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The plant-soil feedback framework allows researchers to target the interaction of

plants and root-associated microbes and to determine its interplay on plant-plant

interactions. Plant-soil feedbacks in terrestrial ecology are well-documented, but the

strength and direction of feedbacks as influenced by abiotic environmental factors, such

as temperature and soil moisture, has not been fully explored. In our study, we examined

plant-soil feedback responses of both cool- and warm-season native and non-native

grasses to elevated temperatures (ambient and +5◦C) and soil moisture (100 and

75% field capacity). In a previous experiment, grasses were grown under temperature

and soil moisture conditions similar to our current study. The resultant trained soil

communities served as the inoculum sources for our current experiment. We found that

consistent training and experimental temperatures resulted in negative PSF, where plants

produced greater biomass in soils conditioned by heterospecifics. However, the direction

of PSF was reversed when training and experimental conditions were mismatched.

That is, when training and experimental temperatures mirrored one another, negative

PSF occurred, suggesting coexistence between the two species is likely under these

conditions. However, when only training or testing temperatures were elevated, positive

PSF were detected, favoring the non-native species. These alterations in plant-soil

feedbacks were relatively consistent across pairings of warm- and cool-season grasses.

Overall, our results indicate inconsistent year-to-year environmental conditions, such as

extreme temperatures, may undermine the stabilizing forces of negative PSF and favor

of non-native grasses.

Keywords: Bothriochloa ischaemum, Bromus inermis, climate, invasive species, Pascopyrum smithii, plant-soil

feedback, Schizachyrium scoparium, soil training

INTRODUCTION

Interactions between plants and their associated soils play an important role in the
formation of plant communities and maintenance of biodiversity (Mangan et al., 2010;
Bauer et al., 2015; Bever et al., 2015). Plants affect the biotic and abiotic conditions of
associated soils, with subsequent reciprocal interactions known as plant-soil feedbacks (PSFs)
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(Kulmatiski et al., 2008; Bever et al., 2010). These feedbacks
range from positive to negative, and the direction of the feedback
is largely driven by the presence and abundance of certain soil
biota. Negative PSFs occur when a plant performs better in
soils conditioned by heterospecifics, thus promoting community
diversity, whereas positive PSFs are created when a plant’s growth
is increased in conspecific-conditioned soil, often resulting in
monotypic stands (Bever et al., 1997; van der Putten et al.,
2013). Generally, PSFs are negative, particularly between native
plant species and species that are phylogenetically unrelated
(Meiners et al., 2017; Crawford et al., 2019), suggesting that soil
microbes are likely to contribute to coexistence of native and
phylogenetically diverse plant species. In recent years, the role of
PSFs in the success of non-native invasive plant species has been
the focus of a growing body of research (Inderjit and van der
Putten, 2010; van der Putten et al., 2013; Kulmatiski, 2018).

Previous research has shown the presence of invasive plant
species can alter the density and composition of arbuscular
mycorrhizal (AM) fungal communities, which may influence
the feedback interactions that affect subsequent growth and
establishment of both native and invasive species (Reinhart and
Callaway, 2006; Vogelsang and Bever, 2009; Allen et al., 2018).
Plant invasion can disrupt mutualistic interactions between
native plants and soil microbial communities, further increasing
ecosystem susceptibility to invasion. Past and current empirical
studies suggest that invasive plants often create positive PSFs,
thus suppressing native biodiversity and promoting growth of
conspecifics (Reinhart and Callaway, 2006; Crawford and Knight,
2017; Crawford et al., 2019). This can occur through a number of
mechanisms. Non-native plant species are often less dependent
on native AM fungi, compared to native species, decreasing AM
fungal densities with a concomitant decrease of native plant
growth rates (Pringle et al., 2009; Vogelsang and Bever, 2009;
Zubek et al., 2016; Grove et al., 2017). Alternatively, invasive
species can be highly dependent on AM fungal associations, yet
alter local soil microbial community composition, resulting in
a loss of native plant growth and survival (Wilson et al., 2012;
Zubek et al., 2016; Ba et al., 2018; Zhang et al., 2019).

