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Recent years provided intense progression in the implementation of molecular techniques

in a wide variety of research fields in ecology. Biomonitoring and bioassessment can

greatly benefit from DNA metabarcoding and High-Throughput Sequencing (HTS)

methods that potentially provide reliable, high quantity and quality standardized data

in a cost- and time-efficient way. However, DNA metabarcoding has its drawbacks,

introducing biases at all the steps of the process, particularly during bioinformatics

treatments used to prepare HTS data for ecological analyses. The high diversity

of bioinformatics methods (e.g., OTU clustering, chimera detection, taxonomic

assignment) and parameters (e.g., percentage similarity threshold used to define OTUs)

make inter-studies comparison difficult, limiting the development of standardized and

easy-accessible bioassessment procedures for routine freshwater monitoring. In order to

study and overcome these drawbacks, we constructed four de novo indices to assess

river ecological status based on the same biological samples of diatoms analyzed

with morphological and molecular methods. The biological inventories produced are

(i) morphospecies identified by microscopy, (ii) OTUs provided via metabarcoding and

hierarchical clustering of sequences using a 95% similarity threshold, (iii) individual

sequence units (ISUs) via metabarcoding and only minimal bioinformatical quality

filtering, and (iv) exact sequence variants (ESVs) using DADA2 denoising algorithm. The

indices based on molecular data operated directly with ecological values estimated for

OTUs/ ISUs/ ESVs. Our study used an approach of bypassing taxonomic assignment, so

bias related to unclassified sequences missing from reference libraries could be handled

and no information on ecology of sequences is lost. Additionally, we showed that the

indices based on ISUs and ESVs were equivalent, outperforming the OTU-based one in

terms of predictive power and accuracy by revealing the hidden ecological information of

sequences that are otherwise clustered in the same OTU (intra-species/intra-population

variability). Furthermore, ISUs, ESVs, and morphospecies indices provided

similar estimation of site ecological status, validating that ISUs with limited
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bioinformatics treatments may be used for DNA freshwater monitoring. Our study is

a proof of concept where taxonomy- and clustering-free approach is presented, that

we believe is a step forward a standardized and comparable DNA bioassessment,

complementary to morphological methods.

Keywords: bioassessment, biomonitoring, diatoms, high-throughput sequencing, metabarcoding

INTRODUCTION

In the past several decades, use of bioindicator organisms has
been widely adopted in order to monitor, maintain or develop
the quality of water bodies worldwide. The permanently evolving
field of freshwater ecology made freshwater biomonitoring an
efficient tool, incorporated in national and international water
management frameworks like the Clean Water Act (CWA; U.S.
Congress, 1972) or the Water Framework Directive (WFD;
European Commission, 2000).

The EU WFD uses four groups of organisms (i.e., Biological
Quality Elements—BQEs) to assess ecological quality by
comparing the community structure of the impacted sites to the
community structure of a reference site considered not to be—
or slightly—affected by anthropogenic alterations (Pardo et al.,
2012). Experts faces several challenges depending on the BQE
they are working on but they are all limited by the following
factors: time consuming and costly sampling and preparation
procedures, differences in expert knowledge and equipment for
taxa identification, thus disharmony in taxa inventories among
laboratories (Kahlert et al., 2012).

The recent intense development of DNA metabarcoding
and High-Throughput Sequencing (HTS) techniques has set
a new milestone in biomonitoring (Baird and Hajibabaei,
2012; Leese et al., 2016; Keck et al., 2017). Instead of the
identification based on morphological features, this technique
employs standard gene markers to identify taxa-specific
sequences in the organism’s DNA, serving as a barcode
(Hebert et al., 2003). This method allows the simultaneous
identification of multiple taxa from multiple environmental
samples (Taberlet et al., 2012), being more time- and cost-
effective than the classical methods, providing a fine-scale
taxonomic characterization of communities, often revealing
hidden diversity (Lindeque et al., 2013).

However, in order to use metabarcoding techniques as a
routine biomonitoring tool, the standardization of the method
is required. Extensive studies have been produced analyzing
and suggesting solutions for the biases at each step of the
metabarcoding process including the sampling, DNA extraction
(Vasselon et al., 2017a), choice of the marker gene (Kermarrec
et al., 2013) or the choice of the applied HTS technology (Loman
et al., 2012; Shokralla et al., 2012). A further bias that can hamper
the comparability among different analyses is the large variety
of bioinformatic pipelines used to process HTS data. One step
particularly critical is the clustering of the raw sequence data into
operational taxonomic units (OTUs).

Molecular OTUs are widely used to describe microbial
communities using HTS amplicon sequencing as proxies for

species, generally using the 97% similarity threshold proposed
initially for the 16S rRNA gene by Stackebrandt and Goebel
(1994). Sequence clustering aims to reduce the noise in
the data and provide a granularity close to that of the
species delimitation. Clustering with a high sequence similarity
threshold to create OTUs increases the risk of giving ecological
sense to sequence errors and artifacts (Chen et al., 2013).
However, Edgar (2018) proposed a recent update of this
threshold to ∼ 99–100% and several studies advocate the
use of denoised DNA reads to avoid the biases linked to
the choice of the clustering algorithm and the similarity
threshold (Tikhonov et al., 2015; Edgar, 2016; Callahan
et al., 2017). Exact Sequence Variant (ESV) are considered as
unique DNA reads with biological meaning and they offer
several advantages for community analyses compared to OTUs,
including computational tractability, reproducibility of analysis
and the possibility to perform meta-analyses from different
studies (Callahan et al., 2017). Although the use of ESVs is an
important step toward a better characterization of intraspecific
genetic diversity (Elbrecht et al., 2018; Forster et al., 2019), they
still rely on denoising algorithm that may introduce biases and
lead to non-reproducible results (Nearing et al., 2018). In order
to have the most reproducible bioinformatic treatments, one can
also work with the so-called Individual Sequence Units (ISUs),
composed by ESV and erroneous sequences that correspond
to PCR and sequencing errors, thus applying strictly limited
bioinformatic filters.

