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Efforts to conserve the migratory phenomenon of monarch butterflies in eastern North

America have increased since a 2013–2014 monitoring report documenting a historical

population low at the Monarch Butterfly Biosphere Reserve in Mexico. Surprisingly, there

have been few systematic attempts to develop predictive models of monarch butterfly

distributions along their migratory route between Mexico, the United States and Canada.

Here we produced monthly habitat suitability models for monarch butterflies along their

migratory route to identify potential areas for resting, feeding, and reproduction of the

population. We compiled a point occurrence database of monarch butterflies for Mexico,

USA, and Canada, including georeferenced records from GBIF, the Naturalista platform

in Mexico, Correo Real initiative, and the Mexican governmental monitoring network

for the monarch butterfly. We produced monthly habitat suitability models (HSM), using

the R language and environment for statistical computing, abiotic (WorldClim), edaphic,

and topographic variables. A total of 95 HSM were produced for each month. June

to September, corresponding to the reproduction months in North America showed the

highest geographic extent with suitable habitats; April, corresponding to the reproduction

of the first post-migration generation, showed the smallest area. September, October,

and November, correspond to the movement of the monarch butterfly southward,

showed typical recognized distribution of the phenomenon and the overwintering

months. December to February showed the smallest geographic extent in habitat

suitability. Edaphic variables ranked high in importance in HSM for 11 of 12 months,

indicating the relevance of vegetation and floral resources in the monarch butterfly

migration route. Identifying such regions contribute to establish concrete conservation

programs accordingly, as reduction of the use of pesticides and herbicides, decrease

in the speed of cars in roads, and planting species with high nectary value, among

other. Our study provides a first predictive spatio-temporal approximation of the monarch

butterfly migratory route annual cycle.

Keywords: citizen science, habitat suitability models, distribution, conservation areas, habitat suitability, monarch

butterflies
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INTRODUCTION

The eastern North American monarch butterfly (Danaus
plexippus) population undertakes the longest documented insect
migration in the world (Agrawal, 2017; Sarkar, 2017). The
journey from its overwintering habitat in central Mexico to the
Midwest and northeast of the United States and southeastern
Canada over 3–4 generations each spring, and back to Mexico
in one generation each fall, is up to 4,500 km each way.
The behavioral complexity of the long and, in one direction
multi-generational, migration both makes the phenomenon
unique and of conservation interest, but also difficult to protect
because of the extent and diversity of habitats used by the
monarch butterflies. There is also a western population of
monarchs that was believed to winter in southern California
and migrate to northern California and further north and
east during the summer. While it was assumed that the
two populations were geographically isolated, evidence has
recently accumulated of moderate gene flow between them
(Yang et al., 2016; Agrawal, 2017).

Overwinteringmonarch populations of the eastern population
at the Monarch Butterfly Biosphere Reserve in the State of
Michoacan and the State ofMexico, were estimated to be over 400
million individuals in the early 1990s but only about a hundred
million since 2010 with a historical low of about 35 million
in 2013–2014. Efforts to conserve the migratory phenomenon
of monarch butterflies have increased since that monitoring
report. Different threats have been proposed to negatively affect
monarch butterflies along their migratory route including (a)
the lack of availability of milkweed (Asclepias ssp.) in their
breeding areas due to pesticide use along their migratory route,
contributing to loss of vegetation (the milkweed limitation
hypothesis; Brower et al., 2012); (b) individual mortality during
the fall migration (the migration survival hypothesis; Agrawal,
2017); (c) decline in the size of the winter habitat for roosting
in Mexico (the winter habitat loss hypothesis; Brower et al.,
2012); (d) extreme climatic events in their overwintering area (the
climate hypothesis; Brower et al., 2012), and the loss of nectar
resources (Malcolm, 2018). Multiple causal mechanisms may be
responsible for the decline in monarch numbers and no single
hypothesis yet suggested can be excluded. The relative role of
each of the proposed mechanisms will require further research.