Current climate models predict warmer, drier conditions
across much of North America (IPCC, 2014), and these
conditions, coupled with continued pressure by invasive plant
species, will likely exacerbate losses of native biodiversity.
Alterations in climatic conditions will also likely have dramatic
effects on the interactions of plants, their associated soil
microbiota, and subsequent strength and direction of PSF, as
soil microbes can mediate plant responses to drought (Kivlin
et al., 2013; Xi et al., 2018). Warmer, drier conditions have
been shown to reduce AM biomass (Duell et al., 2016; Yu
et al., 2018), which likely alter PSFs. Drought has been shown
to shift PSF in co-existing plants from negative or positive
to neutral, depending on the species, suggesting that drought
may neutralize PSF (Heinze et al., 2017; Fry et al., 2018), and
these alterations in PSFs may be persistent (Kaisermann et al.,
2017). While drought and invasive species individually alter
the strength and direction of PSFs, there has been very little
research linking the two and assessing the coupled effects on
native plant growth.

Plant-microbe interactions can also mediate plant adaptation
to perturbations in climate. Mycorrhizal fungi, for example,
can increase drought tolerance of their host (Delavaux et al.,
2017; Bowles et al., 2018). Even for plants that do not associate
with mycorrhizal fungi such as mustards, changes in their
microbiome can mediate tolerance to drought. For example,
Lau and Lennon (2011) found that plants that were associated
with more diverse microbial communities and subjected to
drought exhibited greater growth and changes in phenological
traits, compared to plants grown with less diverse microbial
communities. Additional work by Lau and Lennon (2012)
suggests that plant productivity and fitness is greatest when
previous and contemporary environmental conditions were
similar, as opposed to mismatched conditions. This suggests
that plants may benefit from soil microbial communities trained
under particular environmental conditions, and that variation in
climate and weather patterns will affect certain species’ abilities
to persist.

To assess potential effects of climate change on PSF dynamics
and the potential for microbes to mediate plant response to
changing climate, a greenhouse experiment was conducted to: (1)
assess the strength and direction of native and non-native grass
PSFs under ambient conditions (well-watered and moderate
temperatures) and (2) examine the strength and direction
of native and non-native grass PSFs under projected climate
scenarios (drought conditions and elevated temperatures). Based
on results from Duell et al. (2016), we hypothesized 1a) soil
microbial alterations resulting from non-native species will result
in positive PSF under ambient conditions and 1b) soil microbial
alterations resulting from native species will result in negative
PSF under ambient conditions. Further, we hypothesized (2)
PSFs of both non-native and native species will be exacerbated
under elevated temperatures and drought conditions, relative
to ambient conditions. Finally, we hypothesized (3) plants will
perform best when grown in soils of matching environments as
their current environment.

MATERIALS AND METHODS

Plant Species and Soil Collection
In our experiment, we used paired native and non-native
warm- and cool-season perennial grasses to test the effects
of soil moisture and temperature on PSF dynamics of these
species. Schizachyrium scoparium (Michx.) Nash is a native,
warm-season perennial bunchgrass found throughout the North
America, especially in temperate, grass-dominated ecosystems.
Bothriochloa ischaemum (L.) Keng is a non-native, warm-season
perennial grass found throughout southern and central North
American grasslands. Native to Europe, Asia, and northern
Africa, B. ischaemum was introduced into North American
grasslands in the early 1900’s as a fast-growing livestock forage
(Celarier and Harlan, 1955). Pascopyrum smithii (Rydb.) Á Löve
is a native, cool-season perennial grass found throughout the
Great Plains region of North America, and is a dominant
component of northern grassland plant communities. Bromus
inermis Leyss. is a non-native, cool-season perennial grass
that can be found throughout North America. B. inermis was
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introduced into North America in the late 1800’s from Eurasia as
livestock forage and for its role in soil stabilization on degraded
landscapes (Larson et al., 2001). Both B. ischaemum and B.
inermis are widely-considered as invasive plants, often forming
monocultures and decreasing biodiversity at many trophic levels
(Hickman et al., 2006; Gabbard and Fowler, 2007; Dillemuth
et al., 2009; Stotz et al., 2017).

Native tallgrass prairie soil was collected from the Konza
Prairie Biological Station, Manhattan, KS, USA, where all four
species used in this experiment can be commonly found. Soil
was sieved through a 10mm sieve to remove rocks and coarse
plant material. Soil was steam-pasteurized at 80◦C for 2 h and
transported to Oklahoma State University greenhouse facilities.