Biological indices based on the microalgae group, diatoms
(Bacillariophyta phylum), are frequently used by scientists and
environmental managers to assess the ecological status of
ecosystems and their response to local pressures and global
change. Numerous diatom indices are based on a simple
equation that weights the ecological optimum of each detected
species by its abundance and ecological tolerance (Zelinka
and Marvan, 1961). In traditional indices, species ecological
profiles (optimum and tolerance) are often directly obtained
from a large set of data by using simple statistical descriptors
of location (e.g., weighted mean) and dispersion (e.g., weighted
standard deviation) along a pollution gradient. Interestingly, the
morphospecies as a taxonomic unit of the traditional indices
can be replaced by molecular taxonomic units, allowing to train
a new type of biological indices, the so-called taxonomy-free
indices (Apothéloz-Perret-Gentil et al., 2017; Tapolczai et al.,
2019). So far, taxonomy-free indices have proved to be an
efficient strategy to keep biological information carried by OTUs
whose taxonomic assignment is otherwise not possible because
of the incomplete reference library. Here, we propose to apply a
similar strategy on ISU and ESV data, in order to limit the bias
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associated to OTU clustering and to improve the reproducibility
and standardization of biomonitoring indices.

In our study, we compare different strategies to use biological
data and provide quality assessment indices. Four diatom
indices were developed, based on the ecological optimum
and tolerance of morphospecies/OTUs/ISUs/ESVs calculated
along an integrated environmental gradient, using the classical
Zelinka-Marvan equation (1961). The first index is based on
taxa inventory obtained via the microscopic identification of
morphospecies and their relative abundance. The second index
is based on OTU inventory without taxonomic assignment,
obtained via DNA metabarcoding and hierarchical de novo
clustering with 95% sequence similarity. The third strategy tested
was the development of an index using ISUs. In this case no
taxonomic assignment, nor clustering into OTUs were used. The
last strategy used the DADA2 denoising algorithm to select ESVs
from ISUs.

We hypothesize that by avoiding taxonomic assignment,
clustering and denoising of ISUs, relevant sources of biases
in the metabarcoding process are removed. This strategy is a
step toward a standardized metabarcoding-based bioassessment
without losing the indicator efficiency of the quality index and
enabled to propose an easy transferable bioinformatics tool for
stakeholders in charge of freshwater management.

MATERIALS AND METHODS

Study Site and Sampling Network
The routine survey of the WFD monitoring network is carried
out by French offices responsible for the monitoring and water
quality assessment of rivers, including national agencies, and
private consultancies. They are in charge of the chemical
and biological surveys following the WFD recommendations,
meaning that they realize the acquisition of physico-chemical
parameters and the description of benthic diatom assemblages for
each site.

Based on those available information, among the hundreds of
French river sites annually surveyed for water quality assessment
in the context of the WFD, 76 sites were selected from the
2016 national monitoring campaign following several criteria :
(i) sites showed a gradient of pressure (e.g., organic pollution,
turbidity, nutrients, etc.) allowing to obtain a water quality
gradient from pristine to polluted conditions, (ii) sampling sites
are distributed within the country (different river types), far
enough to limit potential effects of non-independence among
sampling sites during quality index construction, (iii) benthic
diatom samples are available to perform morphological and
molecular approaches and (iv) information on physico-chemical
parameters is available for all the samples.

Physical and Chemical Parameters
For each site, environmental data were extracted from the French
national database “Naïades” (http://www.naiades.eaufrance.fr/)
over a period of 70 days (60 days preceding and 10 days
following the biological sampling). For each environmental
variable, we computed the mean value of all the records
available during this time window. It resulted in a table

of 76 rows (samples) and 15 columns (variables) without
missing values. The environmental parameters kept are dissolved
oxygen (O2), oxygen saturation (O2 sat), pH, Conductivity,
nitrate (NO−

3 ), nitrite (NO
−
2 ), ammonium (NH+

4 ), total Kjeldahl
nitrogen (TKN), total phosphorus (TP), phosphate (PO3−

4 ),
temperature (T), total suspended solids (TSS), total organic
carbon (TOC), biological oxygen demand (BOD5), and turbidity
(Turb) (Table S1).

Diatom Sampling, Biofilm Sample
Preparation, and Morphological Analysis
For each site, the biofilm containing benthic diatom communities
was sampled from at least five submerged stones collected
from the lotic parts of the rivers following European standards
(European Committee for Standardization, 2016). The upper
surface of the stones were scrubbed using a clean toothbrush
at each sampling site and mixed into a tray. The samples
were homogenized by manual shaking and divided into two
subsamples, one for microscopic identification performed by
national offices and one sent to our lab for molecular analysis.
The subsamples were transferred into 50mL Falcon tubes and
preserved using 96% ethanol for a final ethanol concentration
of at least 70% and stored at room temperature under dark
conditions until preparation for morphological analysis and
DNA extraction (performed within 6 months).

For the microscopic analysis, diatom samples were treated
using 40% H2O2 and HCl according to the European standard
(European Committee for Standardization, 2014). Permanent
slides were prepared by mounting the cleaned diatom samples.
Morphological analysis was carried out using microscope with
1,000x magnification objective. A minimum of 400 diatoms
valves were determined using up to date identification literature.

Diatom DNA Metabarcoding
The preserved biofilm samples were homogenized by manual
shaking and a volume of 2mL of each sample was used as
starter for DNA extraction. The samples were first centrifuged
at 17,000 g during 30min in order to remove the supernatant
containing ethanol. Total genomic DNA was extracted from
the remaining pellet using the Sigma-Aldrich GenEluteTM-
LPA DNA precipitation protocol as described previously (e.g.,
Vasselon et al., 2017a) in a final elution volume of 30 µL.

