional22.

21If learning from experience is to be possible, then it is reasonable to insist that

learners should not have an a priori, and hence prior, beliefs that an empirical

hypothesis is true to degree 1, i.e., could not possibly be false, or false to degree

0, i.e., could not possibly be true. Empirical hypotheses are never more than

merely probable, which is to say that our beliefs concerning their truth are always

uncertain to one degree or another. Nevertheless, some hypotheses aremuch better

confirmed than others, and provide a more secure basis for action. It is the task of

an adequate theory of confirmation, or so the Bayesian argues, to make clear the

grounds of the difference. Although uncertainty can never be eliminated, it can be

brought to heel.
22Of course, this is no more than an idealization. In practice, policy decisions

involve reconciling a number of different, often-conflicting, objectives, and there

is no algorithm by means of which all can be optimized. The relatively recent

discipline of multiple-criteria decision-making seeks to optimize, if not the criteria,

then the trade-offs between them (see Deb, 2013).

CONFIRMATION AND EVIDENCE

Ellison admits that

Not all ecologists . . . appreciate the philosophical underpinnings
of Bayesian inference. In particular, Bayesians and frequentists
differ in their definition of probability and in their treatment of
model parameters as random variables or estimates of true values.
These assumptions must be addressed explicitly before deciding
whether or not to analyze ecological data (Ellison, 2004, p. 509).

Agreed: the assumptions must be addressed. In brief, (a) the
decision whether or not to use Bayesian methods depends on
the type of research question being asked, (b) there are several
clear differences between these types, and (c) an unaided used of
Bayesian methods does not ensure the objectivity rightly held to
follow from an appropriate use of “scientific method(s).”

There are various types of research question23. One is: given
a datum, what should I believe, and to what degree? This
question has to do with the confirmation of my beliefs. A second
question is: what kind of evidence does the datum provide
for one hypothesis as against another, and how strong is the
evidence? Admittedly, “confirmation” and “evidence” are used
interchangeably; D is often taken as evidence for H just in
case D confirms H. But they should be distinguished rather
sharply. Their conflation is the source of a great deal of error in
philosophy, statistics, and perhaps also in the practice of science.
Intuitively, confirmation is agent-dependent in the sense that a
hypothesis is confirmed if and only if the agent’s degree of belief
in it is raised. Incorporating as it does an agent’s belief, it in this
same sense subjective. Evidence in the narrow technical sense
used here, a relation between the likelihoods of data/models,
however, is agent-independent; it has to do not with raising
agents’ prior degrees of belief in a hypothesis on the basis of
the data subsequently collected, but in assessing the relative
probability of the data under one hypothesis as opposed to under
another. It is in this sense, objective, incorporating a logical
and belief-free relation between data and hypothesis. It is also
intuitively comparative. Evidence consists of data more probable

23Royall (1997) was perhaps the first statistician to distinguish sharply between

confirmation and evidence questions in just the way that we do here. One of the

anonymous referees of this paper has reminded us that the confirmation question

is normative – what should an agent believe? – while the second, evidential,

question asks the merely descriptive question – in what conditions do data provide

evidence for a hypothesis. This distinction is important; what “should” be believed

brings with it the presupposition that the agent is rational, and this presupposition,

in turn, constrains the limits of belief, imposing a measure of “objectivity” on

them. It is certainly more plausible to contend that D provide evidence for H

just in case they bolster rational belief that it is true. The immediate difficulty

with this sort of attempt to square confirmation with evidence is that it eventually

requires imposing such strong constraints that all fully rational agents will assign

the same prior probabilities at the outset of their inferences given that they share

the same background information (see Williamson, 2005, pp. 11–12). There are

several problems with the “unique probability constraint” (see Bandyopadhyay

and Brittan, 2010), perhaps the most important of which is that “sharing the

same background information” is vague if not also question-begging, an unhelpful

proxy for objectivity. In part for this reason, traditional Bayesians make their case

for objectivity not on the constraining of priors but the convergence of posterior

probabilities. That convergence is not a sufficient condition of unbiased objectivity

will be demonstrated later.
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on one hypothesis than on another. The greater the likelihood
ratio, the stronger the evidence. In contrast, hypotheses are
confirmed one at a time as the probability of (belief in) their truth
is raised (strengthened).

The same idea, that “confirmation” and “evidence” vary
conceptually, is perhaps best illustrated by “crucial experiments.”
Such experiments discriminate one equally-well confirmed
hypothesis from another and at the same time provide evidence
for one as against the other. Although Darwin’s explanation of
evolution by way of natural selection had been generally accepted
by that time, it remained an open question in the early 1940’s
whether mutations among bacteria occur as either an adaptive
response to an environmental stimulus (an instance of the
Lamarckian theory of the heritability of acquired characteristics)
or randomly (in which case they are transmitted to the next
generation as a function of reproductive fitness). Both theories
had their defenders. In what is arguably the most famous single
experiment in the history of ecology/evolutionary biology, Luria
and Delbruck devised a way to test the two hypotheses (Luria
and Delbruck, 1943). They exposed a number of parallel cultures
to viruses known as phages, “subcellular parasites that infest,
multiply within, and kill bacteria.” On the Lamarckian theory,
bacteria adapt to their phage environment; hence, the number
of mutations that occur should be both relatively small and
constant across bacterial cultures. The Darwinian theory, that
phage-resistant mutations occur randomly and prior to exposure
entails that the number of phage-resistant mutations should vary
dramatically from one culture to the next, and since available
earlier in the process, the mutations accumulate much more
rapidly where they occur in lines before phage exposure.

Slightly more precisely, Delbruck and Luria hypothesized
that if phage-resistant mutations occurred after exposure, the
number of survivors would approximate a Poisson distribution,
on which the mean would equal the variance. What they
found was that the variance was much greater than the mean.
They then drew the Darwinian conclusion (as did the rest of
the biological community) that bacterial mutations are indeed
random, as are macro-organism mutations, rather than post-
adaptive or “directed.”

EVIDENTIAL STATISTICS24

This is what evidence does, allows us to discriminate in a
straightforwardly objective way between hypotheses that may be
otherwise equally well-confirmed. As we have just seen, there are
cases in which there is strong evidence for one of a pair of equally
well-confirmed hypotheses. There are also cases in which there is
no such evidence25, cases in which the evidence is strong and the
degree of confirmation low, and so on.