Thus, it is useful to map the areas used by the monarch
butterflies at discrete time steps; HSM models built from records
at monthly time intervals allows us to examine how habitat
selection changes over the course of the monarch butterfly
migration (Batalden et al., 2007; Hayes et al., 2015; Coxen et al.,
2017). In the case of the eastern monarch butterfly population,
HSM models for the reproductive season (March–September)
have been produced for the United States and Canada (Batalden
et al., 2007; Lemoine, 2015). Those results reported that monarch
butterflies prefer similar environmental features throughout the
summer but switch to a very different set of environmental
features for the winter (Batalden et al., 2007; Lemoine, 2015).

Since the report showing low values of the overwintering
population in 2013–2014 (Vidal and Rendón-Salinas, 2014),
several initiatives have been launched to improve our knowledge

on the migratory route of the monarch butterfly in Mexico. For
example, the establishment of the Monarch Butterfly National
Monitoring Network in 2015 includes now detailed monitoring
programs in 44 protected areas in 29 states that have produced
more than 4,000 new records of monarchs butterflies along their
migratory route in Mexico (CEC, 2017). New data demonstrate
that there are monarch butterflies crossing southward along
western of Mexico in the States of Chihuahua, Durango,
Nayarit, and Sinaloa (unpublished data). This means that the
western population does not overwinter only in California. The
extended southern migration could hypothetically also facilitate
interbreeding between the eastern and western populations,
which would be in closer spatial proximity during the winter
compared to the summer. Moreover, a new wintering site in
the same geographical region as those previously known was
reported during the 2018–2019 season. Given this context, we
aimed to produce spatio-temporal HSM for both the eastern and
western populations of the monarch butterfly migratory route.
Our study intends to provide a first predictive spatio-temporal
approximation of both the eastern and western populations of
the monarch butterfly at a monthly resolution.

MATERIALS AND METHODS

Our methodology involves building monthly HSM using a
maximum entropy modeling approach. HSM use two sources of
data: occurrence (or presence-pseudo-absence) points (longitude
and latitude of observation of an individual) and a set of
environmental layers. This methodology does not require
presence-absence data for species that can only be obtained from
systematic surveys. In the case of monarch butterflies, this is
particularly important because most occurrence points consist
of observations by citizen scientists. The output of the model
consists of the relative occurrence rate of the species in every
cell located within the geographical study area over which the
model is constructed. This distribution of spatial probabilities
can form the basis for further analysis or converted into a binary
distribution map using a minimum probability threshold for
predicted presence of a species or some other similar method
(Phillips et al., 2006).

Presence Data
We obtained records of collected specimens and observations of
monarch butterflies as follows: Global Biodiversity Information
Facility, GBIF (12,806 records of collected specimens and
observations, references below; download of records 15 March
2018), the Naturalista platform, CONABIO, Mexico (2,166
records of observations, http://www.naturalista.mx/taxa/
43155-Danaus-plexipus, download of records 21 December
2017), Correo Real Initiative, Mexico, CRI (11,199 records of
observations, unpublished data), the database of the National
Monarch Butterfly Monitoring Network in Mexico, NMMN
(4,050 records, unpublished data), published records of
overwintering colonies in Mexico (Vidal and Rendón-Salinas,
2014; 96 records) and unpublished data CONANP (6 records).
We refined this database selecting: (a) only georeferenced
records between 1970 and 2018, (b) records where collectors or
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TABLE 1 | List of climatic and topographic variables used in our study and in previous studies to model monarch butterfly distribution; tavg, average temperature; tmax,

maximum temperature; tmin, minimum temperature; prec, precipitation; srad, solar radiation; vapr, water vapor pressure; elev, elevation; slope, slope; aspect, aspect.

Source Variables

Climatic Topographic

tavg tmax tmin prec srad vapr elev slope aspect

Oberhauser and Peterson

(2003)

X X X X X X X X

Batalden et al. (2007) X X X X X X X X

Dingle et al. (2005) X

Flockhart et al. (2013) X X X X X X

Lemoine (2015) X X

Fisher et al. (2018) X X X X X X

observers were specifically mentioned, (c) unique localities, and
(d) records with complete dates (day, month, and year), totaling
1,928 records.