PCR amplification of diatom communities was performed by
targeting a short fragment (312 bp) of the Ribulose Bisphosphate
Carboxylase Large subunit (rbcL) plastid gene, a DNA marker
commonly used for diatom metabarcoding on lake and river
samples (Rivera et al., 2018; Bailet et al., 2019; Chonova et al.,
2019; Mortágua et al., 2019). The primer pair used to amplify
the 312 bp rbcL region corresponds to the equimolar mix
of 3 forward primer (Diat_rbcL_708F_1, Diat_rbcL_708F_2,
Diat_rbcL_708F_3) and 2 reverse primers (R3_1, R3_2) as
described in Vasselon et al. (2017b). Forward and reverse primers
carry the 5′-CTTTCCCTACACGACGCTCTTCCGATCT-3′ and
5′-GGAGTTCAGACGTGTGCTCTTCCGATCT-3′ tails used to
prepare Illumina libraries with a dual-step PCR approach (PCR1
and PCR2). For the PCR1, each DNA sample was amplified in
triplicate in a final volume of 25 µL using the tailed rbcL primers
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and the Takara LA Taq R© polymerase with PCR1 reactionmix and
conditions detailed in the Table S2.

The 3 PCR1 replicates prepared for each DNA sample were
pooled together and sent to the “GenoToul Genomics and
Transcriptomics” facility (GeT-PlaGe, Auzeville, France) which
performed: (i) the purification of PCR1 amplicons; (ii) the PCR2
amplification using PCR1 purified amplicon as template and
Illumina-tailed primers allowing to add dual-index specific to
each sample; (iii) the preparation of the final pool corresponding
to an equimolar mix of the 76 PCR2 dual-indexed amplicons; (iv)
the sequencing of the final pool on an Illumina MiSeq platform
using the V3 paired-end sequencing kit (250 bp× 2).

Bioinformatics
Initial Bioinformatic Steps for ISUs and OTUs
The GeT-PlaGe sequencing platform assembled the MiSeq
paired-end reads into full-length DNA sequences (paired
sequences overlap >140 bp and mismatches <0.1%) and
performed the demultiplexing of the 76 samples, providing
1 fastq file per sample. All the bioinformatics treatments
were performed using Mothur software v1.39.5 (Schloss et al.,
2009). Initial bioinformatic steps were applied to keep good
quality DNA reads using the trim.seqs() command and the
following parameters: a sequence length of 263 ± 10 bp
(rbcL barcode length without primers), a Phred quality score
≥23 over a moving window of 25 bp, 0 ambiguities (“N”),
a maximum homopolymer length of 8 bp, a maximum of 1
mismatch in the primer sequence. Remaining DNA reads were
dereplicated into ISUs with the unique.seqs() command and
the resulting files processed with two distinct bioinformatic
strategies in order to prepare the final ISU and OTU tables
used for the construction of water quality indices, as shown in
Figure 1.

Preparation of ISU Table
Even if the rbcL primers used for metabarcoding were designed
to be diatom specific, the presence of degenerated bases in
the primer sequence may introduced non-target organism
amplification (Linhart and Shamir, 2002) In order to perform
the most objective comparison between diatom morphospecies
and ISUs water quality indices developed in this study, “non-
diatom” ISUs must be removed as they can interfere, positively
or negatively, on the predictive power of the ISU index. Thus,
we used the classify.seqs() command (default parameters,
cutoff = 75%) with the “diat.barcode” reference database
(version v7: 23-02-2018, https://doi.org/10.15454/HYRVUH)
to provide a taxonomy to each ISU and we applied the
remove.lineage() command to remove the non-Bacillariophyta
(phylum) ISUs (“Bacillaryophyta_unclassified” ISUs were
also discarded).

The ISU abundance distributions along the environmental
gradient were used to develop the ISU index (Idx_ISU), meaning
that ISUs with low abundance and rare ISUs were automatically
removed during the index development [see section Calculation
of diatoms indices (Idx_morph, Idx_OTU, Idx_ISU, Idx_ESV)].
We decided to use the split.abund() command in order to keep
only ISUs represented by at least 50 reads among the 79 samples.
By this way, spurious ISUs were removed and the computing

power required to create Idx_ISU was reduced, without affecting
its efficiency.

Preparation of OTU Table
Using the files produced after the unique.seq() command
(see section Initial Bioinformatic Steps for ISUs and OTUs),
OTU table was created following the bioinformatic workflow
detailed by Vasselon et al. (2017a) with some adjustments:
(i) ISUs were aligned using the align.seqs() command and
poorly aligned reads were removed using the command
screen.seqs(start=28, optimize=end, criteria=90); (ii) we used
the pre.cluster() command to denoise sequencing errors by
preclustering rare ISUs with related more abundant ones (1
bp threshold); (iii) detection of chimeras was performed using
the chimera.vsearch() command; (iv) removal of “non-diatom”
ISUs was performed as presented above (section Preparation
of ISU Table) using the classify.seqs() and the remove.lineage()
commands; (v) ISUs represented by <3 reads were removed
with the split.abund() command; (vi) a similarity distance
matrix of ISUs was created with the command dist.seqs();
(vii) OTU clustering was performed using the cluster.split()
command applying the furthest neighbor method with a 95%
similarity threshold.

Preparation of ESV Table
The software package DADA2 was used to infer ESVs from
demultiplexed MiSeq reads (one R1 and one R2 fastq file per
sample) following the methods described by Callahan et al.
(2016). The DADA2 pipeline adapted to diatom metabarcoding
data and applied in this study is available on Github (https://
github.com/fkeck/DADA2_diatoms_pipeline) and includes : (i)
for each sample, primers sequences are removed from R1
and R2 reads using cutadapt (Martin, 2011); (ii) the R1
and R2 reads are truncated to 200 and 170 nucleotides,
respectively in order to remove last poor quality nucleotides;
(iii) R1 and R2 reads with 0 ambiguities (“N”) and a
maximum of expected errors (maxEE) of 2 are conserved; (iv)
after dereplication of R1 and R2 reads into ISUs, ESVs are
selected based on the error rates model determined by the
DADA2 denoising algorithm and paired reads merged into
one sequence; (v) chimeric ESVs are removed; (vi) ESVs are
taxonomically assigned using the DADA2 default parameters
with an adapted version of the “diat.barcode” reference database
(available on https://www6.inra.fr/carrtel-collection/Barcoding-
database/Database-download); (vii) finally, a taxonomic filtering
is applied in order to remove the non-Bacillariophyta (phylum)
ESVs (“Bacillaryophyta_unclassified” ESVs were also discarded).