24We use “the likelihood-ratio account of evidence, “evidential statistics,” and

“Likelihoodism” somewhat interchangeably. It is important to note that the

likelihood ratio is only an important special case of a more general class of

measures that constitute the core of evidential statistics. See Lele (2004) on the

“efficiency” of this particular evidential function.
25See Rosenzweig’s (1936).

We can make this account of evidence more precise. It
involves the comparison of the merits of two models, M1 and
M2 (possibly, but not generally ∼M1) relative to the data D and
background information B.

• D is evidence for M1as against M2just in case Pr(D| M1) >

Pr(D|M2)
26.

This is often called the Likelihoodist (LR) account of evidence.
It follows at once that “data” are to be distinguished from
“evidence.” Data constitute evidence only with respect to models
in a well-defined comparative context27. To put this more
precisely, evidence is a data-based estimate of the relative
discrepancy of two models to the generating process. In the
case of simple models, the log-likelihood happens to be an
estimate (up to a constant) of the Kullback-Leibler discrepancy
between the generating process and a model. As with the
original confirmation account, this formulation is qualitative. A
commonly-used measure of the degree of evidence vis-à-vis a
model comparison is the numerical ratio of the likelihoods28.
Note in this connection that if 1 < LR ≤ 8, then D is often held
to provide “weak” evidence for M1as against M2, while when LR
> 8, D provides “strong” evidence for M1as against M2. Note
also the shift from talking about “hypotheses” and “theories” to
talking about “models.”Hypotheses are often formulated in verbal
rather than mathematical terms and they rarely provide potential
and predictive data-distributions. They can be either true or
false. Models are mathematically-formulated and idealized data-
generating mechanisms. They can generate data-distributions
near or far from what might be termed the “naturally”
generated distributions. Observed data or experimental results
support model1 over model2 if the potential/predictive data
generated by the first are by some agreed-upon measure closer
to the observed data than the potential data generated by
the second. Differences of information criteria are estimates
of KL discrepancy differences that adjust for biases caused
by estimation.

Although the terms have been used rather carelessly to this
point, “hypothesis” is more helpfully associated with Bayesian
inference, “model” with Evidential testing, leaving to the side
any questions concerning how either relates to “theory” (which
intuitively includes both hypotheses and models as components,
links them by way of explanatory principles and basic concepts,
and affords successful prediction of data in a wide variety of sub-
disciplines; force is such a basic concept and the laws of motion
the explanatory principles in classical physics, natural selection,

26Equivalently, the ratio of the two likelihoods is >1.
27The quantity Pr(D|M) is usually referred to in the philosophical literature as

a “likelihood.” But while numerically the likelihood of the model given the data

is proportional to the probability of the data given the model, likelihood and

probability differ conceptually; the likelihood is considered a function of the

model, whereas the probability is considered a function of the data. The common

philosophical notation of Pr(D|M) rather than the common statistical notation of

L(M;D) is adopted here, but is not meant to imply that the model M needs to be

considered a random variable.
28Or the logarithm of the likelihood ratio. Nothing in the present discussion turns

on the difference; the respective ordinal structures remain the same.
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and adaptation the basic concepts and explanatory principles in
Darwinian biology)29.

Evidence and confirmation thus characterized differ in a
number of important respects, some of which have already
been mentioned. Data can provide a high or low degree of
confirmation to a hypothesis while at the same time providing
weak or strong evidence for it in a comparative context. This is to
say that while D confirms H if and only if D constitutes evidence
for M with respect to ∼M30, there is no linear relationship
between their respective degrees31. Moreover, given the way in
which they are quantified, degrees of confirmation can vary
between 0 and 1 exclusive, while numerical values of evidence on
a likelihood ratio can range from 0 to ∞ inclusive (or -∞ to ∞

in the case of the log-likelihood ratio).

CONFIRMATION, EVIDENCE, AND THE

ANTHROPOGENIC CLIMATE-CHANGE

HYPOTHESIS

The distinction between confirmation and evidence is
indispensable for both theory and practice, and not often
made. But it also bears directly on the public understanding
of the way in which science informs policy formation. Simply
put, controversy with sweeping social, political, and economic
consequences sometimes arises, to one extent or another, from
failure to draw it.

A sample controversy has to do with the anthropogenic
“global warming” hypothesis, that is, the hypothesis that present
warming trends are human-induced. If it does not raise questions
concerning foundational physical theories, it does with respect to
their application32.

A wide spectrum of data raises the posterior probability of
the hypothesis, in which case they confirm it. Indeed, in the
view of most climatologists, this probability is very high. The
Intergovernmental Panel on Climate Change contends that most
of the observed temperature increase since the middle of the

29Some readers of this paper may be disappointed by the lack of precision in this

definition of “theory.” They should look at Marquet et al. (2014): “In ecology,

there is generally no consensus regarding the definition, role, and generality of

theories. . . .A summary of the ecological literature finds reference to 78 theories.”
30I.e., it is provable that Pr(M|D) > Pr(M) just in case [Pr(D|M)/Pr(D| ∼M)]> 1,

i.e., when the two models are mutually exclusive and jointly exhaustive. Models,

unlike hypotheses, don’t often have negations, only alternatives. In this respect it

differs from Bayesian-testing, which presupposes an implicit comparison between

a hypothesis and its negation only. It is in this sense that evidence-testing allows

for genuinely multiple models, Bayesian-testing does not.
31One of the reviewers has corrected the original formulation of this claim, and has

also urged us to make clear that the claim presupposes the difference measure of

confirmation we have taken as our model. It should be added that while numerical

similarities/dissimilarities between the proposed measures of confirmation and

evidence vary with the way in which each is characterized, the ways in which the

probability operators in each are interpreted—in terms of beliefs or bets in the

case of confirmation, in terms of formal relations in the case of evidence—force a

conceptual distinction between them, as does the ability to unravel such heretofore

intractable problems in the foundations of statistics as the notorious “paradoxes of

confirmation” (see Bandyopadhyay et al., 2016, Chapter 9) or to clarify one source

of public policy controversies.
32The following two paragraphs are drawn from Bandyopadhyay et al. (2016, pp.