Training of Soil Microbes for Inoculum
To assess the consequences of alterations in soil microbial
communities, including AM fungal communities, soil inoculum
was collected from a previous climate perturbation experiment
(Duell et al., 2016) which investigated the effects of elevated
temperatures and reduced soil moisture on both native and
non-native grasses. In Duell et al. (2016), we conducted two
experiments, one used two warm-season grass species [one
native (S. scoparium) and one invasive (B. ischaemum)] and a
second that used two cool-season grass species [one native (P.
smithii) and one invasive (B. inermis)] grown under two climatic
regimes to “train” microbial communities for inocula. Warm-
season species were maintained at ambient (24◦C) and elevated
(29◦C) temperatures and cool-season species were grown at
ambient (17◦C) and elevated temperatures (22◦C). Temperature
treatments were combined with two levels of soil moisture [field

capacity and drought (35% less than field capacity)]. Temperature
and soil moisture treatments were initiated following seedling
establishment. Temperatures represent the mean daily high
temperature for each respective treatment for the entirety of
the experiment. Once plants were established, soil moisture was
monitored twice per week using the gravimetric water content
of each pot. The complete experimental design that produced
our inoculum consisted of 16 treatment combinations: 4 plant
species× 2 temperature treatments× 2 soil moisture treatments,
arranged in a complete block design with 6 replications
for a total of 96 pots (Duell et al., 2016). Training phase
conditions will hereafter be referred to as source conditions (e.g.,
source temperature).

Determination of Plant-Soil Feedback
The experimental design of feedback test experiment was
based on the feedback approach described in Bever (1994).
Separate feedback test experiments were conducted for the
warm-season grasses and the cool-season grasses (Zaiger, 2016).
Warm- and cool-season grasses were germinated in vermiculite.
After 14–21 days (second-leaf stage), individual seedlings were
transplanted into pots (6 cm diameter × 25 cm deep: DeePots;
stuewe.com, Tangent, Oregon), filled with 600 g (dry weight) of
soil partitioned into three layers: 400 g of steam-pasteurized soil
[80◦C for 2 h and allowed to cool for 72 h to eliminate biotic
communities but retain abiotic soil traits (Hetrick et al., 1990;
Wilson and Hartnett, 1997, Johnson et al., 2010)], followed by
100 g of soil inoculum (inoculum described above), followed by
100 g of steam-pasteurized soil to protect cross-contamination
during the growing period. One seedling was planted per pot

FIGURE 1 | Schematic diagram for the experimental design of the training and experimental testing phases of this research. In the training phase, two warm-season

grasses (Schizachyrium scoparium, Bothriochloa ischaemum) were grown under four combinations of soil moisture and temperature, replicated 6 times for a complete

experimental design of 48 pots. Eight different soil communities conditioned in the training phase were used as inocula in the testing of PSF. The schematic shows

only one paired native and invasive grass. As shown by our schematic, each soil treatment from the training phase was divided eight times and used as inoculum for

native or invasive plant species of the same functional group, maintained at two soil moistures (well-watered, drought), and 2 temperatures (ambient, elevated). This

experimental was replicated using cool-season grasses (Pascopyrum smithii, Bromus inermis). W and D, well-watered and drought, respectively; A and E, ambient

and elevated temperatures, respectively.

Frontiers in Ecology and Evolution | www.frontiersin.org 3 November 2019 | Volume 7 | Article 419

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Duell et al. Climate Affects Plant-Soil Feedbacks

and inoculated with soil trained by the non-native or native
grass under all combinations of temperature and soil moisture
treatments in Duell et al. (2016) (described above). Each of two
feedback test experiments consisted of a full factorial design with
three factors (plant species, temperature, and soil moisture) each
consisting of the same temperature and soil moisture treatments
used in the training phase (Figure 1). In total, both the cool-
season and warm-season experimental studies consisted of 392
pots [8 inocula × 2 plants × 2 temperature treatment levels × 2
soil moisture treatment levels× 6 replications+ 8 sterile controls
(no inoculum)], for a total of 784 pots. Sterile controls consisted
of 600 g of steam-pasteurized soil. Environmental conditions
tested during this phase of the experiment will hereafter
be referred to as experimental conditions (e.g., experimental
temperature). After 16 weeks, prior to shoot senescence, plants
were harvested, and root and shoot biomass was separated. Roots
were washed free of soil, and all biomass was dried at 60◦C for
48 h, and weighed.