Predictor Variables
We used climatic, topographic, and edaphic variables as
environmental layers to produce the HSM monarch occurrence.
These variables represent direct and indirect gradients (Austin,
2002) that are presumed to be ecologically meaningful for
monarch butterflies, as floral resources along themigratory route,
or in overwintering grounds (Table 1). The selected climatic
variables were minimum and maximum monthly and average
values for temperature, precipitation, solar radiation, wind speed,
and water vapor pressure from theWorldClim 2.0 database at the
30 arc-second (∼1 km2) spatial resolution (Fick and Hijmans,
2017). The 19 bioclimatic variables derived from WorldClim
data are extensively used in model construction (Booth et al.,
2014; Porfirio et al., 2014; Vega et al., 2017). Since they represent
annual trends, extreme values and seasonality calculated from
temperature and precipitation of more than 1 month (e.g., BIO5
= Max Temperature of Warmest Month), they may not have
spatio-temporal coincidence with all the presence records along
the migratory route. Thus, these variables were not all used
produce HSM; rather, only the climatic variables that matched
the month of observation of the records were selected. A similar
monthly approach has been used to model the ecological niche
of breeding monarch butterfly populations (Batalden et al., 2007)
and the distribution of migratory bat species in North America
(Hayes et al., 2015).

The topographic variables included were elevation, slope,
aspect, and Compound Topographic Index (Moore et al., 1991)
from the HYDRO1k Elevation Derivative Database (EROS
Center, 2015). These variables represent attributes that are related
directly or indirectly to environmental gradients affecting species
distributions (Franklin, 2010), they have been used to model
plants (Franklin, 1995, 1998) as well as other taxon distributions
(Elith et al., 2006; Hasui et al., 2017) and their inclusion can
increase the accuracy of the models (Sormunen et al., 2011).
Aspect values were transformed from continuous to categorical
to reflect the slope direction as cardinal points. The edaphic

TABLE 2 | Feature classes (FC), regularization multipliers (RM), AUC based on the

test set (tAUC), average difference between training and testing AUC (av.diff.AUC),

the difference between the sample-size-adjusted Akaike information criterion value

(AICc) of the model, and the model with the lowest AICc value (1AICc), and true

skill statistic (TSS) of the selected models by month for the monarch butterfly

migratory route.

Month FC RM tAUC avg.diff.AUC 1AICc TSS

Jan L 2 0.767 0.094 0 0.538

Feb LQ 4 0.805 0.124 0 0.697

Mar LQ 1 0.823 0.059 0 0.57

Apr LT 2 0.852 0.075 0 0.689

May LQPH 4 0.836 0.032 0 0.562

Jun T 4 0.635 0.13 0 0.5

Jul LQ 2 0.719 0.047 0 0.403

Aug T 2 0.744 0.086 0 0.515

Sep T 2 0.753 0.08 0 0.493

Oct LQPT 2 0.865 0.043 0 0.64

Nov LQPHT 2 0.903 0.024 0 0.672

Dec LQP 1 0.872 0.044 0 0.599

variables were percent of clay content, bulk density, pH and
organic carbon values at 0.05, 0.3, and 2m soil depth obtained
from SoilGrids1km database (Hengl et al., 2014). These are
known to affect plant growth and have been used to predict the
distribution of shrub species (Hageer et al., 2017). Although they
are not very frequently used, edaphic variables could improve
the predictive value of distribution models of plant species based
solely on climate and topographic predictors (Dubuis et al., 2013;
Buri et al., 2017; Hageer et al., 2017; Figueiredo et al., 2018).
In sum, we included seven climatic, four topographic and 12
edaphic variables, respectively.