40–44). References documenting the empirical claims made can be found there.

twentieth century has been caused by increasing concentrations
of greenhouse gases resulting from human activity such as
fossil fuel burning and deforestation. In part this is because
the reasonable prior probability that global warming is human-
induced is very high. It is assigned not on the basis of relative
frequencies so much as on the explanatory power of the models
linking human activity to the “greenhouse effect,” and thence
to rising temperatures. In part, the posterior probability of the
hypothesis is even higher because there are so many strong
correlations in the data. Not only is there a strong hypothesized
mechanism for relating greenhouse gases to global warming, this
mechanism has been validated in detail by physical chemistry
experiments on a micro scale, and as already indicated there is
a manifold correlation history between estimated CO2 levels and
estimated global temperatures. Of course, some climate skeptics
emphasize how difficult it is to get standardized and reliable data
for such a long period of time and from so many different places,
others point out that it has not always been true that changes
in CO2 levels precede changes in temperature. But the main
skeptical lines of argument are that (a) the likelihood of the data
on the alternative default (certainly simpler) hypothesis, that past
and present warming is part of an otherwise “natural” and long-
term trend, and therefore not “anthropogenic” is just as great,
(b) that the data are at least as likely on other, very different
hypotheses, among which solar radiation and volcanic eruption,
(c) that not enough alternative hypotheses have been considered
to account for the data. That is, among credible climate skeptics
there is somewillingness to concede that burning fossil fuels leads
to CO2 accumulation in the atmosphere and that carbon dioxide
is a greenhouse gas that traps heat before it can escape into the
atmosphere, and that there are some data correlating a rise in
surface temperatures with CO2 accumulation. But, the skeptics
continue, these correlations do not “support,” let alone “prove,”
the anthropogenic hypothesis because they can be equally well
accounted for on the default, “natural variation” hypothesis or by
some specific alternative. Since there is very little evidence for the
hypothesis, it is not, the skeptics conclude, very well confirmed
(and for this and other reasons massive efforts to reduce carbon
emissions are a costly mistake). But this conclusion rests on a
conflation of evidence with confirmation, and provides a striking
reason why it is necessary to distinguish the two.

Data are evidentially relevant only if they discriminate
hypotheses, and such data in the case of human-induced
warming have been difficult to come by. That fact has premised
at least part of the skeptics’ argument that the rise in atmospheric
CO2 comes from, e.g., the ocean, and is therefore “natural,” at the
very least as likely a cause of the greenhouse gases responsible for
temperature rise as the human-induced explanation. Such data
have, however, been identified increasingly33. For example, most
carbon atoms have an atomic mass of 12, but about 1% has an
atomic mass of 13. Both kinds can form CO2 molecules, 12CO2

and 13CO2, distinguishable in the laboratory. To put a complex
story very simply, it can be shown that if the CO2 atmosphere
comes from the surface (and not the depths) of the ocean, then
13CO2 will increase over time. If the CO2 comes from fossil

33What follows draws on the very accessible overview by Farley (2008).
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fuel burning, then the relative abundance of 13CO2 to 12CO2

will decrease. Experimental results show that the 13CO2/
12CO2

ratio is decreasing, evidence for the hypothesis that fossil fuels
rather than surface water is mainly responsible for rising levels
of CO2 in the atmosphere, and hence (on the assumption that
rising levels of CO2 are a cause of rising temperatures) for the
anthropogenic hypothesis.

BAYESIAN OBJECTIVITY

Two crucial differences between confirmation and evidence have
been alluded to but must be underlined. First, confirmation
is psychological in character, involving as it does changes
in an agent’s personal degree of belief that a hypothesis is
true. Evidence is logical in character, an agent-independent
relationship between models and data34. It follows not only
that confirmation is “kinematic,” beliefs re-adjusted over time
as data are accumulated, evidence “static,” an atemporal as well
as impersonal relationship between models and data, but also
that the probability operators in their respective accounts are
not to be interpreted in the same way. Confirmation tracks
changes in belief and thus degrees of uncertainty in an agent’s
mind. Evidence has to do, rather, and as already noted, with
a logical relation. The former probabilities are psychological
and in this sense “subjective,” the latter formal and for this
reason “objective.”

It would seem to follow that since the credibility of their
claims depends on the extent to which they are objective, the
method of model statistics should be preferred by practicing
ecologists. But this is not the end of the matter. On the one
hand, traditional, i.e., self-described “subjective Bayesians” make
a case for the objectivity of their method of testing hypotheses.
On the other, so-called “objective Bayesians” both curb the source
of subjectivity in applications of Bayes Theorem and play down if
not also discount completely the subjective/objective distinction
as an unwanted philosophical distraction. Since both approaches
are increasingly popular, each must be examined.

Confirmation and Convergence
Bayesian inferential techniques inform decision-making
processes. They do so by way of the fact that decisions are to
be explained in part in terms of their beliefs and desires. This
is to imply that whether the decisions themselves are good
or bad is agent-dependent. It is but a short natural if not also
logical step to conclude that they are all, even research decisions,
“biased.” One much-discussed example is “confirmation bias,”
focusing one’s efforts on finding data that confirm one’s beliefs

34To avoid misunderstanding, the choice of models to test is not agent-

independent, only the formal relationship between the models tested and the

data-distributions in which they issue. Both Bayesianism and Evidential Statistics

are “rationalist” or “top-down” in that they begin with hypotheses and models

and then proceed to gather data, not the other way around. In this respect, both

are to be sharply distinguished from frequentist approaches which begin with

correlations in the data gathered. In that Mayo begins with simple statistical

hypotheses, her approach (Mayo, 2018, p. 85) is in a related sense “bottoms-up.”

and thus potentially misrepresenting what is in fact the case35.
Meta-studies of reported ecological claims provide some support
for this conclusion36, and of course it is a source of at least some
of the public’s resistance to take them seriously. In the case of
Bayesian inference, the charge stems directly from the role that
prior probabilities play. Such probabilities are “subjective” in the
straightforward sense already indicated.