Statistical Analyses
Feedbacks were calculated for total biomass. Interaction
coefficients were calculated to quantify PSF between native
and non-native plants grown with inoculum trained by either
conspecific or heterospecific plants. We used the following
equation (Equation 1):Is = G(A)α − G (A)β − G (B)α + G(B)β ,
where Is is the feedback interaction coefficient, G(A)α is growth
of plant species A inoculated with conspecific soil, G(A)β is
growth of plant species A inoculated with heterospecific soil,
G(B)α is growth of plant species B inoculated with heterospecific
soil and, G(B)β is growth of plant species B inoculated with
conspecific soil (Bever et al., 1997). When Is values are positive
(Is > 0), a net positive feedback on plant growth is generated
by the soil community, and coexistence between plant species
does not occur. Conversely, when Isvalues are negative (Is< 0),
a net negative feedback on plant growth is generated by the soil
community, and coexistence between plant species does occur
(Bever, 2003). Interaction coefficient values were calculated for
each temperature and drought combination of both inoculum
training and experimental conditions.

Using PROC-GLM in SAS, we constructed a general linear
model using log-transformed (for normalization of biomass
data due to extreme values caused by drought) biomass and
percent colonization as the dependent variables. Species identity,
drought, and temperature treatments from the inoculum source
and from the feedback study (6 total) were used as factors with
all possible interactions. Analyses of these experiments were
split by drought treatments due to low survival of water-limited
warm-season plants. In the experiment with warm-season
grasses, mortality under drought prevented analysis of growth,
but in the experiment with cool-season grasses, analyses of
growth responses was possible under well-watered and drought
conditions. Therefore, the model included total of 5 factors
(experimental temperature, experimental plant identity, source
temperature, source soil moisture (source water) treatment,
and source plant identity) examined in the analysis. For
each treatment combination, three of the six replicates were
scored for mycorrhizal root colonization. Pairwise feedback

was tested within the “plant_species∗source_plant_species”
interaction where source_plant_species represents the plant
species that trained the soil (Bever, 1994). In fact, for full
factorial experiments with two plant species training (source)
and experimental as are ours, significance of pairwise feedback
is tested directly as the “species∗ source species” interaction
and the dependence of pairwise feedback on environmental
conditions (either training or experimental conditions or their
interaction) is tested directly as the interaction of “species∗source
species∗environmental condition.” For example, a significant
“species∗source species∗source temperature” interaction
indicates that the strength of pairwise feedback depends upon
the experimental temperature, while a significant “species∗source
species∗source temperature∗temperature” interaction indicates
that pairwise feedback varies significantly with the interaction
of source and experimental temperature. For all significant
pairwise interactions between current plant 8 treatments and
source treatments interaction coefficients were calculated using
the formula (Equation 1, Bever et al., 1997). Differences in
biomass under either soil moisture or temperature treatments
with significant feedback interactions were assessed using a
two-way analysis of variance (ANOVA) and Tukey’s Honest
Significant Difference (HSD) in R version 3.2.3 (R Core Team,
2015). Biomass and colonization were analyzed using the PROC
GLM procedure in (SAS Institute, Cary, NC, U.S.A.), version 9.4
of the SAS System for Windows.

RESULTS

Warm- and Cool-Season Biomass
Production
Regardless of species, plants subjected to reduced soil moisture
exhibited high mortality, and therefore were removed from
analyses. When subjected to well-watered experimental
conditions, the main effects of plant species [F(1, 94) = 30.87,
p ≤ 0.001], experimental temperature [F(1, 94) = 23.81, p ≤

0.001], and plant species of the training phase (source species)
[F(1, 94) = 9.62, p = 0.002] were significant for our warm-season
grasses. The non-native species, B. ischaemum, produced greater
total biomass in all environmental treatments, compared to the
native species, S. scoparium (Figures 2A–D). In addition, plants
grown under elevated temperatures produced greater biomass,
compared to plants subjected to ambient temperatures.