Correlation Between Community Data Tables
Prior to indices development, the correlation between
morphospecies, OTU, ISU and ESV tables was assessed
using the Procrustes superimposition method (Peres-Neto and
Jackson, 2001). Non-metric multidimensional scaling (NMDS)
on Bray-Curtis distances was used to derive a three-dimensional
configuration of each table. The pairwise matching between
NMDS ordinations was then measured using Procrustes
correlation and tested by permutations (999 repetitions).
Analyses were conducted with the metaMDS and protest
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FIGURE 1 | Overview of the analyses. The diagram indicates the steps to compute the four indices based on microscopic data (Idx_morph) and on metabarcoding

data (Idx_OTU, Idx_ESV, and Idx_ISU).

functions of the R package “vegan” (R Development Core Team,
2008; Oksanen et al., 2016).

Index Development
Definition of the Reference Pressure Gradient
Principal component analysis (PCA) was executed using the
prcomp function in R (Venables and Ripley, 2002) to study
the structure of the 76 samples and their relationship to the
environmental variables (Figure 2). Logarithmic transformation
was applied on the environmental variables to ensure the normal
distribution of data required for the PCA. The first principal
component (PC1) represents the reference pressure gradient,

i.e., the position of the samples along this gradient represent
their reference quality. These values were then multiplied by
−1 and then calibrated on a scale from 0 to 20, so that higher
values representing better reference quality. Multiplication by−1
was necessary because higher values on the original PC1 were
associated with high concentration of the variables, referring to
“poor” quality.

Calculation of Diatoms Indices (Idx_morph, Idx_OTU,

Idx_ISU, Idx_ESV)
The development of the four diatom indices followed the
methodology described in Tapolczai et al. (2019). Both
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FIGURE 2 | Principal component analysis of the environmental variables. The PCA biplot (A) shows the projection of the sites (black dots) and the variable loadings on

the first two principal components (PC1 and PC2). The dotplot (B) indicates the correlation (Pearson’s r) of each environmental variable with the first principal

component (PC1) that was used as the reference gradient for the indices. High and low values indicate strong positive and negative correlation respectively, while

values close to zero indicate weak correlations between PC1 and the given parameter.

morphospecies inventory obtained via microscopic identification
and sequence reads inventory obtained via HTS were
transformed into relative abundances in order to ensure a
comparable quantification among samples.

The four datasets according to the biological inventories
(morphospecies, OTU, ISU and ESV lists) were randomly divided
into: (i) a training datasets containing the randomly selected
75% of the samples, including their position along PC1 and
their associated morphospecies (and OTUs, ISUs, ESVs) relative
abundances; (ii) a test dataset containing the remaining 25%
of the samples. Therefore, the indices could be tested on
an independent dataset that was not included in the index
development. This cross validation approach to randomly select
training and test datasets was executed 100 times to measure the
average and standard deviation of the values of the four indices at
each sample instead of a singlemeasure that could bias the results.
This resulted in 100 indices tested for each of the four index types
(Idx_morph, Idx_OTU, Idx_ISU, Idx_ESV) (400 indices in total).

Ecological profiles of the morphospecies, OTUs, ISUs, and
ESVs in the training datasets were defined by modeling
their relative abundances in the samples along PC1. Rare
morphospecies, OTUs, ISUs, and ESVs were removed from the
data tables and only those present in more than 5% of the
samples in the training dataset were kept. This arbitrary limit,
well-established in previous studies (Stenger-Kovács et al., 2007;
Bere et al., 2014; Tapolczai et al., 2019), was necessary to keep a
minimum number of samples based on which robust ecological
profiles are ensured.

Weighted averages and standard deviations of the profiles
were calculated to estimate the ecological optimum (s) and the

tolerance (v) values. The Zelinka-Marvan equation (Zelinka and
Marvan, 1961) was adapted to our data to define the four indices:

Idx_morph/OTU/ISU/ESV =

∑n
j = 1 ajsjvj

∑n
j = 1 ajsj

where Idx_morph/OTU/ISU/ESV are the indices based on
morphospecies, OTUs, ISUs, and ESVs, respectively; aj is the
relative abundance of morphospecies/OTU/ISU/ESV j; sj is the
sensitivity or optimum of morphospecies/OTU/ISU/ESV
j; and vj is the indicator value or tolerance of
morphospecies/OTU/ISU/ESV j in the sample. Sensitivity
and indicator values for each morphospecies, OTUs and ISUs
were calculated using their abundance values plotted as functions
of the samples’ PC1 values. The two ecological values (sensitivity
and indicator) comprised a database that was used together with
the relative abundance values of the morphospecies, OTUs, ISUs,
and ESVs in the samples for which the indices were calculated.
Data of the training dataset was used to define these profiles.
Idx_morph, Idx_OTU, Idx_ISU, and Idx_ESV for each sample
in the test dataset were calculated and correlated with their
corresponding PC1 values.

The R script used for the index development and data analysis
is uploaded and freely available on Zenodo repository (https://
doi.org/10.5281/zenodo.3463043).