Traditional Bayesians contend that it is demonstrable
(Walker, 1969) that the influence of priors “wash out” over
time, in which case the inference is ultimately “objective.”
So long as certain conditions (event-exchangeability and the
like) hold and assumptions (concerning parameter identifiability
and the omission of idiosyncratic priors) are made, the beliefs
of different agents, no matter how unlike at the outset, will
eventually converge to the maximum likelihood solution as data
accumulate. What is not often appreciated is that the rate of
convergence (or whether it occurs at all) depends both on the
nature of the data and of the models. Unfortunately, the real
world of science is not always asymptotic. Data cost money and
take time to acquire. So while Bayesian inference and maximum
likelihoodmay often agree, sometimes in real world analyses they
do not – with practical consequences (Lele, under review; see also
the further discussion of this point below).

Further, the idea that Bayesian convergence is tantamount
to objectivity in an adequately strong sense of the word is
misleading. On the one hand, “objectivity” is here equated with
“inter- subjective agreement,” which is to say that for all of the
consensus involved, the probability is not agent-independent37.
Invariance is not to be confused with independence. However,
much the prior probabilities might “wash out” numerically in
the calculation of posterior probabilities via Bayes Theorem, they
must still include reference to them in principle. The reference
in principle is crucial not because it influences the calculation,
but because it embeds stochasticity in the head as “uncertainty,”
and not in the world. A fully objective scientific inference draws
conclusions about the way the world is, and not about the way in
which consensus, however general, has been reached.

On the other hand, the asymptotic intuition embedded in
the notion of Bayesian convergence again leads naturally if not
also logically to the conclusion that common agreement about
the way things stand in the world is tantamount to truth. But
this optimistic suggestion is hostage to the history of science.
Commitment to the belief that in their inter-dependency, self-
regulation, and complexity, undisturbed biotic communities
evolve in the direction of greater complexity was “settled science”
among ecologists for well-over a 100 years. Only relatively
recently has it been more and more challenged. Convergence
of belief doesn’t entail its truth. Confidence may be raised,
even to the point of near-certainty, when it is in hindsight

35See Kahneman (2011, p. 81): “Contrary to the rules of philosophers [or at least of

Karl Popper], who advise testing hypotheses by trying to refute them, people (and

scientists quite often) seek data that are likely to be compatible with the beliefs they

currently hold.”
36For documentation of such bias see Fanelli (2010) and Holman et al. (2015).
37Nor, for that matter, independent of the many pressures brought to bear on the

up-dating of beliefs by disciplinary communities (in the person of editorial staffs

and funding agencies).
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unwarranted. This is why the rote response to those who question
anthropogenic global warming–“it is the consensus of experts”—
is far from conclusive and to much of the public unconvincing.

Non-informative Priors and Invariance
There is a 2-fold option for the increasing number of ecologists
who find it more computationally convenient to use Bayesian
up-dating techniques to analyze multi-layered/factor hierarchical
or space-state model of complex data, but who are uneasy
about the apparent subjectivity of prior probabilities in the
inferences they make. This option is set out in a very lucid and
thought-provoking way by Clark in his widely-cited paper, “Why
environmental scientists are becoming Bayesians” (Clark, 2005).
It consists of placing a constraint on allowable priors and easing
the tension sometimes induced when metaphysics and method
are mixed.

A variety of constraints on priors have been proposed. Most of
them are epistemic in character. They range from total knowledge
on the part of the up-dating agent to total ignorance, some
version of applying the Principle of Indifference to the choice of
priors. Although both have a long history, it is not entirely clear
how each is to be made precise (see Bandyopadhyay and Brittan,
2010). Clark opts for the latter—a flat or non-informational
constraint. It is mathematically-convenient to do so. Moreover,
it ensures agent-independency in this sense, that the agent is
assumed to know nothing about the hypothesis at hand at the
outset of his or her inferential activities; no prior beliefs are
presupposed (in which case, at least in principle, “the data are
allowed to speak for themselves”). But it also harbors problems,
several of which are set out by Lele (Frontiers of Ecology and
Evolution, this issue), and illustrated by case studies of the
survival of the kit fox and declines in amphibian populations.

Since it is immediately available to the reader, there is little
point in rehashing the rather technical paper here. Suffice it to say
that Lele draws several unintended but important consequences
from the long-known fact (see Fisher, 1930) that flat parameters
are not invariant under transformation. For our purposes, two
are particularly important. The first is that in a sample viability
analysis, the population prediction interval (PPI) obtained by
maximum likelihood ratios (MLR) under two parameterizations
of the data are similar, while those obtained by non-informative
priors differ from each other and from the MLR PPI. Despite
what Clark says (Clark, 2005, pp. 3 and 5), Bayesian inferences
based on flat priors do not lead to the same (numerical)
conclusions as likelihood-based inferences on the same data.

The second consequence (Clark, 2005, lines 258–259) is that
“different versions of the non-informative priors on the natural
parameters induce different priors (and hence biases) on the
induced parameters of scientific interest.” Simply put, the fact
that flat priors are not invariant under transformation can be
used to demonstrate that while on occasion Bayesian inferences
resemble likelihood-based inferences and appear bias-free, on
closer examination and other occasions this is not the case.

Although Clark admits (Clark, 2005, p. 4) that “the
importance of philosophy should not be understated,” the
“focus” of his paper is that “the emergence of modern [viz.,
objective hierarchical] Bayes has little to do with philosophy,
but rather comes from pragmatism.” But as Lele makes clear

in some detail, Clark’s failure to take philosophical questions
concerning the concept of objectivity more seriously led him
to ignore the problematic character of his answers to them,
and opens up legal and legislative challenges to flat-prior
ecological inferences which lack the requisite invariance under
transformation and parameterization.

Computation and Cloning38

Modern Bayesianism is ostensibly (but problematically) superior
to its unacceptably “subjective” original by way of restricting
allowable priors. It is often held to be similarly superior to
Likelihoodism in its apparently unique ability to compute
the likelihood function in complex statistical inferences from
and to hierarchical models. These models are very useful,
indeed indispensable, in understanding the processes underlying
complex ecological data. As Ponciano et al. (2009, p. 356)
put it, “computing the likelihood function needed for such
inferences requires an intractable, high-dimensional integral.
[But] inferences using computer intensive Bayesian methods
sidestep this difficulty by simulating observations from a prior
distribution using one of the various Markov chain Monte Carlo
algorithms.” This surmounting of very genuine computational
problems is undoubtedly an important factor in the growing
popularity of these Bayesian methods.