When subjected to well-watered experimental conditions,
cool-season biomass production of native P. smithii was
significantly greater as compared to invasive B. inermis
[F(1, 149) = 4.89, p = 0.03]; however, no differences were found
between native and non-native plant species when analyzed by
combinations of experimental and source conditions (Figure 3).
Overall, cool-season grasses subjected to elevated experimental
temperatures produced greater total biomass, relative to
individuals grown at ambient experimental temperatures
[F(1, 149) = 5.31, p = 0.02]. Regardless of species, plants grown
with inoculum trained under elevated temperatures produced
consistently greater biomass than plants inoculated with
microbes trained under ambient experimental temperatures
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FIGURE 2 | Total biomass production of native (Schizachyrium scoparium) and invasive (Bothriochloa ischaemum) warm-season grasses grown under well-watered

conditions in response to source soil plant identity and source soil temperature. Light bars indicate inoculum derived from native Schizachyrium scoparium and dark

gray bars represent inoculum derived from invasive Bothriochloa ischaemum. In each panel, pairings of bars on the left represent native S. scoparium, and bars on the

right represent invasive B. ischaemum. Panels represent the following treatment combinations: (A) ambient experimental temperatures, ambient source temperatures,

(B) ambient experimental temperatures, elevated source temperatures, (C) elevated experimental temperatures, ambient source temperatures, and (D) elevated

experimental temperatures, elevated source temperatures. Different letters indicate significant differences within panel (p ≤ 0.05).

[F(1, 149) = 5.26, p = 0.02]. Under well-watered experimental
conditions none of the interactions and no feedback effects were
significant (Supplementary Table 2).

Warm- and Cool-Season Species Pairwise
Feedbacks
In the warm-season experiment, we observed a significant
interaction [F(1, 94) = 3.93, p = 0.05] between native and
non-native plant species, source plant species (i.e., plant
species that trained the soil), experimental temperature, and
source temperature (i.e., temperature at which the soil was
trained) for our warm-season pairing, indicating that pairwise
PSF varies with the interaction of source and experimental
temperature. We illustrate this significant interaction in
Figure 4A. When the source and experimental temperatures
were consistent, PSF was negative, but when source and

experimental temperatures were reversed, PSF was neutral or
positive, and this reversal is significant (Supplementary Table 1).
Specifically, total biomass of warm-season grasses grown under
ambient temperatures was characterized by negative (ambient
source soil temperature) and neutral (elevated source soil
temperature) PSF (Figure 4A). When subjected to elevated
experimental temperatures, the direction of PSF reversed,
resulting in positive (ambient inoculum) or negative (elevated
inoculum) PSF (Figure 4A). The negative PSF detected in
warm-season total biomass under elevated temperatures
with inoculum trained under elevated conditions was driven
by significantly greater S. scoparium biomass production
in B. ischaemum inoculum, compared to inoculum trained
by the conspecific; whereas no difference was observed in
B. ischaemum production with inoculum trained by either
plant species.
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FIGURE 3 | Total biomass production of native (Pascopyrum smithii) and invasive (Bromus inermis) cool-season grasses grown under well-watered conditions in

response to source soil plant identity and source soil temperature. Light bars indicate inoculum derived from native Pascopyrum smithii and dark gray bars represent

inoculum derived from invasive Bromus inermis. In each panel, pairings of bars on the left represent native P. smithii, and bars on the right represent invasive

B. inermis. Panels represent the following treatment combinations: (A) ambient experimental temperatures, ambient source temperatures, (B) ambient experimental

temperatures, elevated source temperatures, (C) elevated experimental temperatures, ambient source temperatures, and (D) elevated experimental temperatures,

elevated source temperatures.

In our cool-season experiment, the main effects were not
significant under drought conditions (Supplementary Table 3).
However, under drought conditions, we observe a significant
interaction of feedback with source temperature and
experimental temperature [F(1, 60) = 4.97, p = 0.03]
(Figure 4B). When the source and experimental temperature
was consistent, PSF was negative, but when source and
experimental temperature were reversed, PSF was neutral
or positive. Specifically, under ambient experimental
temperatures, PSF were negative when inoculum soil had
also been subjected to ambient temperatures (Figure 4B).
However, the direction of the PSF was reversed when ambient
inoculum soil had been subjected to elevated temperatures
(Figure 4B). When grown under elevated temperatures,
PSF were positive when grown with source soils subjected
to ambient temperatures, and negative when plants were
grown with source soil trained at elevated temperatures
(Figure 4B).