Treatment of Occurrence Data
The occurrence points were treated by removing outliers
according to the values of the predictor variables using (a) its
position with respect to the interquartile range, and (b) with
the reverse Jackknife procedure implemented in the R “Biogeo”
package (Robertson, 2016; Robertson et al., 2016). Given that
there are resident monarch butterflies and presence data do
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TABLE 3 | Number of records, suitable area, number of ecoregions intersected by

predicted suitable area and percentage of predicted suitable area where model

extrapolation occurs for the monarch butterfly migratory route.

Month Records Area (km2) Ecoregions % extrapolation

Jan 26 50,076 5 0.8

Feb 20 65,796 6 0.2

Mar 70 354,263 15 0.0

Apr 75 90,312 8 2.4

May 41 260,605 8 1.7

Jun 53 1,190,763 18 1.0

Jul 133 1,778,896 30 0.2

Aug 187 1,654,537 34 0.3

Sep 210 2,105,545 38 0.1

Oct 443 717,363 26 0.1

Nov 333 438,763 15 0.0

Dec 70 28,305 6 0.4

not provide enough information to discriminate residents from
migrant individuals, occurrence points were eliminated on the
basis of expert opinion that these records should be considered as
residents according to their geographical position and date. For
example, all records from April to August of Mexico and records
from November to February of northern Mexico and southern
USA, were considered to be from non-migratory monarch
butterflies and were removed. Table 3 summarizes the results
of this process by recording the number of occurrence points
that remained in the dataset after outliers were removed (See
Acknowledgments for the list of experts).

Habitat Suitability Models
HSM were constructed using a maximum entropy algorithm
(Phillips et al., 2006). Records were grouped by month, and
each month was modeled separately. For model calibration, the
values of the climatic variables for the correspondingmonth were
selected along with the topographic and edaphic variables, and
spatially masked to the polygons of the terrestrial ecoregions
of the world (Olson and Dinerstein, 2002) that contained
occurrence points. We chose the ecoregions as a delimitation
criteria (Soberón and Peterson, 2005) to draw pseudo-absences
fromDi Febbraro et al. (2016), since they reflect the history of the
distributions of particular biotas (Soberón, 2010), and represent
suitable areas for species that have been presumably available over
a relevant time period (Barve et al., 2011). Thus, there were 12 sets
of 23 predictive variables, one set for each month.

Multicollinearity can confound the interpretation of variables
driving the spatial distributions derived from species HSM (Elith
et al., 2010; Dormann et al., 2013). It is recommended to
minimize correlation among them through different methods
(Merow et al., 2013). Highly correlated variables were identified
and removed using the variance inflation factor (VIF) with the
R package “usdm” (Naimi et al., 2014). The algorithm identifies
a pair of variables with a correlation coefficient greater than
a defined threshold (i.e., 0.7), removing the variable with the
highest VIF, and repeats the process until no highly correlated

FIGURE 1 | Occurrence records of monarch butterflies remaining after a

geographical thinning at different nearest neighbor distances.

variables remains. Further, presence-background data records
from collections or citizen science projects are typically biased
since they often come from opportunistic surveys or accessible
sites (Dennis and Thomas, 2000; Syfert et al., 2013; Bird et al.,
2014; Fithian et al., 2015). This sampling bias could affect
performance and lead to inaccurate models (Phillips et al., 2009;
Fourcade et al., 2014). One approach to reduce the effects
of sampling bias is thinning the occurrence records in the
geographical space, and removing those located at a distance
from the nearest neighbor lesser than a threshold distance (NND)
(Aiello-Lammens et al., 2015). Although there is a considerable
number of records in our dataset, geographical thinning results in
a significant reduction at a small NND (Figure 1). Therefore, we
used a target-group background approach (TGB). TGB approach
is a method proposed to deal with sampling bias by choosing
background or pseudo-absence data with the same bias as
occurrence data (Phillips et al., 2009). We constructed a kernel
density map as a bias file for each month with records of the
Nymphalidae family obtained from GBIF, masked them with the
polygons of the terrestrial ecoregions of the world (Olson and
Dinerstein, 2002) that contained occurrence points, and used
them as sampling probability surface to draw 10,000 random
pseudo-absences (Di Febbraro et al., 2016).