Lele et al. (2007, 2010) recognized that the Bayesian
computational methods could be coopted to calculate fully
frequentist maximum likelihood estimates and their standard
errors using an approach called data cloning. Ponciano et al.
(2009), developed an extension to data cloning (the data cloned
likelihood ratio or DCLR) that in a similar way affords the
calculation of likelihood ratios or the differences of information
criterion values. These are the fundamental tools of evidence, and
hence of evidence comparing hierarchical models.

Thus, the computational advantage enjoyed by Bayesian
methods is no more than apparent. If one assumes that statistical
paradigms should be (mainly) compared computationally and
conceptually, and if (at least in the wake of Ponciano et al.,
2009 and also Lele et al., 2007) there is nothing (basically)
to choose between the Bayesian and Likelihood paradigms
computationally, then the difference is conceptual, and in
this sense “philosophical.” The announcement of philosophy’s
irrelevancy by Clark and others was premature.

COGNITIVE BIASES AND THE METHOD OF

MULTIPLE MODELS

It needs to be made clear that convergence per se is
a demonstrable consequence of the Likelihood account of
evidence. Indeed on any adequate statistical paradigm, inferences
should improve as more model-relevant data are analyzed39.

38Another referee helpfully asked for a brief comment on cloning.
39Because model misspecification is allowed in an evidential framework, data-

model consistency is not identical with classical consistency. Of course, if the

generating process is actually a model in the model set, it should be asymptotically

identified. Under model misspecification, however, misleading and weak evidence

still both need to go to zero as sample size increases to infinity. Asymptotically

the model selected should be the model in the model set closest to the

generating process.
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But there is an underlying problem confronting Bayesian
convergence. It has been called “availability bias.” Bayesianmodel
identification converges to truth only if the “true” model is in
the set of hypotheses under consideration40. As the statistician
Barnard (1949) once wrote:

To speak of the probability of a hypothesis implies the possibility
of an exhaustive enumeration of all possible hypotheses, which
implies a degree of rigidity foreign to the true scientific spirit. We
should always admit the possibility that the experimental results
may best be accounted for by a hypothesis which never entered
our heads.

In fact, there are two problems here. The more general is that
Bayesian convergence assumes that all investigators start out with
the same model set, however at variance their initial degrees
of uncertainty with respect to its members’ truth. The more
specifically Bayesian problem is that it makes little sense to assign
prior probabilities to members of the model set unless that set is
assumed closed. Both problems result from the “availability bias.”

But this bias, as also the “confirmation bias” mentioned
earlier, is eliminated with the introduction of multiple models
required by the Likelihood account of evidence. First, models
on this account are pairwise compared, without assigning prior
probabilities to any of them, i.e., without incorporating a
subjective bias in the testing procedure. Second, data constitute
evidence only in a contextual way, conditional on the two models
compared. The most one can say is that one or the other is
better supported, not that it is closer to the truth. The challenge
is to find other models and new data against which models
to compare it. Bayesian convergence does not allow for the
heretofore unimagined, either with respect to the initial model
set or heretofore unrealized conditions. As ecologists know
perhaps too well, new models at different levels of organization
are introduced all the time as explanatory insights emerge and
ecosystems change41.

A striking example is provided by research on stress-induced
mutation. As Foster (2007) puts it,

. . . after 20 years of research, evidence now suggests that
various types of stresses induce responses that have mutagenic
consequences, and that sometimes this essentially randomprocess
can appear to be directed. . .

Change, not stasis, is the rule. In this case what has emerged
is a model on which mutations are generated even prior to

40That the “true model” is assumed to be in the model set follows from the fact that

the prior probabilities of the hypotheses considered must sum to 1. See Lindley

(2001) for an attempt to avoid the problem by pointing out that Bayesian inference

is always conditional on a set of models and “convergence” understood as relative

to it. To relativize convergence in this way, however, is to relativize “true model,”

and with it the “objectivity” that Bayesian convergence is intended to ensure.
41Chamberlain (1897), Platt (1964), and Burnham and Anderson (2002) among

others have understood the virtues of multiple models. On the LR account

of testing, evidence has real bite only when it serves to distinguish between

them. Human-caused and ocean-temperature caused global warming are not

simplymutually-exclusive and (we assume for present purposes) jointly-exhaustive

alternatives; stronger or weaker evidence for and against them can be gathered

in a genuinely comparative context. Apparently such a context has not yet been

developed for the deforestation hypotheses mentioned above.

the operation of Darwinian and Lamarckian selection pressures
and appears consistent with both. This is to say that what we
early took as an exemplary “crucial experiment,” viz., Delbruck
and Luria’s analysis of phage-resistant bacteria cultures, was
not42. As Turkey said in a memorable paper (Tukey, 1960, p.
425), “Conclusions are established with careful regard to the
evidence. . . [but] accepted subject to future rejection. . . .[They
are] taken to be of lasting value, but not everlasting value.”

Darwinian Objectivity
Given that in its present conceptual-methodological state ecology
generally considered appears so unsettled43, it might be asked
whether it really is a science, and not an area studies program,
grouping together a number of rather different investigative
activities under the general heading of “organisms and the
environment.” The emphasis on “integration” or “synthesis”
in some of the textbooks mentioned suggests an urgent need
to find, or impose, a common core. The traditional way of
understanding the question, “is it really a science and, if so,
in what respects?” viz., “how closely does it resemble classical
physics in its general aims and methods?” has rightly been
rejected. No one any longer thinks that philosophers can
determine in a more or less a priori fashion what the “right”
concept of science is, or pretend that there is one (and only
one) method of implementing it, or that all scientific laws must
take the form of universal conditionals. But there is more to
be said.