Index Comparison
In order to assess and compare the performance of the four
quality indices developed, several metrics were used. Correlation
coefficients of the linear models fitted on mean data of quality
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values per sites were compared and significance tests were
performed using the “cocor” package in R (R Development Core
Team, 2008; Diedenhofen and Musch, 2015). The residuals of
the four regression models were compared withWilcoxon signed
rank test and Bonferroni correction (Hollander andWolfe, 1973)
in order to measure the prediction performance of the models.
Stability of the indices were estimated by comparing the standard
deviation of index values per sites originated from the 100
iterations to select training and test datasets. It was tested with
Wilcoxon signed rank test with Bonferroni correction.

RESULTS

Reference Gradient
The first principal component of the PCA (Figure 2A),
explaining the 47.01% of the total variation in the dataset was
used as the reference gradient for the indices. Poor quality
is associated with those parameters indicating higher nutrient
concentration, organic matter concentration, turbidity. Good
quality is represented by well-oxygenated waters. pH, oxygen
concentration, oxygen saturation and conductivity are the
main factors responsible for the distribution of sites on the
second principal component, explaining the 14.84% of the total
variation. All environmental variables correlated significantly
with PC1 (p < 0.05) with Pearson’s correlation coefficients (r)
presented on Figure 2B.

Morphological Identification
A total of 355 diatom taxa were identified via microscopic
analysis from which 321 at species level. The average number of
taxa identified per sample was 28 (SD= 10) with a minimum of 4
and with a maximum of 56. Based on our criteria to remove rare
taxa, the number of taxa kept in the training datasets and used for
index development varied between 110 and 141 depending on the
random selection of training and test datasets, with a mean taxa
number of 122 (Table S3).

HTS Results
The 76 samples selected for this study were part of a MiSeq (2 ×
250 bp) sequencing run composed of 284 rbcL diatoms libraries
from freshwater biofilm samples and were analyzed in a joined
analysis of 464 samples. In order to allow the bioinformatic
reproducibility of our study, the global dataset corresponding
to the 464 samples fastq files used for the Mothur and DADA2
bioinformatics analysis are available on the Zenodo repository
system (https://doi.org/10.5281/zenodo.3244156). We will only
present the results obtained for 76 samples studied here.

The sequencing platform performed the demultiplexing and
the contig steps, providing one fastq file per sample which
generated a total of 3,071,693 DNA reads for the 76 samples
with an average of 40,417 reads per sample (min = 23,140; max
= 67,292). After the application of the bioinformatic procedure
to generate the OTU table, 1,426,272 DNA reads remained and
were clustered into 856 OTUs (95% similarity threshold) with
an average of 122 OTUs per sample (min = 49; max = 236)
(Table S4). For the generation of the ISU table, bioinformatic
procedure conserved 2,008,452 DNA reads corresponding to a

total of 21,241 ISUs with an average of 2,214 ISUs per sample
(min = 344; max = 4,244) (Table S5). Regarding the ESV table,
DADA2 bioinformatic procedure conserved 2,852,542 DNA
reads corresponding to a total of 1,266 ESVs with an average of
96 ESVs per sample (min = 31; max = 186) (Table S6). Detailed
information regarding the effect of bioinformatic procedures on
DNA reads are summarized in Table S7.

Morphospecies/OTU/ISUs/ESVs
Community Structure Comparison
Basic summary data of the four biological inventories are
presented in Table 1. Logically, both the total and mean richness
per sample was much higher using molecular data; the number
of OTUs detected (856) was almost 2.5 times higher than the
total morphospecies richness (355). ESV richness was 1,266 in
total and ISU richness was several fold higher with a total and
mean richness per sample of 21,241 and 2,214 ISUs, respectively.
Here we note that rarefaction was not used to set all the
samples to the same read number as it was not mandatory for
indices development. Values of morphospecies, OTUs, ESVs, and
ISUs were converted into relative proportions in the different
biological tables for the different indices development. Richness
values are provided just as descriptive information and not
for comparison.

The four tables (morphospecies, OTU, ISU, and ESV) were
all found to be correlated with each other (all p < 0.001). The
strongest correlation was measured between the ISU and ESV
tables (Procrustes correlation = 0.99). Both ISU and ESV tables
were strongly correlated with the OTU table (0.87 and 0.86,
respectively) and with the morphospecies table (0.78 and 0.77,
respectively). Finally, the lowest correlation was found between
the OTU and the morphospecies tables (Procrustes correlation
= 0.67).

Distribution of Ecological Values
Ecological values (sensitivity and indicator) derived from the
abundance distribution of the four kinds of biological units were
defined (Tables S8–S11) and their distribution is presented in
Figure 3. The general pattern for the four data types is similar to
each other with a quasi-normal distribution of sensitivity values
and a right skewed distribution pattern of the indicator values.
Morphospecies inventory consists of the fewest data points while
ISU database contains the most. Consequently, morphospecies
inventory involves higher relative abundances of taxa than the
abundances of unique sequences. Both the relative abundance per
OTUs and the number of OTUs are between the morphospecies
and ISU inventories.

ISU composition and abundance within OTUs were further
analyzed in order to reveal hidden ecological information and
the results are presented on Figure 4 in the case of the ten
most abundant OTUs. Within some OTUs (e.g., OTU00001,
OTU00002, OTU0003, OTU00007, OTU00008, OTU00009, and
OTU00010) the frequency distribution of ISU sensitivity and
indicator values follow a unimodal pattern in which ecological
values of the most abundant ISUs are very close to the ones
of the OTU it belongs to. However, in other cases (OTU00004,
OTU00005, and OTU00006), OTUs contain more abundant ISUs
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TABLE 1 | Summary table indicating the number of distinct morphospecies, OTUs, ESVs, and ISUs in the entire dataset and the training datasets.