Legacy Effects of Soil Environment
We hypothesized that training soil microbial communities would
result in environmental stress mitigation; however, our data do
not support this a priori hypothesis. No evidence was observed
for microbial mediation of drought stress, as we did not detect
significant interactions between experimental soil moisture and
source soil moisture, though this test was weak because of low
survivorship in drought experimental conditions. Furthermore,
we did not observe plants growing better when experimental and
source temperatures werematched (Supplementary Tables 1–3).

DISCUSSION

There is increasing evidence suggesting that a rapidly changing
climate will impact soil microbial communities (Rillig et al., 2002;
Johnson et al., 2013; Schmidt et al., 2018), though little is known
about strength or direction of PSF in response to extreme weather
events, such as severe drought (Singh et al., 2010; Johnson et al.,
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FIGURE 4 | Interaction coefficient for PSF related to biomass production of native and non-native (A) warm-season and (B) cool-season grasses. Filled bars indicate

inoculum from ambient temperatures and open bars represent inoculum conditioned in elevated temperatures. In each panel, the left pair of bars represent plants

grown at ambient temperatures, while the right-hand pair of bars represent plants grown at elevated temperatures (Note: y-axes differ in scale).

2013). Abiotic factors, such as light availability, can influence
the strength and direction of feedback interactions (Smith and
Reynolds, 2015), but the effects of environmental drivers, such
as precipitation and temperature, on the strength and direction
of PSF interactions is far less certain. In general, it is thought
that elevated temperatures will result in more negative PSF,
as increased temperatures are expected to result in increased
pathogen prevalence, as well as reduced AM fungal activity
(Mohan et al., 2014). However, the results are likely context-
dependent, and more research is needed to elucidate any patterns
and processes that may exist. In addition, many current and
past PSF studies that have tested climate effects have used native
species pairings and agricultural crops (Hendriks et al., 2015;
Wang et al., 2017; Fry et al., 2018). Consequently, far less research
has explored PSF dynamics surrounding climate and non-native
invasive species. Our study is one of the first of its kind to test
PSF theory with combined environmental factors and non-native
invasive plant species.

We found negative feedbacks when the temperature is stable
over the training and testing phase of the feedback experiment,
but positive or neutral feedback when the training and testing
temperature were not matched. As negative pairwise plant soil
feedback is a necessary condition for soil microbial dynamics
mediating plant species coexistence (Bever et al., 1997; Eppinga
et al., 2018), our results suggest soil microbial dynamics can
be stabilizing in either ambient or elevated temperatures, but
this dynamic is disrupted in variable environments. However, as
pairwise negative feedback is not a complete description of the
coexistence conditions (Bever et al., 1997; Bever, 2003, Eppinga
et al., 2018, Kandlikar et al., 2019), further work is necessary
to evaluate whether soil microbial dynamics do determine
variation in coexistence patterns across climate stability. We
found that elevated temperatures, combined with a soil legacy
of elevated temperatures, led to strongly negative PSF between
native and non-native warm-season grasses. This was in contrast

to the slightly negative to positive feedback exhibited in other
experimental temperature and altered inoculum temperature
combinations. We observed that PSF was also significantly
more negative when the training and testing temperatures
were constant in the cool-season grasses when tested under
drought conditions. Our findings suggest that changes in
environmental drivers can impact the strength and direction of
PSFs. Both warm- and cool-season pairings produced negative
PSF when experimental temperatures mirrored training phase
temperatures. However, the direction of PSF was reversed when
experimental and training temperatures were mismatched. These
results suggest that coexistence is likely when environmental
conditions are similar from year to year, and homogeneity may
be promoted when growing conditions are dramatically different
than the previous year. These results are in contrast with previous
results of van Grunsven et al. (2010), in which direction of
PSF detected between pairs of European congeners was largely
unaffected by variation in testing temperature, though this study
did not manipulate temperature in the testing environment. Our
results suggest that across year variation in climate may be one
reasonwhy plant-soil feedbacks have been observed to be variable
(De Long et al., 2019).