In a broad perspective, theoretical and conceptual clarification
in ecology continue; their integration remains a somewhat distant
goal. The possibility of methodological progress is nearer at hand.
We have illustrated such progress in the case of hypothesis and
model testing. There are at present two particularly plausible
accounts, Bayesian confirmation and the Likelihoodist account
of evidence. Their integration depends less on their unification
than on assigning them their proper roles. Choosing ecological
models to test and formulating/implementing environmental
policies are (like betting) actions; they are to be explained
or justified (as a normative Bayesian does) in terms of a
(rational) agent’s beliefs and desires. Beliefs and desires in
turn are traditionally and, we think, most plausibly to be
understood in personal probabilistic terms; some beliefs are
more certain than others, some desires stronger. It follows
that one should use Bayesian methods when the question is:
what should I do? The resulting answer concerns the extent
to which particular beliefs have been fortified in the process
of up-dating (up-data-ing) them. Likelihood ratios, on the
other hand, are agent independent. The probabilities embedded
in them have nothing to do with either beliefs or desires,
but with logical relations between sentences describing data
and articulating models. Such ratios answer the question:
which model (among those compared) is better supported by
the data?

42See Cairns et al. (1988) for the initial clue re stress-induced mutation, and

Houston (2014) for a multi-model approach to re-thinking the rejection of at least

two classic population equilibrium hypotheses.
43Some would say it is in a state of crisis, despite all of the enormously illuminating

work done over the last several generations in its many sub-disciplines, island-

biogeography among them.
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Insofar as they measure uncertainty, Bayesian inferences
lead to irreducibly personal conclusions, however great the
agreement respecting these conclusions proves to be over time
among different people. The LR account of evidence compares
models with their alternatives, and each accumulates support
or not as the predictions to which they lead are verified.
Since ecological models are for the most part stochastic, so
too are the events and processes that, in a clear sense, they
objectively represent. Greater methodological self-consciousness
about the methods they use to test hypotheses/models should
provide helpful guidance to ecological scientists and, in
identifying (at least in general terms) the sources of their
objectivity, make the policy recommendations of individual
wildlife and wildland managers more credible with the
general public44.

Our emphasis on the L-R account of evidence is not new, but
it has yet to gain much ground in ecology. As a recent paper
by Betini et al. (2017) discovered, “only 21 of 100 randomly
selected studies from the ecological and evolutionary literature
tested more than one hypothesis, only eight tested more than
two hypotheses.” Yet as we have argued, it is only insofar as
multiple models are pairwise compared vis-à-vis the data and
in this way tested that the main forms of cognitive bias can be
ruled out.

Two final notes. One is that both Bayesian confirmation and
Likelihood evidence rely importantly, although not completely45,
on the predictions to which hypotheses and models lead.
Prediction in ecology is very difficult46. Humans are an integral
part of many if not all of the ecological systems they study and
their research and policy interventions alter them in the process
of such study. As a result, a majority of ecologists still fall back on
falsification and simplified versions of significance testing. It very
much needs more methodological attention.

44See Maunder and Piner (2015): “Bayesian analysis accommodates the use of

prior information in integrated assessments, allowing sharing of information from

other species. It also allows for the representation of uncertainty in a probabilistic

context, which is ideal for decision analysis.” In this wayMaunder and Piner take it

as supplementing Likelihood testing which is widely used in fisheries management.
45The extent to which they explain and aid understanding of ecological events and

processes also factors into their evaluation.
46See Dietze (2017) and Maris (2018).

The other note is this. The Likelihood account leads to
convergence, as do all good parameter estimators, in the sense
that as favorable data continue to be accumulated, the evidence
for particular models becomes stronger and stronger. However,
there is not convergence toward a “final theory,” or even
assumed that the “true model” is among those already under
consideration. New explanations of events and instruments of
their prediction may from 1min to the next be discovered or
invented. As in the case of Darwin’s theory of natural selection,
progress is measured in terms of the survival of mutations in the
face of environmental pressures. From this point of view, testing
methods do not result in approximations to some stipulated goal
but are measures of survival value. What we term “Darwinian
objectivity” presupposes competition between accounts, whether
of ecological phenomena or appropriate methodologies.

In this deep way, the Likelihood account is well-suited to
ecology. On it, models are never more or less true but epistemic
stages in the course of evolution, contingent on conditions
which are themselves subject to continuing change, and on the
intervention in the biotic and abiotic environments of human
beings whose behavior is itself conditioned on the success or
failure of the models they test. Stochasticity and survival are
fundamental dimensions of natural processes. So too are they
features of any adaptive, objective and self-conscious account of
model testing, and therefore of scientific method generally.

AUTHOR CONTRIBUTIONS

GB and PB originally conceived the main the theme of the
paper. GB completed the first draft. Both authors contributed to
the revisions of the manuscript and approved the final version
for submission.

ACKNOWLEDGMENTS

Two of the editors of this issue of Frontiers in Ecology and
Evolution, Mark L. Taper and José M. Ponciano, have made some
very useful suggestions regarding the paper. The three referees for
this issue of Frontiers in Ecology and Evolutionmade a number of
helpful comments on our original submission, all of which we
have tried to address in our revisions.

REFERENCES

Anderson, D., Burnham, K., and Thompson, W. (2000). Null hypothesis testing:

problems, prevalence, and an alternative. J. Wildl. Manag. 64, 912–923.

doi: 10.2307/3803199

Bandyopadhyay, P., and Brittan, G. (2010). Two dogmas of strong objective

Bayesianism. Int. Stud. Philos. Sci. 24, 45–65. doi: 10.1080/02698590

903467119

Bandyopadhyay, P., Brittan, G., and Taper, M. (2016). Belief, Evidence, and

Uncertainty. New York, NY: Springer.

Barnard, G. (1949). Statistical inference. J. R. Stat. Soc. Ser. B 11, 115–149.

doi: 10.1111/j.2517-6161.1949.tb00028.x

Betini, G., Avgar, T., and Fryxell, J. (2017). Why are we not evaluating multiple

competing hypotheses in ecology and evolution? R. Soc. Open Sci. 4:160756.

doi: 10.1098/rsos.160756

Botkin, D. (1990). Discordant Harmonies: A New Ecology for the Twenty-First

Century. New York, NY: Oxford University Press.