For each of the 12 sets of predictive variables, 95 HSM were
constructed with MaxEnt Version 3. 3.3K (Phillips et al., 2006).
For each model, a unique combination of 19 feature classes
(FC) and five regularization multipliers (RM) were used. These
two parameters have influence on model accuracy (Phillips and
Dudík, 2008; Merow et al., 2013) and it is recommended to
“tune” them since the MaxEnt default settings can lead to overly
complex models (Radosavljevic and Anderson, 2014). The FC
are transformations of the covariates (i.e., predictor variables)
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FIGURE 2 | Partition of monarch butterfly localities from compiled records into

four bins (different colors) by the “checkerboard2” method to train and test the

models (See Methods for details).

that allows the fitting of non-linear and complex response curves
(Elith et al., 2011; Merow et al., 2013), while the RM are constant
values that prevent model over-fitting (Phillips and Dudík, 2008;
Merow et al., 2013). The FC used were: L= linear; Q= quadratic;
P = product T = threshold, H = hinge; and 14 combinations
of them (i.e., LQ, LP, LH, LT, QP, QH, QT, PH,PT, HT, LQP,
LQPH, LQPT, and LQPHT). The RM values went from 1 to 5
by increments of 1. Parameter tuning and model fitting were
performed with the R package “ENMEval” (Muscarella et al.,
2014). The data were partitioned into training and testing bins by
the “checkerboard2” method, which is a masked geographically
structured approach (Radosavljevic and Anderson, 2014). This
method divides the presences and pseudo-absences into four bins
according to two different checkerboard-like grids based on an
aggregation factor set to 10 (Figure 2) (Muscarella et al., 2014).

Of the 95 models, the HSM with the best performance was
selected with a sequential approximation, by first minimizing the
difference between the sample-size-adjusted Akaike information
criterion value (AICc) (Warren and Seifert, 2011) of the ith
model and the model with the lowest AICc value (1AICc). We
minimized the difference between training and testing AUC,
averaged across the four bins (avg.diff.AUC) (Muscarella et al.,
2014). This approximation allowed to select the optimal model
complexity, avoid overfitting (Wisz and Guisan, 2009; Sarkar
et al., 2010; Warren and Seifert, 2011) and to use the second
criterion (avg.diff.AUC) in case there were several models with
the same 1AICc value (Shcheglovitova and Anderson, 2013).
The selected models were projected to the geographic space to
the same extent of the predictors used to train the model. The
continuous suitability projections were transformed to discrete
presence-absence maps using the equal training sensitivity and
specificity threshold, which is adequate for presence-background
models (Cao et al., 2013). Its accuracy was assessed by means of
the true skill statistic (TSS) (Allouche et al., 2006). TSS values
ranges from −1 to 1, where 1 indicates perfect agreement and
values <=0 indicate a performance no better than random.

In order to detect areas of extrapolation due to predictor
values non-analogous to those under which the models were
calibrated, the extrapolation detection tool (ExDet) (Mesgaran
et al., 2014), implemented in the “ecospat” package (Di Cola
et al., 2017), was used. This tool measures the similarity
between reference and projection domains like the Multivariate
Environmental Similarity Surface feature implemented in
MaxEnt, but allows to detect novel combinations between
covariates, even if these are within the range of univariate
variation (Mesgaran et al., 2014). Predictor values corresponding
only to the presence and pseudo-absence points were used as
reference, while the projection set included all the predictors
values. ExDet output consist of continuous values; values below
zero indicate novel conditions at the univariate level, values
between zero and one indicate analogous conditions and values
above one represents new covariable conditions. All analyses
were carried out in the R language and environment for statistical
computing (R Core Team, 2018).