Morphospecies OTUs ESVs ISUs

Entire dataset Total richness 355 856 1,266 21,241

Mean richness per sample 28 (SD = 10) 122 (SD = 32) 96 (SD = 32) 2,214 (SD = 725)

Minimum richness 4 49 31 344

Maximum richness 56 236 186 4,244

Without rare species/OTUs/ISUs/ESVs Richness 110–133 442–498 432–491 14,641–15,756

FIGURE 3 | Distribution of the sensitivity (A) and indicator (B) values estimated for each morphospecies, OTU, ESV, and ISU during the training procedure. The

position of each dot corresponds to its average sensitivity/indicator values (over 100 estimates) and the size indicates its relative abundance.

whose ecological values differ from the one of the OTU they
belong to.

Comparison of Indices’ Values
The performance of the four indices (Idx_morph, Idx_OTU,
Idx_ISU, and Idx_ESV) was assessed by fitting a linear
model using the “lm” function in R (Chambers, 1992; R
Development Core Team, 2008) on the relationship between
the calculated index values and their corresponding reference
pressure gradient values (PC1) (Figures 5A–D). The relationship
was significant for each index (p < 0.01) with regression
coefficient values of 0.84, 0.76, 0.84, and 0.84 for Idx_morph,
Idx_OTU, Idx_ISU, and Idx_ESV, respectively. R2 values for
the correlation between Idx_ISU and PC1, Idx_ESV and PC1
and finally, Idx_morph and PC1 were significantly higher than
the R2 values of the correlation between Idx_OTU and PC1
(p < 0.05). The slope of the linear model however differed
from the m = 1 value at each case, with slope values of
m = 0.49, 0.45, 0.49, and 0.53 for Idx_morph, Idx_OTU,
Idx_ESV, and Idx_ISU, respectively (Table 2). The Wilcoxon-
test to compare prediction performance showed significantly
higher MSE values (i.e., weaker prediction) for Idx_OTU (MSE
= 8.73) than for all the other indices and both Idx_morph
(MSE = 6.85) and Idx_ISU (MSE = 6.75) performed better

in this aspect than Idx_ESV (MES = 6.98). Wilcoxon-test
for the prediction instability assessed by the mean standard
deviation due to the cross validation step showed that Idx_morph
is more stable (mean SD from CV = 6.85) than Idx_OTU,
Idx_ESV, and Idx_ISU (mean SD from CV= 0.58, 0.51, and
0.58, respectively).

DISCUSSION

De novo Construction of Morphological
and Molecular Diatom Indices
In this study we developed, tested, and compared diatom
indices based on morphospecies identified with microscopy and
molecular taxonomic units based on metabarcoding. Similar
studies aiming to develop quality indices using such approaches
have been already conducted but their number is quite few
(Apothéloz-Perret-Gentil et al., 2017; Cordier et al., 2017, 2018).
Significant correlations in our study between the reference
gradient and the predicted quality notes proved the validity of
our approach the model developed on the training dataset using
cross validation method could successfully be used on the test
dataset. From a further aspect, we carried out a comparison
of index performances based on molecular and microscopical
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FIGURE 4 | Histograms representing the distribution of the estimated sensitivity values and indicator values in the Idx_ISU for the ISU that were clustered into the 10

most abundant OTU. For each OTU, the vertical black lines indicate the ecological values of the most abundant ISU (relative abundance in the entire dataset >0.1%)

and the vertical red line shows the ecological values estimated for the complete OTU (Idx_OTU).

inventories but also studied the differences within molecular
methods, between OTU-, ISU-, and ESV- based indices.

Last decade(s) has seen a tremendous evolvement in
implementing molecular-based methods in biomonitoring with
the purpose to improve it in terms of standardization, cost- and
time-efficiency, accuracy, etc. (Leese et al., 2016). The first step
of this process was to imitate biomonitoring approaches already
used with microscopic data by substituting morphospecies
inventories with the ones obtained viametabarcoding. Numerous
studies revealed characteristic features in which OTU taxonomic
inventories perform differently than morphospecies, mainly
regarding taxonomic coverage issues or the quantification of the

biological signal (Zimmermann et al., 2015; Vasselon et al., 2017b,
2018). Molecular data was also used to create inventories for
already existing diatom indices based on morphospecies with the
common drawback of uncomplete reference libraries (Kermarrec
et al., 2014; Visco et al., 2015; Pawlowski et al., 2016; Rivera
et al., 2018). Recent studies have started to develop OTU-based,
so-called taxonomy-free indices in order to test the possibility
of using such approaches in diatom-based quality assessment
(Apothéloz-Perret-Gentil et al., 2017; Tapolczai et al., 2019), with
promising results.

It is worth to note that the literature makes a clear distinction
between taxonomy-free indices and machine learning based
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FIGURE 5 | Relation between the site scores on the reference gradient (PC1) and the scores estimated by each index: (A) Idx_morph, (B) Idx_OTU, (C) Idx_ESV, and

(D) Idx_ISU. Black dots and error bars represent the average and standard deviations, respectively, over the 100 training repetitions. The thick blue line represents the

estimated linear regression between PC1 and the index values. The black line materialize the perfect equivalence between PC1 and the indices (i.e., the optimal 1:1

line).

indices (Cordier et al., 2017, 2018). For consistency and clarity
we advocate that this dichotomy is not relevant and the
term machine learning can be employed to refer to both
approaches. Indeed, machine learning is a generic term for a
very broad statistical approach (basically consisting in training
predictive functions and testing their performance) rather than
the application of a reduced set of learning algorithms. Although
derived from a simple function, taxonomy-free indices based
on Zelinka and Marvan equation are obtained by optimizing
morphospecies/OTU/ISU/ESV weights with a training set or
through cross validation. This procedure is typical of supervised
machine learning.

In this study we take a step forward and assess the
performance of de novo developed molecular diatom indices
for the first time. We do not only assessed the performance
of molecular methods compared to microscopic one but
we reconsidered the already existing molecular methods
too. We showed that beside being a step toward a more
standardized biomonitoring, the Idx_ISU unveiled hidden
ecological differences between ISUs that are otherwise grouped
together into the same OTU due to their high genetic similarity,
masking the bioindication signal. Thus, the construction of de
novo indices enabled a fair comparison of different approaches
for the improvement in bioassessment.
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TABLE 2 | Summary table of the performances of the four indices.