Burnham, K., and Anderson, D. (2002). Model Selection and Multi-Model

Information: A Practical Information-Theoretic Approach, 2nd Edn. New York,

NY: Springer.

Cairns, J., Overbaugh, J., and Miller, S. (1988). The origin of mutants. Nature

(London) 335, 142–145. doi: 10.1038/335142a0

Cassey, P., and Blackburn, T. (2006). Reproducibility and repeatability in ecology.

Bioscience 56, 958–959. doi: 10.1641/0006-3568(2006)56[958:RARIE]2.0.CO;2

Chamberlain, T. (1897). The method of multiple working hypotheses. J. Geol. 5,

837–848. doi: 10.1086/607980

Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. J. R.

Stat. Soc. Ser A 158, 419–466. doi: 10.2307/2983440

Clark, J. (2005). Why environmental scientists are becoming Bayesians. Ecol. Lett.

8, 2–14. doi: 10.1111/j.1461-0248.2004.00702.x

Frontiers in Ecology and Evolution | www.frontiersin.org 13 October 2019 | Volume 7 | Article 399

https://doi.org/10.2307/3803199
https://doi.org/10.1080/02698590903467119
https://doi.org/10.1111/j.2517-6161.1949.tb00028.x
https://doi.org/10.1098/rsos.160756
https://doi.org/10.1038/335142a0
https://doi.org/10.1641/0006-3568(2006)56[958:RARIE]2.0.CO;2
https://doi.org/10.1086/607980
https://doi.org/10.2307/2983440
https://doi.org/10.1111/j.1461-0248.2004.00702.x
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Brittan and Bandyopadhyay Ecology, Evidence, and Objectivity

Da Silva, J., Steiner, A., and Schreiner, E. (2018, October 3). Forests: a natural

solution to climate change, crucial for a sustainable future. United Nations

Development Programme.

Deb, K. (2013). An evolutionary based Bayesian design optimization

approach under incomplete information. Eng. Optim. 45, 151–165.

doi: 10.1080/0305215X.2012.661730

Dennis, B., Poinciano, J., Taper,M., and Lele, S (2019). Errors in statistical inference

under model misspecification: evidence, hypothesis testing, and AIC. Front.

Ecol. Evol. doi: 10.3389/fevo.2019.00372

Dietze, M. (2017). Prediction in ecology: a first principles framework. Ecol. Appl.

27, 2048–2070. doi: 10.1002/eap.1589

Duhem, P. (1962). The Aim and Structure of Physical Theory, ed P. Weiner. New

York, NY: Atheneum.

Ellison, A. (1986). An introduction to Bayesian inference for ecological research

and decision-making. Ecol. Appl. 64, 1036–1046.

Ellison, A. (2004). Bayesian inference in ecology. Ecol. Lett. 7, 509–520.

doi: 10.1111/j.1461-0248.2004.00603.x

Errington, P. (1945). Some contributions of a fifteen-year local study of the

northern bob-white to a knowledge of population phenomena. Ecol. Monogr.

15, 1–34. doi: 10.2307/1943293

Fanelli, D. (2010). Do pressures to publish increase scientists’ bias?

An empirical support from US states data. PLoS ONE 5:e10271.

doi: 10.1371/journal.pone.0010271

Farley, J. (2008). The scientific case for modern anthropogenic global warming.

Monthly Rev. 60. doi: 10.14452/MR-060-03-2008-07_5

Fisher, R. (1929). The statistical method in psychical research. Proc. Soc. Psych. Res.

39, 189–192.

Fisher, R. (1930). Inverse probability. Proc. Camb. Philos. Soc. 26, 528–535.

Ford, D. (2000). Scientific Method for Ecological Research. Cambridge: Cambridge

University Press.

Foster, P. (2007). Stress-induced mutagenesis in bacteria. Crit. Rev. Mol. Biol. 42,

373–397. doi: 10.1080/10409230701648494

Hempel, C. (1965). Studies in the Logic of Confirmation. Aspects of Scientific

Explanation. New York, NY: Free Press.

Holman, L., Head, M., Lanfear, R., and Jennions, M. (2015). Evidence of

experimental bias in the life sciences: why we need blind data recording. PLoS

Biol. 13:e1002190. doi: 10.1371/journal.pbio.1002190

Houston, M. (2014). Disturbance, productivity, and species diversity: empiricism

vs. logic in ecology theory. Ecology 9, 2382–2396. doi: 10.1890/13-1397.1

Kahneman, D. (2011). Thinking Fast and Slow. New York, NY: Farrar, Strauss,

and Giroux.

Kidwell, S., and Holland, S. (2002). The quality of the fossil

record: implications for evolutionary analyses. Annu. Rev.

Ecol. Syst. 33, 561–588. doi: 10.1146/annurev.ecolsys.33.030602.

152151

Läärä, E. (2009). Statistics: reasoning on uncertainty, and the insignificance

of testing null. Ann. Zool. Fennici 46, 138–157. doi: 10.5735/086.

046.0206

Lele, S. (2004). “Evidence function and the optimality of the law of likelihood,”

in The Nature of Scientific Evidence, eds M. Taper and S. Lele. Chicago, IL:

University of Chicago Press.

Lele, S., Dennis, B., and Lutscher, F. (2007). Data cloning: easy maximum

likelihood estimation for complex ecological models using Bayesian

Markov Chain Mlonte Carlo methods. Ecol. Lett. 10, 551–563.

doi: 10.1111/j.1461-0248.2007.01047.x

Lele, S. R., Nadeem, K., and Schmuland, B. (2010). Estimability and

likelihood inference for generalized linear mixed models using data

cloning. J. Am. Stat. Assoc. 105, 1617–1625. doi: 10.1198/jasa.2010.

tm09757

Lindley, D. (2001). The philosophy of statistics. J. R. Stat. Soc. 49, 293–337.

doi: 10.1111/1467-9884.00238

Low-Décarie, E., Chivers, C., and Grenados, M. (2014). Rising complexity and

falling explanatory power in ecology. Front. Ecol. Environ. 12, 412–418.

doi: 10.1890/130230

Luria, S., and Delbruck, M. (1943). Mutations of bacteria from virus sensitivity to

virus resistance. Genetics 28:491.