RESULTS

1AICc scores of the selected models were <2, indicating a
good fit (Muscarella et al., 2014). Model predictive performance,
estimated by the AUC based on the test set (tAUC) and TSS
are shown in Table 2. tAUC scores had a range from 0.63
to 0.90 (mean = 0.79) while TSS ranged from 0.40 to 0.69
(mean = 0.57). Model projections to the geographical space
are shown in Figure 3. The month with the largest extent of
suitable area was September (2,105,545 km2) and it was also the
month with predicted suitable habitat for the largest number of
ecoregions (38). Conversely, the month with the lowest suitable
area was December (28,305 km2). The number of ecoregions
intersected by the habitat suitability predictions for this month
were six (Table 3).

The differences in the extent of suitable areas between
months showed a contraction-expansion pattern when grouped
by different coarse defined stages. Southward movement stage
(MS), that included September, October and part of November,
presented a consistent suitable area reduction, reaching the
smallest suitable area at the overwintering stage (OW). The
northward movement stage presented an expansion through
March and, although there was a contraction for the two first
moths of the reproduction stage (REP) (i.e., April and May), the
suitable area reached the largest extent at this stage (Figure 4).

Predictor importance varied across months (Figure 5).
According to permutation importance, minimum temperature
was themost important for December and it was among the three
most important variables for February and August. Precipitation
was the first ranked for summermonths (June and August), while
water vapor pressure was one of the most important variables
for January, March, April, July, October, and November. Edaphic
variables were the most important for January, April, May,
October, and among the three most important for the remaining
months except February. The areas of extrapolation in the
discrete projections were negligible; according to the performed
with ExDet, none of them showed more than 2.5% of their area
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FIGURE 3 | Continuous (gray areas) and discrete (red areas) suitability projections by month of the monarch butterfly migratory route. Blue areas indicate zones where

model extrapolation occurs.
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FIGURE 4 | Expansion-contraction pattern of the suitable area extent for

month and seasons for the monarch butterfly migratory route. MN, northward

movement; MS, southward movement; OW, overwintering; REP, reproduction.

represented by non-analogous conditions (Figure 3, Table 3).
This is not surprising since the calibration and projection extents
were the same.

DISCUSSION

Most of the records used in this study were obtained from
citizen science. Thousands of individuals across North America
participate annually in different initiatives to monitor the
presence of monarch butterflies and these efforts allow, year
after year, the delineation of a sketch of the movements of
monarch butterflies. In the case of Mexico, for more than 25
years there have been several programs such as the Correo Real
initiative that facilitate the tracking of the migratory route of
the monarch butterfly the east of the country. Since October
2018, with the support of the National Commission of Natural
Protected Areas of Mexico, a mobile application was created
and has been available to facilitate the use of a monitoring
protocol by citizen scientists. This application, which will be
operational throughout the year, enables citizen scientists to
report a wide suite of potentially relevant variables such as the
growth stages of observed individuals and the physical state
of the wings of the butterflies by transmitting photographs of
the individuals. This application may significantly improve the
quality of the data available including an ability to discern
whether the recorded individuals are migratory or not. This in
turn will allow better modeling and analysis of the migratory
phenomenon in the future.

Due to the origin of these records, most of them have only
basic information such as locality, date, and time. However, an
increasing number of new records include additional relevant
information such as measures of visible threats or behavior of
monarch butterflies (e.g., perches, in erratic flight, migratory
flow, or feeding). Given that there are also resident populations
in Mexico, for which adults, caterpillars and eggs have been
observed during the same months in which the migration occurs

(unpublished data), the construction of monthly HSM for the
migratory process may present shortcomings when the locations
coincided with resident monarch individuals. Here we tried to
minimize this problem by using expert opinions for the data set
used for constructing the HSM.