Despite our hypothesis that experimental drought conditions
would result in strong positive feedbacks, we found the opposite
occurred. Our hypothesis was based on a combination of
observations that non-native B. ischaemum currently invades
into grasslands, and Duell et al. (2016) reported elevated
temperatures and reduced soil moisture did not affect biomass
production of the species. We observed the alternative scenario,
in that the biomass of the non-native was not influenced,
while the biomass of S. scoparium was greater in non-native
soil compared to when grown in conspecific soil. While we
do not suggest that the non-native soil generally promotes
native growth, we propose that these results may result from
two mechanisms. The first mechanism is that the changes in
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the AM fungal community contributed to the negative PSF
observed (Bever, 2002). In the event of elevated temperatures,
AM fungi may decrease activity (Mohan et al., 2014), which
in turn weakens positive PSF (De Long et al., 2019), which
could further explain our observed negative feedbacks. Changes
to the fungal community were likely more pronounced due
to the greater growth of the non-native grass relative to the
native grass in the training phase of the experiment (Duell et al.,
2016) under elevated temperatures (Supplementary Tables 4–
6; Supplementary Figure 1). Warm-season grasses, such as
B. ischaemum, readily associate with AM fungi (Wilson and
Hartnett, 1998) and can alter the soil community. Native
S. scoparium might have taken advantage of the changes in
the fungal community composition more effectively than the
non-native species. Alternatively, while not assessed in our
current study, the accumulation of host specific pathogens
could explain the increase in S. scoparium biomass in B.
ischaemum soil in elevated temperatures with soil from elevated
temperature. Plants in their native communities can accumulate
host specific pathogens that contribute to negative feedback
and to community succession (Bauer et al., 2015; Wang et al.,
2017, Crawford et al., 2019). These host specific pathogens
inhibit the growth of the host paving the way for colonization
of other plant species. The release of S. scoparium from its
host-specific pathogens would also result in the increase in S.
scoparium growth in the non-native soil that led to the observed
negative PSF. Either mechanism indicates that the native grass
is able to utilize soil communities altered by the non-native
more effectively relative to the non-native grass, when grown
under elevated temperatures or following a soil legacy of elevated
temperatures. We observed similar reversal of PSF direction in
our cool-season species. The weaker PSF in cool-season grasses
was driven by smaller, but consistent improvements in growth of
both plant species in each other’s soil communities. Given that
these species are not strongly responsive to AM fungi (Wilson
and Hartnett, 1998), we expect that these feedbacks are likely due
to other soil biota, as pathogens and rhizobacteria are known
to affect plant performance (Bever et al., 2012, Pineda et al.,
2013; Rubin et al., 2017, Crawford et al., 2019). The impacts of
pathogens, in particular, are likely to depend upon climate (Bever
et al., 2015). This is supported by the consistent growth in each
other’s soils, as B. inermis was introduced into North America in
the 1800’s, and this length of time may be sufficient to adapt to
local soil pathogens.

Similar to findings by Duell et al. (2016), various combinations
of soil moisture and temperature did not affect biomass
production of non-native B. ischaemum, and it consistently
produced significantly greater biomass compared to native
S. scoparium. This is not surprising, as B. ischaemum was
introduced into the Great Plains as an improved forage,
producing substantially greater biomass thanmany native grasses
of similar stature. Additionally, while native P. smithii produced
overall greater total biomass relative to non-native B. inermis,
no differences were detected when analyzing by source training
species, source temperature, and experimental temperature when
grown under well-watered conditions. While we expected that
both plant species would perform best when the climate legacy

of a soil was matched with the current environment, but we did
not see any evidence of microbial mediation of plant adaptation
to the environment.

Our findings suggest that plant responses to warming
temperatures and drought will be species-specific, and some
invasives, such as B. ischaemum, will continue to produce large
amounts of biomass relative to native species. We suspect that
the presence of native plants will have a greater influence on
the inhibition of non-native growth and establishment under
predicted climate change scenarios. More research is required
to confirm the extent to which soil environmental legacy
affects the following year’s PSF, especially in the context of
moderate and severe drought. Furthermore, our study consisted
of two pairings of functionally-similar native and non-native
invasive prairie grasses, and additional species should be assessed
to further our knowledge of the role of environmental soil
training on invasive species PSF dynamics. There are still many
questions surrounding plant invasion dynamics, and research
such as our current study provide key insight into plant-
soil-microbial interactions under projected climate regimes.
Nevertheless, results from our two experiments suggest that when
climate is consistent across years, soil microbes can contribute to
coexistence of native and non-native plant species, while this does
not occur when climate is variable across years. Further work on
other plant species pairs and other environmental dimensions is
required to test whether this is a general result.
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