Maris, V. (2018). Prediction in ecology: promises, obstacles, and clarifications.

Oikos 127, 171–183. doi: 10.1111/oik.04655

Marquet, P., Allen, A. P., Brown, J. M., Dunne, J. A., Enquist, B. J.,

Gillooly, J. M., et al. (2014). On theory in ecology. Bioscience 64, 701–710.

doi: 10.1093/biosci/biu098

Maunder,M., and Piner, K. (2015). Contemporary fisheries stock assessment: many

issues still remain. ICES J. Mar. Sci. 72, 7–18. doi: 10.1093/icesjms/fsu015

Mayo, D. (1996). Error and the Growth of Knowledge. Chicago, IL: University of

Chicago Press.

Mayo, D. (2018). Statistical Inference as Severe Testing. Cambridge: Cambridge

University Press.

Mayo, D., and Spanos, A. (2004). Methodology in practice: statistical

misspecification testing. Philos. Sci. 71, 1007–1025.

Mayo, D., and Spanos, A. (2010). Error and Inference. Cambridge: University of

Cambridge Press.

Murtaugh, P. (2014). In defense of P values. Ecology 95, 611–617.

doi: 10.1890/13-0590.1

Pearce, F. (2008, October 9). Conflicting data: how fast is the world losing its

forests? Yale Environment 360.

Pearson, E. (1938). Student vs. statistician. Biometrica 30, 210–250.

Pickett, S., Kolesa, J., and Jones, C. (2007). Ecological Understanding: The Nature of

Theory and the Theory of Nature, 2nd Edn. Amsterdam: Elsevier.

Platt, J. (1964). Strong inference. Science 146, 347–353.

doi: 10.1126/science.146.3642.347

Ponciano, J., Taper, M., Dennis, B., and Lele, S. (2009). Hierarchical models in

ecology: confidence intervals, hypothesis testing, and model selection using

data cloning. Ecology 90, 356–362. doi: 10.1890/08-0967.1

Popper, K. (1934/1959). Logik der Forschung. The Logic of Scientific Discovery.

London: Hutchinson.

Popper, K. (1974). Intellectual Autobiography. The Philosophy of Karl Popper, ed P.

Schilpp. LaSalle, IL: Open Court.

Romesburg, C. (1981). Wildlife science: gaining reliable knowledge. J. Wildl.

Manag. 45, 293–313. doi: 10.2307/3807913

Rosenzweig, S. (1936). Some implicit factors in diverse methods of psychotherapy.

Am. J. Orthopsychiatry 6, 412–415. doi: 10.1111/j.1939-0025.1936.tb05248.x

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. London: Chapman

and Hall.

Saint-Mont, U. (2018). Where Fisher, Neyman and Pearson went astray: on the

logic (plus some history and philosophy) of statistical tests. Adv. Soc. Sci. Res. 5,

672–691. doi: 10.14738/assrj.58.4867

Schmitz, O. (2017). The New Ecology: Rethinking a Science for the Anthropocene.

Princeton, NJ: Princeton University Press.

Shipley, B., and Keddy, P. (1987). The individualistic and community-

unit concepts as falsifiable hypotheses. Vegetatio 69, 47–55.

doi: 10.1007/BF00038686

Shrader-Frechette, K., and McCoy, E. (1993). Method in Ecology: Strategies for

Conservation. Cambridge: Cambridge University Press.

Stokstad, E. (2014, August 25). Is ecology explaining less and less? Science.

Tukey, J. (1960). Conclusions vs. decisions. Technometrics 2, 423–433.

doi: 10.1080/00401706.1960.10489909

Walker, A. M. (1969). On the asumptotic behavior of posterior distributions. J. R.

Stat. Soc. Ser. B 31, 423–433.

Williamson, J. (2005). Bayesian nets and causality. Oxford: Oxford University

Press.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2019 Brittan and Bandyopadhyay. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Ecology and Evolution | www.frontiersin.org 14 October 2019 | Volume 7 | Article 399

https://doi.org/10.1080/0305215X.2012.661730
https://doi.org/10.3389/fevo.2019.00372
https://doi.org/10.1002/eap.1589
https://doi.org/10.1111/j.1461-0248.2004.00603.x
https://doi.org/10.2307/1943293
https://doi.org/10.1371/journal.pone.0010271
https://doi.org/10.14452/MR-060-03-2008-07_5
https://doi.org/10.1080/10409230701648494
https://doi.org/10.1371/journal.pbio.1002190
https://doi.org/10.1890/13-1397.1
https://doi.org/10.1146/annurev.ecolsys.33.030602.152151
https://doi.org/10.5735/086.046.0206
https://doi.org/10.1111/j.1461-0248.2007.01047.x
https://doi.org/10.1198/jasa.2010.tm09757
https://doi.org/10.1111/1467-9884.00238
https://doi.org/10.1890/130230
https://doi.org/10.1111/oik.04655
https://doi.org/10.1093/biosci/biu098
https://doi.org/10.1093/icesjms/fsu015
https://doi.org/10.1890/13-0590.1
https://doi.org/10.1126/science.146.3642.347
https://doi.org/10.1890/08-0967.1
https://doi.org/10.2307/3807913
https://doi.org/10.1111/j.1939-0025.1936.tb05248.x
https://doi.org/10.14738/assrj.58.4867
https://doi.org/10.1007/BF00038686
https://doi.org/10.1080/00401706.1960.10489909
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles

	Ecology, Evidence, and Objectivity: In Search of a Bias-Free Methodology
	Introduction
	The Deforestation Controversy: Hypothesis, Policy, and Lack of Trust
	Enter Philosophy of Science
	Hypothesis-testing Methods in Ecology
	Hypothetico-Deductive Testing
	Falsification and Corroboration
	Error-Statistical and Significance Testing
	Bayesian Inference

	Confirmation and Evidence
	Evidential Statistics24
	Confirmation, Evidence, and the Anthropogenic Climate-Change Hypothesis
	Bayesian Objectivity
	Confirmation and Convergence
	Non-informative Priors and Invariance
	Computation and Cloning38

	Cognitive Biases and the Method of Multiple Models
	Darwinian Objectivity

	Author Contributions
	Acknowledgments
	References