Overall, the models of June to September were those that
predicted larger spatial extents with suitable habitats (Figures 3,
4). This result concurs with predictions of the models proposed
by Batalden et al. (2007). Conversely, April, corresponding to
the reproduction of the first post-migration generation, had
the smallest area for that season, with 90,312 km2. This result
underscores the importance of monitoring and maintaining
the critical habitat to reduce threats, so as to allow the
population growth and the movement of the next generations,
leading to large areas of suitable habitat in the subsequent
months. On September, October, and November, corresponding
to the movement of the monarch butterfly southward (CEC,
2017), the HSM showed typical recognized distribution of the
migratory phenomenon. During the overwintering season (here
considered between December to February due to the presence
of multiple individuals following the route during November),
our HSM resulted in a larger area than previously known to
be occupied by monarch butterflies in central Mexico of <0.18
km2 (CEC, 2017) (Table 3; Figure 3). This overestimation is
not surprising since the HSM did not considered some of
the variables affecting their distribution (i. e. biotic variables
like predation, parasitism, and food availability) (Soberón and
Peterson, 2005).

The importance of the minimum temperature on December
was consistent with previous findings (Masters et al., 1988),
although not for the same month; Oberhauser and Peterson
(2003) mentioned the influence of this variable for the
overwintering season. On the other hand, the relevance of
the edaphic variables is evident, ranking as important in the
HSM for 11 of the 12 months. This result is indicative that
vegetation and floral resources play an important role in
the monarch butterfly migration route. Water availability is
considered critical to the butterfly’s survival (Bojórquez-Tapia
et al., 2003); predictor variables related with this condition, as
water vapor pressure and precipitation (Jones, 1987) showed
to be relevant for the four stages. These findings demonstrate
the pertinence of including other variables in addition to
climatic variables for building HSM (Hageer et al., 2017).
However, these interpretations should be taken with caution
since the removal of highly correlated predictors poses the risk
of leaving out those with ecological relevance for the species
(Braunisch et al., 2013).

The HSM showed concordance with the identified
overwintering zones in the west, both in California (USA)
(Fisher et al., 2018) and in Baja California (Mexico). However,
the model for March predicted a migratory route from the
overwintering sites to the north of Mexico and south of the USA.
It is crucial to document the monarch butterfly migration route
followed in northwestern Mexico and citizen monitoring should
be promoted in these regions during the spring migration.
Our HSM corresponding to Abril apparently showed a smaller
area than those resulting from other studies conducted for
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FIGURE 5 | Variables showing percent contribution and permutation importance for each month for the monarch butterfly migratory route; aspect: aspect,

bld_05:bulk density at 5 cm, bld_30; bulk density at 30 cm, bld_200: bulk density at 200 cm, cly_05: clay content at 5 cm, cly_30: clay content at 30 cm, cly_200: clay

content at 200 cm, cti, compound topographic index; elev, elevation (m); orc_05, organic carbon at 5 cm; org_200, organic carbon at 200 cm; pH_05, pH at 5 cm;

pH_200, pH at 200 cm; prec, precipitation (mm), slope; srad, solar radiation (kJ m−2 day−1); tmax, maximum temperature (◦C); tmin, minimum temperature (◦C); vapr,

water vapor pressure (kPa); wind, wind speed (m s−1).

the eastern population (Batalden et al., 2007; Lemoine, 2015).
Nonetheless, the HSM for May to August coincided remarkably
with these studies, with the peculiarity that our model for
September, seemed to adequately describe the migratory
movements (Figure 4).

One contribution of our analysis is the urgency to establish
collaborative agreements between multiple stakeholders to
reduce the possible threats of priority sites of the monarch
butterfly migratory route, both for the eastern (where many
such sites have long been known), and for the western sites
(Figure 3). Advances in the monitoring of autumn and spring
migration will be crucial to determine, also, the proportion of
individuals that could be moving between the two currently
recognized populations. Our analysis has important conservation
implications because it identified regions that have a high priority
for monarch butterfly migration and, therefore, should be
targeted for protection from the use of pesticides or insecticides.
One strategy would be to establish dynamic conservation
programs over specific months and regions. For example,
targeting one set of areas, in March in Mexico for the beginning
of the migration; in April, for the first reproduction event

in Texas and California, and other areas for October and
November for areas in Texas, California, and in Mexico for the
fall migration.
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