Idx_morph Idx_OTU Idx_ESV Idx_ISU

Linear regression slope (m) 0.49 0.45 0.49 0.53

R2 0.84a 0.76b 0.84a 0.84a

Prediction performance

MSE (Wilcoxon-test)

6.85 (SD = 10.44)ac 8.73 (SD = 13.61)b 6.98 (SD = 10.52)c 6.75 (SD = 11.79)a

Prediction instability/mean standard

deviation from CV (Wilcoxon-test)

0.40 (SD = 0.35)a 0.58 (SD = 0.66)b 0.51 (SD = 0.26)b 0.58 (SD = 0.63)b

Superscript letters indicate significant pairwise differences detected by Wilcoxon tests.

Currently used diatom indices, as the Trophic Diatom Index
(TDI; Kelly and Whitton, 1995), the Biological Diatom Index
(Jean Prygiel, 2002) or the Specific Pollution sensitivity Index
(Coste, 1982), were developed using the ecological profile of
species along particular physical and chemical parameters related
to eutrophication, organic pollution, etc. Following the strategy
of previous studies of the authors (Tapolczai et al., 2017, 2019),
this study used another approach by applying the first principal
component of a PCA, carried out on our dataset, as the reference
gradient. It is a way to integrate the effect of the several
environmental parameters affecting the position of samples on
this gradient. We observed that all variables measured, except
pH, correlated well with the defined reference gradient. This
approach avoids completely the use of already existing index
values based on morphology as reference (Apothéloz-Perret-
Gentil et al., 2017) and serves perfectly the comparison of the
effect of different biological inventories on a newly developed
quality index. One technical disadvantage of this strategy is
that the gradient, together with the taxa’s ecological values are
specific to our data and cannot be directly used in other studies.
However, they can be always linked to values of environmental
parameters via their correlation with PC1. It is important to
note that the ecological validity of the use of a reference based
on solely physical and chemical parameters to assess ecological
quality is often contested (Kelly et al., 2009; Schneider et al.,
2016). The main critic is that although the WFD introduced the
new fundamental concept of the ecological quality defined by the
status of the biota instead of physical and chemical parameters,
the methods adopted are the already existing metrics based on
old concepts.

To define the ecological optimum of species, the weighted
average method was used. Even though it is sometimes
criticized by the literature, we used this method due to
its simplicity and the fact that the majority of the diatom
indices are still based on this calculation. Since the weighted
average assesses species optima the best where abundance
distribution of species is symmetric and unimodal, it usually
overestimates the quality note of poor quality sites and
underestimates the quality of high quality sites where species
distributions are strongly right- and left- skewed, respectively
as already shown by Tapolczai et al. (2017). Potapova
et al. (2004) proposed different strategies to improve the
calculation of the optima including generalized linear models
or giving multiple indicator values for species based on the
probability that it can be found in the different quality

classes, based on the “smoothed” distribution along the
reference gradient.

Comparison of the Performance of the
Four Indices
As highlighted in the previous section, the de novomorphological
(Idx_morph) and molecular (Idx_OTU, Idx_ISU, Idx_ESV)
diatom indices were all relevant to predict correctly the ecological
status of the study sites usingmachine learning approach. Despite
the relation between the site scores on the reference gradient
and the scores estimated with the four indices are highly similar,
the Idx_morph, Idx_ISU, and Idx_ESV performed equally and
outperformed the Idx_OTU.

The biological information used to compute the four
indices were based on diatom morphospecies (Idx_morph),
OTU (Idx_OTU), ISU (Idx_ISU), and ESV (Idx_ESV) tables.
Despite the methodological and biological biases introduced
by molecular and morphological approaches applied to obtain
those tables (Pawlowski et al., 2018), they were all derived
from the same environmental diatom community. Thus, as
we expected, the community structures revealed by the four
matrices were highly correlated, as shown by the procrustean
analyses and already observed in previous diatommetabarcoding
studies (Vasselon et al., 2017b; Rivera et al., 2018). The highest
correlation was observed between ESV and ISU structures, as
they are based on the same metabarcoding data, and both
correlated better with morphospecies than OTU. However, we
would expect OTUs to be more related to morphospecies as
OTUs are supposed to be proxies for species (Porter and
Hajibabaei, 2018). This may be explained partially by (i) our
OTU definition, determined by the choice of the OTU clustering
algorithm and the genetic distance similarity threshold applied,
which may not reflect properly the morphological diatom species
concept (Hugerth and Andersson, 2017; Tapolczai et al., 2019);
(ii) the bioinformatics biases introduced at the different steps
used to proceed raw DNA reads into OTUs, like the alignment
of DNA reads, the chimera detection or the OTU clustering
algorithm (Mysara et al., 2015; Edgar, 2018; Hardge et al., 2018);
(iii) the consistency of OTU, as genetically close taxa may be
grouped within the same OTU, reducing the final resolution of
the OTUs in comparison to ISUs and ESVs (Callahan et al., 2017).

In our study, the consistency of OTU is more likely to
affect the efficiency of the Idx_OTU in comparison to the
Idx_ISU and Idx_ESV. By confronting the distribution of the
sensitivity and indicator values of each ISU (estimated with
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the Idx_ISU index) to the values of their corresponding OTU
(estimated with the Idx_OTU index), we observed two patterns:
(i) OTU composition is consistent: the OTU is dominated
by one abundant ISU and both shared similar ecological
preferences; (ii) OTU composition is not consistent: the OTU
is dominated by several abundant ISUs which may have various
ecological preferences, the ecological preferences of the OTU
corresponding to an average of the dominant ISUs values. Among
the 10 most dominant OTUs observed, 3 of them appeared
to be inconsistent as they were composed by several abundant
ISUs with different ecological preferences (e.g., OTU00004).
As the calculation method used to create the quality index
gives more weight to dominant taxa (Bigler et al., 2010), the
misestimation of dominant OTU ecological preferences, due to
their inconsistency, reduces the efficiency of the Idx_OTU in
comparison of the Idx_ISU where estimation of ISU ecological
preferences is more realistic.

OTU consistency is mainly affected by methodological biases
introduced during the bioinformatics steps applied to create
OTUs, like the choice of the clustering method (Schmidt et al.,
2014). In our study we used the furthest neighbor method as
implemented in Mothur, which is known to create numerous
OTUs in comparison to recently developed clustering algorithm
like Opticlust (Westcott and Schloss, 2017) or Swarm (Mahé
et al., 2015). However, hierarchical complete linkage method,
like furthest neighbor, enables to create more consistent OTUs
with ecologically consistent partitions (Schmidt et al., 2014). The
sequence similarity threshold applied to define OTUs can also
affect their consistency, the smaller the threshold, the greater
the risk of merging genetically and ecologically diverse taxa.
As we used a 95% similarity threshold, this risk is increased,
however a previous study shown that the use of a threshold
between 95 and 99%, using furthest neighbor clustering method,
has a limited effect on the efficiency of the computed OTU
index (Tapolczai et al., 2019). Furthermore, we observed that the
dominant ISUs belonging to the sameOTU (e.g., OTU0004) were
genetically distant of only 2 or 3 nucleotides, corresponding to 1–
2% of differences. So even if we had applied the 97% similarity
threshold, the problem would have remained. There are some
clustering algorithms though, with strategies avoiding the use of
a global similarity threshold. These methods, e.g., Swarm (Mahé
et al., 2015) with a d parameter equal to one would potentially
separate this ecological signal. Similarly, OTU clustering based
on sequence distribution among samples (Preheim et al., 2013) or
the application of post-clustering curation procedure to denoise
OTUs (Frøslev et al., 2017) are attempts to handle the bias of
using sequence similarity threshold. However, in comparison
to OTUs, ISUs and ESVs are able to take into account intra-
species and intra-population variability which provide relevant
ecological information for freshwater biomonitoring.

Finally, even if the Idx_ISU and Idx_ESV outperformed
the Idx_OTU, it provided similar predictive power than the
Idx_morph with a higher correlation slope between the expected
gradient and the estimated index values, but appeared to be
significantly less stable. The highest prediction instability was
observed for sites corresponding to the extreme situation on the
physico-chemical reference gradient characterized by few sites

(particularly on polluted sites). It was already described that
the instability of the index development is related to the cross
validation process, used for defining training and test datasets,
which is sensitive to the size of the dataset and the presence of
outliers (Tapolczai et al., 2019). Even if this bias also occurred
in the Idx_morph, the highest instability was observed for the
Idx_ISU certainly due to the high number of ISUs obtained which
fragmented the ecological signal. Furthermore, highly impacted
sites are usually characterized by lower diatom richness and
can contribute to increase the instability of indices based on
molecular data (Tapolczai et al., 2019). This problem should be
mitigated by increasing the size of the dataset.

The Place of Molecular Metabarcoding
Approaches Within Actual Freshwater
Biomonitoring
In the context of freshwater biomonitoring and WFD, we need
transferable tools. We have shown that all indices produced
(Idx_morph, Idx_OTU, Idx_ISU, Idx_ESV) are suitable to
evaluate the ecological status of rivers using diatoms. However,
they do not perform equally in terms of routine monitoring
applicability. We already introduced the limitations related to
morphological approaches (time-consuming, limiting spatio-
temporal surveys, high expertise required), justifying the
development of molecular biomonitoring approaches. However,
these new molecular tools are not yet straightforward for
stakeholders and water managers. In this study we showed that
ISUs, after applying bioinformatic limited filtering steps, provide
enough resolution for monitoring and offer several transferable
advantages in comparison to OTUs or ESVs: (i) analysis are more
reproducible as ISUs correspond to the basic untransformed
unit produced with metabarcoding, without affecting their
composition with algorithm (e.g., chimera detection, denoiser,
clustering); (ii) they are consistent from one study to another
as their identifier is the DNA sequence itself (unlike OTU); (iii)
with less bioinformatics steps they are faster to analyze, require
less computing power and thus tools are more easily transferable;
(iv) like ESVs, they allow a higher resolution as they include
intraspecific/intrapopulation level.

A further advantage of new molecular approaches is the
detection of rare biosphere which might be of interest for
freshwater biomonitoring. In this context, if new molecular
indices are developed based on this rare biosphere, efficiency of
filtered ISUs should be validated as sequencing errors may bias
the ecological assessment. However, as discussed by Elbrecht et al.
(2018), the increasing number of metabarcoding data obtained
from freshwater sampling sites mitigates sequencing errors and
the need of denoising algorithm. With this data deluge, machine
learning methods combined with molecular approaches like
metabarcoding will change our way to perform biomonitoring
(Bohan et al., 2017).

Molecular approaches offer the possibility to increase spatial
and temporal survey of freshwater monitoring networks. On
the other hand, morphological approaches offer the possibility
to work with ecologically meaningful information relevant
for biomonitoring and not achieved by molecular ones, like
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morphological features observed at different life-stages of
organisms, the detection of teratologic forms, as well as traits
or ecosystem functions. The final objective is to improve our
ability to survey and protect freshwater ecosystems, which can
not be achieved with molecular based approaches alone for
now. Stability of those methods is still scarce due to permanent
technological and methodological evolution, meaning that
molecular and morphological approaches must be used in a
complementary way.
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training test phase of the Idx_ISU, represented by the sensitivity and the indicator

value. Each value corresponds to an average of the values obtained during the

100 times cross validation procedure.

Table S11 | Ecological preferences of each individual ESV estimated during the

training test phase of the Idx_ESV, represented by the sensitivity and the indicator

value. Each value corresponds to an average of the values obtained during the

100 times cross validation procedure.
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